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SUMMARY

The computer implementation of time-domain finite difference methods for the solution of Maxwell’s
equations is considered. As the basis of this analysis, Maxwell’s equations are expressed as a system of
hyperbolic conservation laws. It is shown that, in this form, all the well-known differencing schemes can be
easily expressed, thus increasing the applicability of the implementation issues to be discussed. Practical
issues, such as computational efficiency and memory requirements, are discussed for the implementation of
the finite difference schemes. Advanced programming techniques in the C language are used to implement
the finite difference schemes discussed. The example of the penetration of electromagnetic energy through
a shield with a thick gap is used to check the performance of the methods. It is shown that, for cases where
the disturbance remains localized in the computational mesh, these techniques result in memory and CPU
time savings.

1. INTRODUCTION

The physical phenomenon of electromagnetic interactions is described by Maxwell’s equations.
These equations can be expressed in a variety of mathematical forms, each having its own
advantages and disadvantages. They may be formulated as a system of partial differential equations
over the space and time domain or, as is often done in the engineering literature, the partial
differential equations may be immediately cast in the frequency domain by assuming time harmonic
excitations.!? Time-domain responses are then calculated by a linear superposition of the individual
harmonic solutions. Other formulations making use of integral relations, in either the time or the
frequency domains, for either potential fields or the electric and magnetic fields can also be used.

Once the equations have been formulated, many algorithmic techniques exist to produce the
required solution. Finite difference and finite element methods (i.e. including the method of
moments) form the majority of these techniques for all the different types of formulations
encountered.’>> Depending on the chosen formulation each algorithmic method has its own
advantages and disadvantages. In general, no one algorithm is robust enough to account for all
the physical and formulation variations encountered in solving electromagnetic field problems. In
recent years much attention has been given to the finite difference approximation of the full time-
domain Maxwell’s equations.

Practical issues such as memory requirements, efficiency, and overall speed of calculation are
of concern when numerical methods are implemented on a computer. To allow easy study of
electromagnetic phenomena, the output from a numerical method must also be presented in some
visual form (i.e. using graphics software). A summary of all these concerns is depicted in Figure
1.

In the following paper, an investigation is made of improving the computer calculation perform-
ance of finite difference techniques based on the differential form of the time-domain Maxwell’s
equations. Time-domain finite difference techniques based on Maxwell’s equations written in
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Figure 1. Numerical methods issues

conservation law form are implemented. The code is written in the C language and runs on a
Sun workstation. Results are shown for the case of an impulsive plane-wave electromagnetic field
incident on a two-dimensional shield. This results in a sparse solution which yields to efficient
coding methods.

1.1. Formulation of Maxwell's equations in conservation law form

It can be easily shown (References 5, pp. 180-181, 6 and 7) that Maxwell’s and the constitutive
relations can be written in conservation form as
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where the solution vector {u} is given by
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and the flux vectors {E}, {F}, and {G} are given as
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The source term S/(x, ¢) in equation (1) represents the current density in the region of interest
and is written as

ol[-211" .
{Sx,0}= [|0|| - ]|]| = [_ J] (6)
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It can be easily checked that equation (5) represents Maxwell’s curl equations. For linear regions
the divergence relations will be automatically satisfied as long as they are satisfied by the initial
conditions.

The above formulation makes it is easier to talk about finite difference methods for Maxwell’s
equations. In fact, in the next section it will be shown how the popular Yee algorithm®® and
others can be represented for the above system. This will allow the formalization of sparse
calculation techniques for most of the finite difference methods in the literature.

2. REPRESENTATION OF FINITE DIFFERENCE SCHEMES

The numerical solution of initial boundary value problems using finite difference techniques is
now discussed. The convenience of describing Maxwell’s equations in conservation law form will
become evident as standard finite difference techniques are described for systems of conservation
laws in three space dimensions. Reference to more accurate upwind schemes which use numerical
fluxes defined via the method of characteristics are also given.

An approximate solution to the general three-dimensional conservation law,

w+E +F,+G,=8 7
with initial conditions u(x,y,z,0) = g(x,y,z) is sought on the rectangular lattice
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where x; = jAx, y, = kAy, z; = Az, " = nAt and j, k, [, and n are integers. The initial conditions
are approximated on (., by

“})kl = gir = 8(X), Yi» 21) )

and a finite difference procedure is used to determine the solution at a new time ¢ = #”. A general
explicit finite difference scheme can be written as

Wil = 0 (W (10)
for n = 0 where Q is a polynomial in the backward and forward shift operators E_ and E, for

each space dimension. The qualities of consistency, stability, and convergence are used to describe
specific difference scheme.!?-1!
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2.1. Leap-frog: Yee algorithm

The simplest scheme to understand and implement is the leap-frog scheme formulated by
Yee.®® This is a two-step scheme on an interlaced mesh. The interlacing of the solution vector
components is easy to see in one dimension, but it is a bit more difficult to visualize in two and
three dimensions. It is important to note that this interlacing is specific to Maxwell’s equations
and may not occur for other equations.

The solution vector may be approximated as

— T
(Bx)f.k-}-/12/2.1+ 1/2 (Dx)]"1+]/2,k.l

= [D/':d] =| | (B} B ki+r1r2 (D)) i+ 1724 (11)
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and the scheme is written as
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where Bj, implies uj}, for any of the B components and D}, implies u}, for any of the D

components and p; = A§/At. The notation for the flux vectors E, F, and G is determined by
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where only the rows of the flux vectors which are required are used in equations (12) and (13).
The component locations as defined by equation (11) are depicted in Figure 2.

In two dimensions the scheme is obvious and will not be given explicitly here, except to recall
that Maxwell’s equations uncouple into two independent sets of three partial differential equations.
These are the TE case where only the B,, D,, and D, components exist, and the TM case where
only the D,, B,, and B, components exist. Note that these two cases correspond to either the
components at the bottoms of the cubes in Figure 2 (i.e. TE case) or at the tops of the cubes
(i.e. TM case).

In order to start the time marching, when either the initial B or the initial D is given in the
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Figure 2. Location of components for leap-frog scheme

initial condition, the first step will be a half timestep (Ar’ = At/2) if the other component is
assumed to be zero. For example, if B(x, 0) is given as the initial condition, then equations (12)
are used to update the D fields assuming that the previous D fields are zero, and using a timestep
of At/2. Alternatively, if D(x, 0) is given then equations (13) are used first with a timestep of
At/2. From this point on equations (13) and equations (12) are used alternately with a A¢ timestep.

The boundary conditions for a perfectly conducting medium are easily implemented by imposing
that the tangential electric field be equal to zero on this boundary. Thus, when a perfectly
conducting body is placed in the mesh, the boundaries of the body should line up with mesh
points containing tangential E field components.

The stability of the scheme has been established by many authors.® The scheme is stable for

1
At e N (17)
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where if Ax = Ay = Az this corresponds to a Courant number of 1/(\V/3). In two dimensions,
Az = = and the Courant number becomes 1/(V2).

2.2. Lax-Wendroff: two-step method

There are many ways to write the Lax-Wendroff scheme.* The formulation of the Lax-Wendroff
method in two-step form was first presented by Richtmyer'? and thus the different versions of
the scheme have become his namesake. The analysis of these schemes has been investigated by
Wilson'? and are written below where p is the averaging operator pu; = (1/2) (ujy 12+ Uj—1/2)
and 8 is the central difference operator wu; = (1/2) (U4 12— Uj—1/2)-

(i) Richtmyer scheme (also two-step Lax-Wendroff)
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(ii) Modified Richtmyer scheme
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Figure 3. Computational molecules for 2-D Richtmyer schemes

(iii) Rotated Richtmyer scheme

u;'lk*; = (p'xp'yp'z) ujr.lkl

_ [pxp'yp'zstj"lkl + pyp'xp'zayF;lkl + pzp'xp'yssz"lkI]
2

“j"llJl = “;lk"; - [PxMyMszEff; + pyp'xp'zayF;lk"; + pz“’x“‘yazG;lk*;] (20)

In the above schemes the x-direction flux vector is approximated as E%, = E(u},),
Ej; = E(uj;), with similar relations for the flux vectors F, and G, and p§ = A&/At. The two-
dimensional versions of these schemes can be easily obtained from the above equations by
dropping the flux vector G and all finite difference operators in the z-co-ordinate direction. The
two-dimensional computational molecules for each of these three schemes are shown in Figure
3.

Note that in these schemes every component of the solution vector u is represented at each
lattice point. Thus it is simpler to introduce material boundaries into the mesh. The rotated
Richtmyer scheme is the simplest on which to impose boundary conditions owing to its square
computational boundary. It also has the largest Courant number. The Courant numbers for the

Richtmyer schemes,!® corresponding to the case where Ax = Ay = Az, are given in Figure 4.

2.3. Upwind higher-order methods

Other finite difference techniques known as upwind methods'4-!7 which make use of higher
order flux representations!®2° can also be formulated for Maxwell’s equations in conservation
form.5%7 The details of these schemes will not be given here but a practical comparison of these
as well as the abovementioned schemes can be found in LoVetri et al.?!

Scheme 2-D Courant No. 3-D Courant No.
Richtmyer 1 1
2 B3
Modified Richtmyer 1 1
2 3
Rotated Richtmyer 1 1

Figure 4. Courant numbers for Richtmyer schemes
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3. PRACTICAL IMPLEMENTATION AND RESULTS

The finite difference schemes presented above were implemented for the two-dimensional case
on a Sun Microsystems’ SPARCstation 1™. In order to achieve the greatest utility from the
program, special attention was given to the practical aspects of the implementation. That is,
computational speed and memory requirements. The main difficulty lies not with the speed of the
computations, since all the schemes discussed are explicit schemes, but rather with the storage
space required for the schemes.

3.1. Memory requirements

In three-dimensional space, the memory requirements for a practical-sized problem can be
formidable. For example, the total memory requirement in bytes, By, for a finite difference
program can be estimated as

BTszxNnyz X BnodezNTx Bnode (21)

where N,, N,, and N, are the number of mesh points in the x-, y-, and z-directions respectively
(assuming a rectangular lattice), and B,.q. is the number of bytes of storage space required at
each node in the lattice. If a scheme is used where all six components of D and B are stored at
every node, then

Bnode =6 X Bcomponent (22)

where Bcomponent 18 the number of bytes required for each component of the solution vector. If
double precision is used then Bcomponen: = 8 (for the SPARCstation 1). As well as these, the
conductivity, permittivity, and permeability associated with each nodal cell may have to be stored,
especially for heterogeneous structures. Thus, the number of bytes per node becomes

Bnode = 6 X Bcomponent + 3 X Bmaterial (23)

where Baerial cOrresponds to the bytes required to store the material constants. If single precision
is used for these, then B i1 = 4 (again for the SPARCstation 1) and B,q. is at least equal
to 60. That is, 60 bytes of storage space for each node in the lattice. For a lattice with
N, = N, = N, = 100, the total storage requirement for the problem, given by equation (23), is
60 Mbytes. This does not include overhead storage which will be required, such as for the storage
of the program itself and other intermediate variables used in the calculation. A lattice of this
size is not, by any means, large enough to accurately represent a practical electromagnetic
interaction problem such as the coupling of energy to a communication system. On the other
hand the 60 Mbytes of memory required for this problem is well beyond the capabilities of most
engineering workstations (for example the colour SPARCstation 1 being used has a maximum of
16 Mbytes of memory available).

The above memory requirements assume brute force implementation of the schemes. Using
state-of-the-art programming techniques, these requirements can be modestly reduced, but not
to the extent required to solve electromagnetic interaction problems in complex systems. Thus,
these schemes are currently feasible only for the study of specific interaction mechanisms such
as coupling through shields and onto cables, or possibly, with the use of a supercomputer, for
such problems as the penetration of electromagnetic energy into biological tissues.’

3.2. Practical implementation: dynamic memory allocation

In order to take advantage of advanced programming techniques, the C language has been
used in the implementation of the finite difference schemes. This allows the dynamic allocation
of storage space to the lattice nodes only when it is required. During the solution of a typical
electromagnetic interaction problem it is often the case that many of the nodes at a certain
timestep do not contain a disturbance. This is especially true when the excitation is in the form



202 J. LoVETRI AND G. I. COSTACHE

of a sharp time-domain pulse. For example, in the propagation of an electromagnetic pulse
through a shield, the disturbance is localized in space at early interaction times and only starts
to spread spatially as the interaction progresses.

This spatial localization of the disturbance can be taken advantage of when a scheme is
implemented by allocating memory to a lattice node only if it contains a disturbance at the current
timestep or has the possibility of containing a disturbance at the next timestep. In the same way,
memory is unallocated or removed from a lattice node when the node does not contain a
disturbance at the current timestep and does not have the possibility of containing a disturbance
at the next timestep. This allocating and unallocating of memory has the effect of propagating
the memory storage for the nodes through the lattice with the disturbance.

This process is implemented by first only allocating memory to an array of pointers to the data
structures which hold the information for each lattice node. Thus, if 10,000 nodes make up a
100 x 100 finite difference lattice, then a 100 X 100 array of pointers to the nodal data structure
is allocated, requiring a total of 4 Kbytes of memory (a pointer requires 4 bytes of memory).
The nodal data structure consists of the data types required to represent the solution vector at
each node and to keep the material constants for the node’s cell. For the three-dimensional
Maxwell’s equations each data structure consists of six double precision variables. Since the
material inhomogeneities are usually constant with time, it is best to define a separate data
structure for the three single precision variables required to hold the material constants for the
lattice. These data structures are illustrated in Figure 5.

The next step is to input the initial conditions into the lattice as well as the required material
constants. This consists of allocating the data structure memory for each node required by the
initial conditions to have a non-zero disturbance at time zero. The actual value of the disturbance
is then stored in the appropriate data location for a given solution vector component. If a cell
contains material constants which are not that of free space, then that cell’s material constant
data structure memory is allocated and the specific material constants for that cell are stored. In
this way, only cells with non-free space material constants have their material constant data
structure memory allocated.

Once the initial conditions are input, the finite difference algorithm is applied to find the
disturbance at the next timestep. This consists of performing three steps:

(1) allocate nodes which are neighbours to a non-zero node,
(2) execute the finite difference algorithm, and
(3) unallocate nodes which are zero and have all neighbours as zero.

In this context, the term neighbour is dependent on the domain of dependence (or the spatial
bandwidth) of the finite difference scheme. For example, in the leap-frog and Lax-Wendroff
schemes, a disturbance at one node can propagate only to the nearest neighbours of that node
in each spatial direction. On the other hand, in the upwind scheme, a disturbance at one node
can propagate to its two nearest neighbours in each spatial direction.

The above procedure helps in the problem of large memory requirements. In order to save on
the time required to compute the disturbance at each timestep, an obvious technique is to not

I

o B L S
Material Constants .G ;

e P ointer Array Material Constants

Bx i Data Structure (12 bytes)

,,,,,,, T _ By
Solution Vector B
Pointer Array Dy
Dy Solution Vector
"D, . Data Structure (48 bytes)

Figure 5. Example of solution vector and material constants data structures
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perform the finite difference algorithm at unallocated nodes. If the solution vector data structure
of a node is unallocated then it has already been determined a priori that a disturbance cannot
propagate to this node at the next timestep, thus it is justified to skip the calculation altogether.

In order that every node in the lattice does not have to be checked as to whether it is in (i.e.

Figure 6. Time sequence of contour plots for the test problem
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Figure 7. Memory requirement (mesh nodes allocated)

allocated) or out (i.e. unallocated) before a calculation is performed, all the nodes which are in
are kept in a linked list.?> The finite difference algorithm is then only performed on the nodes
in the linked list. For example, at time zero only the nodes with given initial conditions along
with their neighbours are in the linked list. In this way the calculations at each timestep are
performed quicker when there are only a few nodes in the lattice. This is usually the case at the
beginning of a problem when the disturbance is fairly localized. Every time a discontinuity is met
in the lattice the disturbance is spread spatially and more nodes will be in, having the effect of
slowing the computation time for each timestep.

T T

Leap Frog — 80 time steps, 100X100 mesh
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Figure 8. CPU time (s) comparisons



FINITE DIFFERENCE TIME-DOMAIN CODES 205
3.3. Performance results

The two-dimensional leap-frog method was run over 80 timesteps on a 100 X 100 node mesh
for the problem of a sharp Gaussian pulse impinging on a thick shield with a gap. A time sequence
of contour plots for this problem is shown in Figure 6. The thick conducting shield is shown in
the figure and the x- and y-coordinate axes are given in units of metres. The calculations for this
figure are produced via the leap-frog method. Note that high-order absorbing boundary conditions
have not been used for this method although many formulations for these are available in the
literature.

Results of the memory required at each timestep along with the total CPU time required are
shown below in Figures 7 and 8 for both the brute force method and the dynamic allocation
(sparse technique). As the pulse fills the inside of the shield, the number of allocated nodes
increases and the slope of the ‘total CPU time’ graph increases. In a sense, the memory allocation
for the grid points follows the electromagnetic disturbance. Note that in Figure 8 the brute force
method does not produce an exact linear CPU time-dependence with the computational timestep
because the time required in writing the output file increases as more non-zero nodes are created.
When the writing of the output file was eliminated a linear relationship between computational
timestep and total CPU time resulted.

4. CONCLUSIONS

Finite difference techniques for solving Maxwell’s equations in conservation law form have been
discussed and implemented. It has been shown how advanced programming techniques, using
dynamic memory allocation to optimize the use of memory during calculations, can be used to
efficiently implement all of the discussed finite difference schemes. These sparse excitation tech-
niques can be effectively used for problems with spatially localized propagating disturbances
through a finite difference mesh. As the disturbance begins to fill the mesh (e.g. steady state
problems) the method may be less efficient due to the extra overhead involved in implementing
the method.

The finite difference method is one of the most powerful methods for the solution of hyperbolic
systems of equations. The severe practical limitations in the implementation of three-dimensional
finite difference schemes, for use in solving complex interaction problems, have been discussed.
These limitations cannot be solved solely by the use of larger and larger computers. Advanced
programming methods must be used to implement these algorithms. Also, the study and formu-
lation of more efficient algorithms is an area of research which will have rewarding effects in the
field of electromagnetic interaction modelling.
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