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1
SYSTEM AND METHODS OF IMPROVED
TOMOGRAPHY IMAGING

FIELD OF THE INVENTION

The present invention relates generally to tomography
imaging. More particularly, the present invention relates to an
improved inversion technique that surrounds the imaging
region with an electrically conducting surface to produce an
improved tomographic image.

BACKGROUND OF THE INVENTION

The present invention is discussed in the following largely
with reference to the medical industry, but the present inven-
tion is applicable to a variety of contexts and environments,
each of which may utilize or benefit from an improved tomo-
graphic imaging system, for example, archaeology, biology,
geophysics, materials science, electron microscopy, security
scanning, industrial nondestructive testing, astronomy and
others.

Tomography is imaging by sections or sectioning to convey
internal structures of a solid object, for example the human
body or the earth. Slices of the object are viewed without
physically cutting the object. A device used in tomography is
called a tomograph. A tomograph generates a tomogram, or
image.

The image, or tomogram, can be achieved by tomography
applications such as acoustic tomography, atom probe tomog-
raphy (APT), computed tomography (CT), confocal laser
scanning microscopy (LSCM), cryo-electron tomography
(Cryo-ET), electrical capacitance tomography (ECT), elec-
trical resistance tomography (ERT), electrical impedance
tomography (EIT), functional magnetic resonance imaging
(fMRI), magnetic induction tomography (MIT), magnetic
resonance imaging (MRI), formerly known as magnetic reso-
nance tomography (MRT), neutron tomography, optical
coherence tomography (OCT), optical projection tomogra-
phy (OPT), process tomography (PT), positron emission
tomography (PET), quantum tomography, single photon
emission computed tomography (SPECT), seismic tomogra-
phy, and X-ray tomography.

Electromagnetic and acoustic tomography requires the
inversion of a wave equation. More modern variations of
tomography involve gathering projection data from multiple
directions and feeding the data into a tomographic recon-
struction algorithm processed by a computer in order to create
a tomographic image. The reconstruction algorithm includes
an inversion technique.

Various inversion techniques for wave equations arising
from electromagnetic and acoustic scattering imaging sys-
tems have been developed since the early 1980s. Scattering is
a general physical process whereby some forms of radiation,
such as light, sound or moving particles, for example, are
forced to deviate from a straight trajectory by one or more
non-uniformities in the medium through which it passes. It is
the inverse problem to the direct scattering problem that
determines the characteristics of an object such as its shape
and internal constitution from measurement data of radiation
or particles scattered from the object.

A substantial amount of research during the last decade or
so has focused on a full non-linear inversion problem, or a
non-linear inversion technique. These inversion techniques
have matured to the point for possible use in biomedical
imaging and identification, and experimental systems have
already been created that show good potential for electromag-
netic imaging of limbs and breast tumors.
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An advantage of the full non-linear inversion technique, as
opposed to a linearized technique, is that a quantitative inver-
sion of material parameters such as conductivity and permit-
tivity significantly improves solving the clinical identifica-
tion problem, e.g., tumor or no tumor, and makes the non-
linear inversion technique much more useful for biomedical
applications.

Large classes of inversion techniques for wave-type equa-
tions are formulated as non-linear optimization problems
which are then solved using an iterative method. Most of
these methods require the use of a Green’s function and,
typically, these methods have been implemented using the
Green’s function associated with a scatterer located in an
unbounded homogeneous region. However, this assumption
rarely matches the physical situation for proposed imaging
systems. For example, several recently proposed and imple-
mented biomedical imaging systems utilize a matching
medium, or fluid, contained in a tank made of material such as
plexi-glass. The assumption of a homogenous background
Green’s function in the inversion technique ignores the field
distortions caused by the matching medium, and leads to
inversion artifacts.

An improved inversion technique that matches the physical
situation for proposed imaging systems by creating field dis-
tortions needed to produce an improved tomographic image.
The present invention satisfies this demand.

SUMMARY OF THE INVENTION

The present invention is a system and methods of improved
tomography imaging such as microwave tomography
(MWT). An improved inversion technique that surrounds the
imaging region, otherwise referred to herein as image region,
with an electrically conducting surface to create field distor-
tions producing an improved tomographic image. The
improved inversion technique of the present invention creates
a new physical situation for proposed imaging systems.

The method for an improved tomographic imaging system
according to the present invention comprises defining an
image region. The image region is surrounded with an elec-
trical conducting surface to form a shaped-boundary. Upon
applying radiation to the image region, the system creates
field distortions reflected by the shaped-boundary thereby
producing an improved field distribution. The field distribu-
tion is accounted for in a mathematical inversion technique
allowing for an improved tomographic image.

The present invention surrounds the imaging region with
an electrically conducting surface to create field distortions to
produce an improved tomographic image. The electrically
conducting surface acts both as the container for the matching
medium as well as a shield against external sources of radia-
tion. The inclusion of the conductive surface differs from
existing tomographic imaging systems, which typically have
a plexi-glass or similar surface.

The field distortions are used in the inversion algorithm, via
the appropriate Green’s function. While the use of a conduct-
ing surface to surround the imaging region is not particular to
any given inversion algorithm, the present invention is dis-
cussed herein in regard to the Contrast Source Inversion (CSI)
algorithm, particularly the Multiplicative-Regularized Con-
trast Source Inversion (MR-CSI) algorithm. This CSI algo-
rithm has been chosen for illustrative purposes only as it is
contemplated that the present invention is applicable to any
inversion algorithm. The CSI algorithm has been chosen for
discussion of the present invention since it is known to be
successful in solving the inverse problem for homogenous
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backgrounds. In addition, the CSI algorithm is suitable for a
wide range of MWT problems.

As an example, results of the present invention are shown
for the case where the electrically conducting surface is mod-
eled by a Perfect Electric Conductor (PEC) in the shape of a
circular cylinder. While the shape of the surface considered
herein is a cylinder, any shape is contemplated for which a
closed-form of the Green’s function is known. The Electro-
Magnetic (EM) radiation is modeled as a 2D Transverse
Magnetic (2D-TM) problem. A form of the 2D-TM circular-
cylinder Green’s function that is easily utilized in existing
electromagnetic codes is formulated. The formulated Green’s
function takes into account the fields reflected by the bound-
ary formed by the electrically conducting surface. The for-
mulated Green’s function according to the present invention
improves the performance of the inversion as compared to
using an unbounded homogenous medium Green’s function.

While the formulation discussed herein applies to a 2D
scalar wave equation, the formulation is equally applicable to
a 3D scalar wave equation as well as vector problems.

Several different synthetic examples are discussed herein
that test the performance of the inversion technique when the
PEC surface is present. Results show that, in many cases, the
tomographic image is significantly improved. It is believed
the improved inversion results are likely due to the increased
interrogation energy deposited into the imaging region.
Results are also shown herein that demonstrate the problems
which may arise if the unbounded domain Green’s function is
used in an MWT system that utilizes a matching medium of
finite extent—problems which are overcome by the inclusion
of'a PEC surface on the exterior of the MWT system.

The present invention and its attributes and advantages will
be further understood and appreciated with reference to the
detailed description below of presently contemplated
embodiments, taken in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of the tomographic imag-
ing system according to the present invention;

FIG. 2 graphically illustrates an embodiment of a Green’s
function according to the present invention;

FIG. 3 graphically illustrates an embodiment of a square
scatterer reconstruction according to the present invention;

FIG. 4 graphically illustrates an embodiment of a low
contrast concentric square scatter reconstruction according to
the present invention;

FIG. 5 graphically illustrates an embodiment of a two
cylinder scatterer reconstruction according to the present
invention;

FIG. 6 illustrates an embodiment of a simulation of a
tomographic imaging system according to the present inven-
tion;

FIG. 7 graphically illustrates the results of the reconstruc-
tion of the simulated tomographic imaging system of FIG. 6;
and

FIG. 8 is a block diagram of a general computer system
according to the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The present invention is an improved inversion technique
that surrounds the imaging region with an electrically con-
ducting surface, or enclosure, to create field distortions in
order to produce an improved tomographic image. A sche-
matic of the imaging region 20 is shown in FIG. 1. An
unknown scatterer 22 is embedded in a matching fluid 24,
which is surrounded by an electrically conductive surface 26,
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4

here a cylinder. The conductive surface 26 serves as both the
enclosure for any possible matching fluid 24 and a shield from
outside interference. The inclusion of the conducting enclo-
sure considerably changes the distribution of the ElectroMag-
netic (EM) energy as compared to that of an open system.
Most importantly, the distorted field is taken into account in
the inversion algorithm, via the appropriate Green’s function
discussed more fully below. Again, while the shape of the
surface considered herein is a cylinder, any shape is contem-
plated for which a closed-form of the Green’s function is
known.

A 2D scalar wave equation, here a 2D Transverse Magnetic
(2D-TM) problem is used with a scalar field quantity (in this
case, E_,) represented by the symbol u. The conducting enclo-
sure is modeled as a Perfect Electric Conductor (PEC). The
governing differential equation is the 2D scalar wave equa-
tion. A frequency domain model with an assumed &®’ time
dependency is used. A series of transmitters, with positions
labeled k=1 . . . K, illuminates an unknown scatterer with an
incident field denoted U™,. The scatterer is located entirely
within a region D and is embedded in a homogenous back-
ground medium with a background permittivity of €,, and a
non-magnetic medium with a permeability of free-space
(H=1o)-

The scattered field is measured outside the region D, and
given by the data equation:

1
W) = K f g0 7wy 7 & D, m
D

where r is the location of the receiver, g is the background
Green’s function, v, is the total field of transmitter k and u,*
is the scattered field.

The background wave-number is given by:

k=0 e, @
where o is the radial frequency. The contrast, ¥ is:
s -e ki 3)
XM= = = s -1

where k*(r) and €(r) are the wave-number and complex per-
mittivity inside the scattering region, respectively. The fre-
quency dependence of permittivities, for either the scatterer
or background, is assumed to arise only from the direct cur-
rent (DC) conductivity of the medium, and allowing the
expression of the real and imaginary parts of the permittivity
as:

@)

o
e=g +je’ =& - j—.
w

For the case where the background is lossless, i.e., €,"=0, the
contrast may be expressed as:

®

din-s

R

Ep

Thus, for lossless backgrounds, the imaginary part of the
contrast is non-positive.
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The fields inside the region D are modeled by the domain
equation:

e (r) =t (r) +k§fg(r, x(u(¥Ydry reD ©
D

where now ris located inside the scattering region D. The data
equation (1) and domain equation (6) form a nonlinear
inverse problem for the unknown contrast, y and the fields
inside the imaging domain D.

The fundamental difference in moving from an open sys-
tem to a system with a conductive enclosure is that the
Green’s function in the data equation (1) and domain equa-
tion (6) changes from a relatively simple Hankel function to a
more complicated analytic expression for the Green’s func-
tion of the enclosed problem. The closed-form expression for
the modified Green’s function applicable to the circular cyl-
inder is discussed more fully below. Many of the advantages
associated with the proposed imaging system derive from this
change in the Green’s function for the inverse problem.

As mentioned above, the Contrast Source Inversion (CSI)
algorithm has been chosen for discussion of the inversion
technique according to the present invention, particularly the
Multiplicative-Regularized Contrast Source Inversion (MR-
CSI) algorithm. Again, the present invention is not particular
to a specific inversion technique and the inverse problem may
be solved in a multitude of ways. Specifically, the MR-CSI
algorithm is selected since it has shown extensive success as
an inversion technique applied to both noisy computational
and experimentally collected data. Additionally, the MR-CSI
algorithm does not require any a-priori probability, although
it may easily be taken into account if desired. A-priori prob-
ability is probability calculated by examining existing infor-
mation. Moreover, no forward solver is required in the opti-
mization procedure, the manual selection of a regularization
parameter is not required, and it has a computational com-
plexity of only approximately twice that of a forward solver.
The MR-CSI algorithm is also suitable for wide-band simul-
taneous multi-frequency inversion. The formulation of the
MR-CSI algorithm does not depend on the particular Green’s
function used, and the use of a conducting enclosure does not
substantially affect the method.

The data equation is first re-written as:

[ =k f gl X0 ()Y 7 €D, @
D

where f, is the measured data. It is assumed that equation (7)
does not hold exactly, as the data are unavoidably corrupted
with noise. In symbolic notation, the data equation is now:

Si=ky” GSX”k

where the operator G° is defined as:

®)

G5 «] =k§fg(r, =ldr res, ©
D

and S is a measurement surface (or set of discrete measure-
ment points). Similarly, the domain equation is written as:

=2t "GPy, (10)
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where the operator G© is defined as:

GD[*]=k§fg(r, #)[+1dr’ reD. an
D

Next, contrast sources, w,(r) are defined as:

wi(r)=x (P (r)reD (12)

By multiplying both sides of the domain equation (10) with

the contrast, y, and utilizing the definition of the contrast
sources, it is written:

Xt =i GPwyreD. (13)

The MR-CSI algorithm formulates the inverse problem as
an optimization function in two variables: the contrast, w, and
the contrast sources, w. The objective function is minimized
via an iterative optimization scheme. The core of the MR-CSI
algorithm is the objective function:

Fn:F(Wk,an):Fs(Wkﬂ)+FD(Wk,mX2),

where each term on the right hand side is created by summing
over the transmitter locations:

(14)

1s)

2
D Ity

2

D el

P i) L
D el

AT

and F2(Win, xn) =

Here p is the data error, defined as:

Pren(PVFP=Gowy €S, (16)
and r; ., known as the domain, or object, error, is defined as:

Yien (r )%”k,n— Win :XGDWk"'X”ki"C— Wi t€D 17)

The index n=1 . . . N represents the iteration number. The
normalization terms in both F* and F” of equation (15) are
utilized to balance between the two terms in the overall objec-
tive function.

The inclusion of the domain equation inside the objective
function obviates the need for a separate forward solver. The
minimization over both unknowns y and w, is performed
sequentially by taking alternating steps of the conjugate gra-
dient minimization algorithm on each unknown. Closed-form
expressions used in this minimization algorithm are avail-
able, which significantly increases computational efficiency.

Multiplicative Regularization (MR), which is based on
minimizing the total variation of the contrast, enhances the
CSI algorithm. MR significantly improves the performance
of the algorithm in noisy environments and eliminates the
need for a user-selected regularization parameter, such as that
required in Tikhonov regularization. The MR-CSI objective
function becomes:

C=F rpl)EWapen)

where:

(18)

IV xu (P + 62, 19)

1
Frolg) = — | —222 2 T ol
) Afuw;mfl(rn%éﬁfl '

where A is the area of the imaging region D, § -*=F 1PA~2
and A is the length of a side of single cell in the discretized
domain, in other words A2 represents the reciprocal of the
area of a single cell area of the domain D. For example, on a
rectangular grid A—>=1/(Ax Ay).
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In order to implement both a forward solver to generate
synthetic data, and the actual MR-CSI inversion algorithm, an
appropriate closed-form of the Green’s function for the
enclosed homogenous region is required. To get this appro-
priate closed-form of the Green’s function, the solution is
sought for the scalar wave equation when the boundary con-
dition is a circular PEC cylinder. The surface of the PEC
cylinder is denoted by S, and the region enclosed by the
cylinder is denoted by V. The governing differential equation,
or the wave equation, is given by:

Vzu(r)+k(r)2u(r):—F (r)reV (20)

where u is the scalar field quantity of interest, k is the wave
number that may depend on position, F is a source term, and
r represents position. The field quantity u must also satisfy the
boundary condition:

u(r;0)=0reS 21

on the surrounding PEC surface.
The Green’s function for a homogenous medium satisfies
the equation:

V2g(rr P g(nry=—d(r-rreV. (22)

Different Green’s functions can be chosen based on the selec-
tion of the shape of the conducting boundary as well as the
boundary conditions associated with equation (22). It is con-
templated that the shape of the conducting boundary as well
as the boundary conditions may be selected to best suit a
particular problem. By considering Green’s second identity:

2 2 _ ay  9¢ (23)
[[avu-uvaav = o3k -uhas.
and noting that:
Vzu(r):—F (r)—kzu(r)
V2 g(nr)==0(r=r)-g(rr) @4
it can be written:
Au (25)

N 9g
u(r):fvg(r,r)F(r )ar +§;(u% —g%]d&

If this were a free-space problem, the surface integral can
be eliminated by selecting g=0 on S and requiring that g
satisfies the Sommerfeld radiation condition. However, these
conditions cannot be utilized with a PEC surface. Thus, the
modified Green’s function is utilized. A function, p (r, r') is
introduced that satisfies the homogenous scalar Helmholtz
equation:

V2p(rr+ip(rr)=Orel, (26)
and the modified Green’s function is defined as:
g(rr)=gulrr)tp(nr), @7

where g4 (r, 1) is the free-space Green’s function in other
words, the usual Green’s function in the absence of the PEC
surface. It may be noted that the addition of the function p
makes no contribution to the right hand side of (22). Assum-
ing that g satisfies the PEC boundary condition, then:

prr)=—gg(rrires, (28)
and thus the differential equation for the function p becomes:

V2p(rr P p(nry=0reV

p(rry=—gulrr)reS 29)
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With this construction, and the assumption that the derivative
of the Green’s function is finite on the surface S, the surface
integral in equation (25) is eliminated, thus:

u(r) = fg(r, FYF(r)dr. S
Y

In order to utilize the Green’s function as derived above, an
expression for the function p must be found. The homogenous
differential equation of equation (29) may be solved via the
introduction of a cylindrical coordinate system for r, (r, 0),
centered at the origin and using separation of variables. The
eigenfunction expansion of p is given by (see Appendix for
the full derivation):

p(r,0,r) = (3B

oo

A, (kr) + E (A gk )COS("Q)
r nd n(K¥
Nera N

n=1

+ By (kr)

sin(nf) ]
7 )

where ], is the ‘n™ order Bessel function of the first kind, and
the coefficients A, and B,, are given by:

A= L f" g5(a, 8, ' )cos(r6)d o and 62
VERACORS
Bu(r, ) = m ﬂ gala, 0. )sin(r)do,
where o is the radius of the cylinder. Here:
33)

’ 1 (2) ’
gp(r, )= 4—].Ho klr = r')).

where H,® is the zero-th order Hankel function of the second
kind, which is the 2D homogenous space Green’s function
corresponding to the use of &’ time dependency.

Closed-form expressions for A, and B,, may be derived (see
Appendix), and are given by:

Ap= LD HO M) + 34
4j\/;Jn(ka)[ (klr'De i (klrl)

J_a (Kl e HE ki)
and:

B, = (35

[l D HO Ul + Ikl e HE KA,
AT Jatka)

where H,,® is the m” order Hankel function of the second
kind, and @' is the associated with the position vectorr'. These
closed-form expressions significantly reduce computation
time for the Green’s function.

FIG. 2a shows a plot of the magnitude of Green’s function
for a frequency of 1 GHz inside a PEC cylinder of radius 20
cm with a lossless background, showing the field distortions
produced by the conducting boundary. For comparison pur-
poses, the regular free-space Green’s function is plotted in
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FIG. 2b. Both Green’s functions are singular at the source, but
the discretization of the imaging region avoids these singu-
larities. As shown in FIG. 2a, significantly more energy is
located inside the PEC cylinder than for unbounded space of
FIG. 2b.

In the context of computational electromagnetics, it is
important to eliminate the surface integral in equation (25).
The elimination of this integral allows for the application of
standard (frequency domain) electromagnetic computational
techniques, i.e., only a minimal change is required to switch
an extant computational code to the new physical situation. In
addition, the only singularity of the Green’s function, g(r, r'),
is located in the free-space term. This is due to the fact that the
p term satisfies a homogenous differential equation. This
means that current standard methods of extracting singulari-
ties in Method of Moments (MoM) codes remain
unchanged—not a feature of other forms of the Green’s func-
tion. To evaluate integrals of the function p, standard quadra-
ture techniques are utilized because p is a smooth function.
Thus, the derivation of the enclosed space scalar Green’s
function is completed.

The use of the modified Green’s function in MR-CSI
requires little or no changes at the conceptual level. However,
the switch in Green’s function does affect the numerical
implementation. From a computational perspective, the most
important aspects of the PEC Green’s function are that the
Green’s function cannot be written in the form g(r, r')=g(r-r")
and the fields do not decay monotonically as the distance
between r and t' increases. As these two properties are the core
requirements required for the Fast Fourier Transform (FFT)
and Fast Multiple (FM) acceleration methods respectively,
the usual techniques used to make O(N?) (in memory and
computational time) matrix operations into fast O (N log N)
matrix operations are not applicable to matrices which result
from the use of this Green’s function. The lack of these two
desirable properties is not formulation-dependent—they rep-
resent the actual physics of EM point sources in a PEC
enclosed region. Hence, the existence of standing waves.
Thus, re-formulating the Green function will not allow these
acceleration methods to be applied. Therefore, for purposes
of this embodiment of the application, all matrix multiplica-
tion is in the O(N?) format.

In practice, the infinite sum in equation (31) must be trun-
cated. This is accomplished by taking enough terms in the
series until it converges to within some error tolerance.

Several different synthetic data sets based on a 2D model
have been generated to test the efficacy of the new microwave
tomographic method. The incident field for every transmitter
is a line-source which is parallel to the axis of the scatterer, in
other words the incident field is taken to be the Green’s
function. The data is generated with a 2D Method of Moments
(MoM) solver using pulse basis functions and point match-
ing.

In order to test the inversion algorithm’s performance in
the presence of noise, 10% Root-Mean-Square (RMS) addi-
tive white noise is added to all scattered field measurements
as follows:

o peas oo measy y preany N5 g 36)
V2

where o and  are uniformly distributed random numbers
between -1 and 1, and N, is the desired fraction of noise—for
purposes of this application Ng=0.1. For every inversion
example, the conditions Re()>0 and Im(y)<0 are enforced at
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every step of the MR-CSI algorithm. For image clarity, all
results illustrated in FIGS. 3, 4, and 5 display the negative of
the imaginary part of the contrast, —lm(y)=€"/e, =0/ w.

For the first numerical example, a simple scenario consist-
ing of a square lossy scatterer is considered as shown in FIG.
3. The operating frequency is 1 GHz, and the scatterer is
embedded in a PEC cylinder of radius 20 cm. The lossless
background has a permittivity of €,=3¢, where €, is the per-
mittivity of free space. The scatterer is illuminated by ten
transmitters located evenly on a circle of radius 15 cm. The
scattered field is measured at forty receiver points placedon a
circle of radius 16 cm. The inversion region D is a square with
edges of 20 cm length located in the centre of the PEC cylin-
der. The scatterer consists of a square object with sides of
length 10 cm and a contrast of ®=>5.0-j4.0. Thus, the object
has edges slightly larger than 1.3A. The exact contrast is
shown in FIG. 3a. The forward data were generated on a grid
0t'30x30 placed over D. In order to avoid an “inverse crime”
as known to those skilled in the art, the inversion grid was
selected to be 29x29 cells: this ensures that numerical quadra-
ture points for the inverse and forward problem are distinct.
The inversion results, or reconstruction from the bounded-
space forward and inverse solvers, after 1024 iterations of the
MR-CSI algorithm with the enclosed (PEC bounded) Green’s
function are shown in FIG. 35.

The results do not illustrate a perfect reconstruction of the
object. The overall shape of the scatterer is visible, however
the magnitude of the real part of the contrast is not correct and
the imaginary part of the contrast, while close to the exact
values at the edges, does not reconstruct the interior of the
object correctly. However, the it is critically important that the
overall shape of the scatterer is visible.

For comparison purposes, new data is generated for the
equivalent unbounded problem: all input parameters for the
forward solver are kept the same, except the PEC cylinder is
removed—the regular unbounded-space Green’s function is
used. Thus, the target is embedded in an infinite medium filled
with the background permittivity of €,=3¢€,. The forward data
are then inverted in the MR-CSI reconstruction using the
regular unbounded-space Green’s function.

The reconstruction from the unbounded-space forward and
inverse solvers is shown in FIG. 3¢. For the real part of the
contrast, not even the outline is visible. In fact, the reconstruc-
tion shows the contrast being negative, where it should be
positive. The imaginary part of the reconstructed contrast
shows the edges of the scatterer, but does not reach the exact
level of 4.0.

In this case, it is clear that the use of the bounded-region
tomographic system significantly improves the reconstruc-
tion. It is believed that the reconstruction is improved because
more energy is located inside the lossy scatterer due to the
bounding of the energy by the enclosure.

Next, the same scattering object used as a test case for the
MR-CSI method is considered, as shown in FIG. 4. The
scatterer consists of two low contrast concentric squares, with
an inner square having sides of length h, with a contrast of
x=0.6—-0.2, embedded in an exterior square having sides of
2\ and contrast %¥=0.3—j0.4. The exact contrast profile is
shown in FIG. 4a. The imaging region D consists of a square
having sides of length 3A. A single frequency of 1 GHz is
utilized, and free-space is assumed for the background. The
forward data is generated on a grid of 31x31. Thirty trans-
mitters are spaced evenly on a circle of radius 2.33A=70 cm,
and 40 receivers are placed evenly on a circle of radius
2.170=65 cm. The scatterer is surrounded by a PEC cylinder
of radius 90 cm or approximately 3A.
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The data is inverted via the MR-CSI algorithm with the
bounded Green’s function. As before, the inversion mesh has
29x29 elements. The inversion results, or reconstruction from
the bounded-space forward and inverse solvers, after 1024
iterations of the MR-CSI algorithm with the enclosed (PEC
bounded) Green’s function are shown in FIG. 45. Although
there are a few spurious pixels in the image, the two concen-
tric squares are clearly visible.

Again, the forward data is re-generated for the case where
no PEC cylinder is present, but keeping every other parameter
of the forward solver the same. The reconstruction from the
unbounded-space forward and inverse solvers is shown in
FIG. 4¢. Unbounded free-space data is inverted via the MR-
CSI algorithm with the unbounded Green’s function. In this
case, the results compare favorably with the reconstruction
where the PEC cylinder is present because the contrast is
lower than the previous case of the single square.

Next, a scatterer consisting of two high contrast cylinders is
examined as shown in FIG. 5. Each cylinder has a radius of 1
cm and has a contrast of %¥=2.0-j0.0. The two cylinders are
separated by 1 cm, and were illuminated by 10 transmitters at
afrequency of 1.5 GHz. Thus, the separation between the two
cylinders is Y20™ of a wavelength. For the forward solver, the
cylinders were discretized on a grid of 40x40 elements. The
exact contrast profile is shown in FIG. 5a. Both the bounded
Green’s function and unbounded forward solvers were run,
and the data are inverted via the appropriate MR-CSI program
on a grid of 35x35 elements. The reconstruction from the
bounded-space forward and inverse solvers, after 1024 itera-
tions of the MR-CSI algorithm with the enclosed (PEC
bounded) Green’s function are shown in FIG. 54 and the
reconstruction from the unbounded-space forward and
inverse solvers is shown in FIG. 5c.

As shown in FIG. 5, the use of the enclosure significantly
improves the reconstruction. In the case where the enclosure
was utilized, the two cylinders are distinct. In the case where
the enclosure was not utilized, the cylinders are completely
blurred. Thus, the use of the enclosure has, in this case, given
a higher resolution for these two scatterers.

When the unbounded domain Green’s function is utilized
in a lossless matching media MWT system, the artifacts intro-
duced are quantified. FIG. 6 illustrates the simulation of a
tomographic imaging system 30 without a PEC boundary. As
shown in FIG. 6, the tomographic imaging system 30 has a
cylindrical matching fluid 32 of e=4 €, of radius 30 cm. Inside
the holding tank 34 are two cylindrical scatterers 42, 44 of
radius 4 cm centered at (x, y)=(£5,0) cm and with permittivity
of e=5¢,. Thirty transmitters are located on a circle 36 of
radius 25 cm, and forty receivers are located on a circle 38 of
radius 23 cm. An operation frequency of 1 GHz was utilized.

Two computational experiments are performed. In the first,
the embedding medium is located within a PEC cylinder.
Data is generated, and inverted via the MR-CSI algorithm.
The inversion results are shown in FIG. 7a illustrating that the
two cylinders are reconstructed reasonably well.

In the second computational experiment, synthetic data is
generated taking into account the finite matching medium. In
other words, an EM transparent tank is assumed that contains
the matching medium. Data is generated, and inverted via the
MR-CSI algorithm assuming that the inhomogeneities are
embedded in an infinite background medium. Thus, the
reflections from the edge of the embedding medium are not
taken into account in the inversion, and will produce artifacts
in the reconstruction. The reconstruction results are shown in
FIG. 7b. As shown in FIG. 75, this reconstruction is com-
pletely wrong since the reflections from the edge of the
matching medium completely overwhelm the scattering from
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the two cylinders in the tank. Thus, the enclosed MWT sys-
tem does not produce these artifacts. These inversion results
improve with the use of a lossy matching medium, but as
mentioned above, the tradeoff is adding undesirable loss to
the scattering experiment.

As shown, for the case where the electrically conducting
surface is a PEC cylinder, a version of the enclosed-domain
Green’s function is derived, which is amenable for use in
existing computational solvers with only small modifica-
tions.

This Green’s function was implemented in both a MoM
forward solver for producing synthetic data and in the MR-
CSI algorithm. The physical nature of the Green’s function
precludes the use of standard “fast” O(N log N) computa-
tional techniques, and currently all computations are imple-
mented using algorithms with O(N?) computational com-
plexity.

Several different synthetically generated examples are
shown in which the use of a PEC cylinder to surround the
scattering object improved the inversion results over the usual
method of embedding the scatterer, in an infinite background
medium. It is hypothesized that this is due to the fact that more
energy is located inside the scatterer due to the reflections
from the PEC surface. Another hypothesis is that the standing
wave or resonant nature of the field distribution inside the
enclosure contributes to the improved imaging. Yet another
hypothesis is that the norm of the Green’s function operator
effects these improvements. It has already been shown in that
the sufficient conditions for the convergence of both the dis-
torted Born iterative method and Born iterative inversion
methods are related to the norm of the Green’s function
operator.

The use of a tomographic imaging system with a finite
matching medium and a reconstruction algorithm which does
not take the finite nature of the matching fluid into account
generates artifacts. The use of the external PEC cylinder in the
tomographic system, combined with the use of the related
Green’s function in the inversion algorithm does not produce
such artifacts.

FIG. 8 is a block diagram of a computer system 300 that
implements the present invention. According to one embodi-
ment of the present invention, the steps of improved tomog-
raphy imaging, as well as other aspects of the present inven-
tion are implemented by a computer system 300. The
processor or central processing unit (CPU) 302 in the system
300 may execute sequences of instructions stored in a
memory. The memory may be a random access memory
(RAM) 304, read-only memory (ROM) 306, a mass storage
device 307, or any combination thereof. The CPU is coupled
through a bus 301 to the memory. The mass storage device
307 could be a disk or tape drive for storing information such
as data, algorithms and instructions. The information may be
further stored within a database in the mass storage device
307. Information may be loaded into the memory of the
computer from a storage device or from one or more other
computer systems over a network connection.

The processor 302 includes a mathematical inversion tech-
nique and further comprises a plurality of components. A first
computer processor component 302q defines an image region
including an electrical conducting surface. Upon the applica-
tion of radiation to the image region, a second computer
processor component 3025 gathers field distortion data. The
field distortion data is reflected by the electrical conducting
surface to produce an improved field distribution. A third
computer processor component 302¢ accounts for the
improved field distribution using the mathematical inversion
technique, for example a Contrast Source Inversion (CSI)
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algorithm or a Multiplicative-Regularized Contrast Source
Inversion (MR-CSI) algorithm. The image region is recon-
structed and illustrated on a display 320.

The display 320 is coupled to processor 302 through bus

301. The system 300 may further include a keyboard 321 for >

communicating information and command selections to pro-
cessor 302. Another type of user input device may be a cursor
control unit 322, which may be a device such as a mouse or
trackball. Also coupled to processor 302 through bus 301 is an
audio output port 324 for connection to speakers which output
the audio content produced by computer system 300. Further
coupled to processor 302 through bus 301 is an input/output
(I/O) interface 325 which can be used to control and transfer
information such as data to electronic devices connected to
computer 300.

Network interface device 323 is coupled to bus 301 and
provides a physical and logical connection between computer
system 300 and the Internet. The architecture of FIG. 8 is
provided only for purposes of illustration, and that the com-
puter system 300 used in conjunction with the present inven-
tion is not limited to this specific architecture.

The separation of variables for the derivation of a PEC
bounded Green’s function is discussed below, including the
eigenfunction expansion of equation (31), and the closed-
form expressions for coefficients A, and B,, of equation (34)
and equation (35) respectively.

The 2D differential equation:

V2p(rr\+i2p(nr)=0reV

plrry=—gpu(rr)reS 37

is solved where S is a circle of radius a. The cylindrical
coordinates r=(r,0) are introduced to write the Helmholtz
equation in the cylindrical coordinates:

Pp @38)

Er

1ap
P ar

18%p

_ 2:
+r2 50 +k‘p=0

O<r<a,-n<B@=nm

pla, 0, 1) = —ggla, 0, r')

Assuming that p may be written as:

p(r8)=R(MH(®), (39

it is noted that:

R” 1R 40)

+——+
R rR

where prime and double prime denote first and second deriva-
tives respectively. Due to the fact that R and H are indepen-
dent, it is noted that:

77 ’ "
,JR_ +r£ e _m = a = constant,
R R H

“4D

which results in two separated ordinary differential equations
(ODE), solvable through the application of the boundary and
periodicity conditions. The first ODE is given by:

H"+aH=0, @2)
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and the periodicity requirement gives the conditions:
H(-m)=H ()
H'(-m)=H'(w) 43)

Equation (42) and equation (43) constitute a Sturm-Louiville
system with eigenvalues:

a=n’ (44)

where n is a non-negative integer, with corresponding
orthonormal eigenfunctions:

1 0 1 ) 1. ) 0 45)
—— n=0, ——cos(nf) + —sin(nd) n> 0.
V2r

Vr Vr

The remaining differential equation is:

2R"+¥R"+(r*}2-n?)R=0. (46)

Equation (46) is Bessel’s equation of order n. The solution to
this equation must be a summation of the Bessel functions of
the form:

Jaller), X, ) H O kr) 1, ).

where I ,(kr) is the n” order Bessel function of the first kind,
Y, (kr) is the n” order Bessel function of the second kind, and
H,“(kr) and H,®(kr) are the n” order Hankel functions of
the first and second kind, respectively. However, since the
solution p is non-singular inside the PEC region, solutions to
R must be of the form:

(47)

R ()= (kr), (48)

as J (kr) is the only solution of Bessel’s equation which is
non-singular.

Thus, general solutions of the form p(r,0;r')=R(r)H(0) may
be now written as:

pla, 0,r) = 49)

oo

A, (kr) + E (A Jnlke )COS("Q)
r ndn(K¥
Vo Vr

n=1

+ BpJy(kr)

sin(nd) ]
Nl

where the coefficients, Ay, A,, and B, are chosen to satisfy the
boundary conditions, namely:

p(a,0,7)=-g.(a,0,r), (50)

or:

pla, 6,r')=-gna, 6,r) = D

oo

A Jothay+ E (A T e
a ndplKa
N N

n=1

+ ByJy(ka)

sin(nd) ]
7 )

Making use of the orthonormal nature of the eigenfunctions
of H(6), both sides of equation (51) are multiplied by 1//2x,
and integrate from 8=-x to 6=m:

-1 (@. 0. )0 52)
— | gsla, 0, r)do=
N

Agdolka) or Ag = gs(a, 0, r)de.

-1
Vor Jolka) fﬂ
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To determine A,,, both sides of equation (51) are multiplied by
cos(m0)/Vr, and integrate over 0, which results in:

A=t f (@, 8, ¥ )eos(nO)do 63
n= sla, U, ¥ )cosia .
Vr J(ka) L
and by similar argument:
B -1 f" (a, 0, ¥ )sin(n®)d o 64
n = = s(a, O, F )sindz .
Vr Iaka) L

These two integrals may be derived in closed form by
considering the identity:

> oy (63
D7 k) HP (Y <y

HE K= =| " " ,
D7l YHD ey )y

where r, r' and 6, 0" are the cylindrical coordinates for r and r'
respectively. For the integrals in equation (53) and equation
(54), r>1', thus:

Y —1 j’n (56)
" 4T dyka)

which equals:

Z Tt )H,(nz)(kr)ej"‘(g’g/)]cos(nO)ziO,

-1

Y —
4jvn J,ka)

k) . ) (57
Z Ty YH® (fer)eim® ] f" 2" cos(nf)d,
-

=—co

and since:
. n if |l =m
fe’”‘%os(n@)d@: .
o 0 otherwise

A,, is equal to the expression given in equation (34). The
derivation for B,,, proceeds in an analogous manner.

While the disclosure is susceptible to various modifica-
tions and alternative forms, specific exemplary embodiments
thereof have been shown by way of example in the drawings
and have herein been described in detail. It should be under-
stood, however, that there is no intent to limit the disclosure to
the particular embodiments disclosed, but on the contrary, the
intention is to cover all modifications, equivalents, and alter-
natives falling within the scope of the disclosure as defined by
the appended claims.

What is claimed is:

1. A method for an improved tomographic imaging system,
comprising,

inputting information through a user interface, wherein the

information defines an image region;

(58)
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creating an electrical conducting surface surrounding the
entire image region according to a first instruction
executed by a processor;

applying radiation to the image region according to a sec-
ond instruction executed by the processor to measure
only field distortions reflected by the electrical conduct-
ing surface surrounding the entire image region;

producing by the processor an improved field distribution
from the field distortions;

utilizing by the processor a mathematical inversion tech-
nique that accounts for the improved field distribution to
reconstruct the image region to obtain a reconstructed
image region; and

illustrating the reconstructed image region on a display
device.

2. The method of claim 1 wherein the mathematical inver-

sion technique includes a Green’s function.

3. The method of claim 1 wherein the electrical conducting
surface is modeled as a Perfect Electric Conductor (PEC).

4. The method of claim 3 wherein the Perfect Electric
Conductor (PEC) is in the shape of a circular cylinder.

5. The method of claim 1 wherein the mathematical inver-
sion technique is a Contrast Source Inversion (CSI) algo-
rithm.

6. The method of claim 5 wherein the Contrast Source
Inversion (CSI) algorithm is a Multiplicative-Regularized
Contrast Source Inversion (MR-CSI) algorithm.

7. Animproved tomographic imaging system, comprising:

a user interface configured to receive information that
defines an image region;

a computer processor including a plurality of processor
components, the plurality of processor components
comprising:

a first computer processor component that executes a
first instruction to create an electrical conducting sur-
face that surrounds the entire image region, wherein
radiation is applied to the image region and reflected
by the electrical conducting surface;

a second computer processor component that executes a
second instruction to gather only field distortion data
measured by the radiation reflected by the electrical
conducting surface to produce an improved field dis-
tribution;

a third computer processor component that executes a
third instruction to utilize a mathematical inversion
technique that includes a Green’s function to account
for the improved field distribution to obtain a recon-
structed image region; and

a display to illustrate the reconstructed image region.

8. The system of claim 7 wherein the mathematical inver-
sion technique is a Contrast Source Inversion (CSI) algo-
rithm.

9. The system of claim 7 wherein the mathematical inver-
sion technique is a Multiplicative-Regularized Contrast
Source Inversion (MR-CSI) algorithm.
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