IEt E TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 8, AUGUST 1993

1419

A Class of Symmetrical Condensed Node
TLM Methods Derived Directly from
Maxwell’s Equations

Joe LoVetri and Neil R.S. Simons

Abstract—A series of general transmission line matrix (TLM)-
type methods, which include the symmetrical condensed node
method, are derived directly from Maxwell’s curl equations
without recourse to transmission line models. Written as a system
of conservation laws, Maxwell’s equations in 3-D plus time
are decomposed along the orthogonal characteristic directions
of a rectangular grid. The Riemann invariants in this method
correspond to the voltage pulses of the TLM method. A new
method of handling inhomogeneous media is proposed based on
a new transfer event. The dispersive nature of these schemes is
also investigated.

I. INTRODUCTION

rPYHE transmission line matrix (TLM) method was pio-
I neered by Johns and Beurle [1] for two-dimensional
waveguide scattering problems. The method can be considered
as a differential equation-based numerical method, capable of
providing an approximate solution to the time dependent form
o° Maxwell’s equations in arbitrary media. The method is
traditionally viewed as a physical approximation in that the
space domain of an electromagnetic field problem is approxi-
m ated by an orthogonal system of transmission lines, and the
e<act solution for the voltage variables of the transmission
line problem is obtained. The solution to the original field
p-oblem is then approximated by a mapping from the voltage
viriables to the field variables of interest. A wide variety
of electromagnetic field problems have been analyzed using
the TLM method [2], [3], including the characterization of
microwave circuit components [4], and radar cross section
calculations [5].

Over the years, new versions of the method have been
developed in order to extend it to three dimensions and im-
prove the modeling of arbitrary inhomogeneous media. These
versions usually consisted of changing the topology of the
transmission lines used to approximate the physical problem.
The transmission line matrix method can be considered as: a
discrete form of Huygen’s principle [6], [7], an extension of
the lumped element techniques originated by Kron [8], or as
a physical model of mathematical finite differencing [9]-[11].
The most recent and widely used three-dimensional version
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is the symmetrical condensed node method introduced by
Johns [12].

In this paper, a class of TLM-type algorithms are derived
directly from Maxwell’s equations. It is shown that the curl
equations in conservation law form can be decomposed on
a discrete space-time grid as systems of equations governing
a series of orthogonally propagating plane waves. The new
variables which correspond to the voltage pulses in the TLM
method are the so-called Riemann invariants [13]. The fact
that these methods can be derived directly from Maxwell's
equations without recourse to transmission line theory may
make them more appealing and understandable to practitioners
of electromagnetic modeling.

II. MAXWELL’S EQUATIONS IN THREE SPACIAL DIMENSION:

The first step is to write Maxwell’s curl equations as
a system of hyberbolic conservation laws [14]-[16]. These
equations are then approximated in cach cell of a discreze
numerical space-time grid as three systems of equations which
can be diagonalized by a transformation of variables. The curl
equations are written in conservation law form as
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Tne symmetrization of Ap, Ar, and Ag requires the eigen-
values of these matrices which can be calculated as

= {—\/'r—n_eﬁ_\/”%v(hov\/;%v\/ﬁ}
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as well as the right and left eigenvector matrices, R and L,
which are calculated as
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The plane wave admittance and impedance in a computational
cell are defined as

Y:i-_———:
€

c e [ e m 1
Z:—:—: — = —_ = =,
m z m € Y

It can be checked that LR = RL = I as required, and tke
similarity transformations of Ag, Ap, and Ag are written as

®)

LeApRg = LrApRr = LeAcRc
= diag(A\) = A ©®)

II1. NUMERICAL APPROXIMATIONS

Now if it is assumed that, in a computational cell, propaga-
tion along the z-direction involves no variation with respect
to the y- and z-directions, propagation along the y-direction
involves no variation with respect to the z- and z-directions,
and that propagation along the z-direction involves no varia-
tion with respect to the z- and y-directions, then equation 1)
can be approximated by the three systems of equations

Ou+ Ap0,u =0 Ou+ ApOyu =0

and Ou+ Agd,u=0. (10)
Each of these equations can be uncoupled by diagonalizing the
matrices Ap, Ap, and Ag. This is accomplished by the use
of the right and left matrices defined above. New variables v,
called Riemann invariants [13], are defined as
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10 0 0 -Z 0 E,
01 0 2z 0 0I[|E
_ ~1loo0o v2 0 0 o0[|]|E:
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and are used in (2) to give
Oyvp + Apd,vr =0, Oy + Apay =0

and Oywg + Agd,vg =0

which are diagonalized systems of partial differential equa-
ticns. The solutions are easily found as

vpi(z,t) = fmile — Ait),  vpi(y,t) = frily — Ait)
and vgi(z,t) = fai(z — Ait),

respectively, where the fgq, fri, and fg; are arbitrary func-
tions. When (z — A;t) is constant, vg; is constant; the lines
defined by the equations T'; :  — A;t = Const. are called the
ctaracteristic directions. Now if initial conditions are given
for the vg;, vri,, and vg;, then the fgi, frs, and fg; will be
krnown. That is,

fe(z) = vp(2,0) = vEo = Lpu(z,0) = Lrug

Ey(z,0) — ZH,(z,0)
E.(z,0)+ ZH,(z,0)

_1 V2 E,(z,0)
T2 V2 H,(z,0) . (14)
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7| VAo | s)
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fa(z) = vg(2,0) = vgo = Leu(z,0) = Lguo
Ez(Z,O) - ZHy(Z,O)
E,(2,0) + ZH(2,0)
_ 1 V2 E,(2,0) 16
F) V2 H,(2,0) (16)

E,(2,0) — ZH,(z,0)
E.(2,0) + ZHy(2,0)
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The first Riemann invariant (RI), Vg1 = 1/2(Ey — ZH.), is
constant on the line defined by I'_, : z + ¢t = Const. (—c¢
eigenvalue). Therefore, Vg1 can be thought of as propagating
in the negative z-direction. The RI, Vg2 = 1/2(E, + ZH,).
propagates in the positive z-direction along the line defined
by ['yx : * — ct = K (c eigenvalue). The RL, Vg3 = V2E,.
is constant on the vertical line I'; : z = K (0-eigenvalue)
That is, the field component normal to the direction of as-
sumed propagation does not change with time. This allows
for discontinuous normal components of the fields at the
interface between cells of different material constants. A
similar analysis can be performed for the y- and z-directions.
If a computational grid is used to approximate the fields and
the grid spacing is such that Az; = ¢;At in cell j, then the
RI’s reach the cell interface after time At/2. The propagating
RI’s are renamed in order to explicitly denote the direction
of propagation and the polarization of the electric field. For
example, vg; and vgs are renamed vr, and vy, representing
left traveling waves in which the electric field is polarized
in the y- and z-directions, respectively. The first letter of the
descriptive labels left, right, down, up, back, and forward are
used to identify the six orthogonal directions. The propagating
RI’s are summarized in Table 1.

These propagating RI’s can be represented as matrix mul-
tiplication of the field components as

[ v, ] (E,— ZH, |
Vi E.+ZH,
Vry E,+ ZH,
Vi E,-ZH,
VDI E$+ZH2
V= Vp. | _ 1 |E.-ZH,
T Ve | T 2 |E,—-ZH,
VUz Ez+ZHr
VBz E,-ZH,
Vay E,+ ZH,
Vry E, - ZH,
LVFI ] _EI-(—ZHy_
010 0 0 —Z
001 0 Z o0
010 0 0 Z
001 0 —-Z 0 E,
100 0 0 Z E,
_ljoo 1 -z 0 0 ||E|_ 4,
21100 0 0 -Z||H: '
001 Z 0 © H,
100 0 —-Z 0 H,
010 Z 0 O
010 -Z 0 0
1 00 0 Z 0|
a7

The fact that this represents an overdetermined system of
equations is key to the derivation to follow. The vector
V can be calculated at any point in space and time. If
the field vector is known on a computational grid at time
t = t", u(zi, Y5, 2k, ") = ufy, then the R’s which leave
each grid point can be calculated via (17) (see Fig. 1). Thus,
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TABLE 1

SUMMARY OF PROPAGATING RIEMANN INVARIANTS

Field

Old Notation

Cellular Field Riemann Invariants R . Characteristic Line New Notation out going in coming
P epresentation -
Approximation (K = constant)
Field Variation in Vel 1/2(Ey—ZH,) T_z:x+ct= K Viy A%} Vi1
2-Direction Only Vis 1/2(E. + ZHy) (left) Vi. Ve Vio
Ves 1/2 (Ey—f-ZHz) 1—‘+1I$—ct=[&— VRy Vi1 Vs
VEe 1/2 (E; El ZHy) (right) VR, Vio Ve
Field Variation in \ %20 1/2(E. + ZH:) T_y:y+ct=K Vbz i Via
y-Direction Only Vg 1/2(E. — ZH;) (down) Vb, /s Vi
Vrs 1/2(E1—-ZHZ) r+y:y—Ct:I\'— Vuz Viz Vi
Vre 1/2(E. 4+ ZHz) (up) \GF \% Vs
Fiele] Variation in Va1 1/2(E, —ZH,) T_::zt+c= K VBz Va Vo
+-Direction Only Vs 1/2(Ey + ZH,) (back) VBy Va Va
Ves 1/2(Ey—ZHI) F+z:z—ct:I\' VEy Vs Va
Ve 1/2(E, + ZH,) (forward) Vs Vo Vs
ot = tO the VO can be calculated from u’ and they Y_ZYLY 0 #—_& 0
are propagated without attenuation or distortion to the cell ‘*E; Yooy, i+6+ Y Y-V
nterface. Once they reach the cell boundaries (i +1/2 points), Yy, Yip1tYs oy Yip1+Ys
he RI’s must cross the interface. The principle which is used —H +13f,1 0 S AES 2 0
o do this is that at the cell boundary points the tangential field 0 ‘;’,—‘%1— 0 i
5 . N i+l i it i
:omponents must have unique values which are continuous N
icross the boundary. For example, at time ¢ = t(n+1/2)7 the v n+1/27
RI’s Vg, and Vg, reach the point (i + 1 /2) from the point V];”
‘i), and the RI’s V7, and V. reach the point (i + 1/2) from VRZ (19
the point (i + 1). The tangential fields at this point can be VRy
determined as #dit1/2

2
B, 1" 1 0o 1 0
E, N 1 0 1
H, 2 0 Yipn 0 Y
H: ] i1y Y 0V 0
v n+1/2—
Ly
VLz
Vry
Vr: i+1/2
1 0 1 0
_1j10 1 0 1
2 0 Y, 0 -—-Yipnx
=Y, 0 Y 0
nt1/2%
Vi
y
VLz
e (8)
Vr: i+1/2

which leads to

n41/2%

i+1/2

if Y;41 # Y; and is simply the traditional TLM transfer event

nt1/2t n+1/27
6 [
Lz Lz
= 20
Vitg Viy (20)
Vs i+1/2 Vr: i+1/2

if Y;41 = Yi. Thus, (19) gives the proper form for transferring
the pulses through inhomogeneous media. Similar expressions
can be obtained for the other pulses traveling in the y- and
,-directions. The RI’s then propagate from ¢ = (¥ 2
to t™+D” without change. Once they reach the integer rid
points, they are used to calculate the new outward propagating
RI’s. At time (n + 1)~ the RI’s which are calculated for time
(n+1/ 2)" reach the integer valued grid points, and again
the restriction that the field values defined at each grid point
should be uniquely defined by both the incoming as well as the
outgoing RI’s is imposed. If it is assumed that both V?jtﬁ and
Z.*,;l_ are derived from (17), then symbolically the relations

'{1+1+ — Aun+1

ndl™ _ 4. mtl
ijk ijk i = Au

ijk ijk ey

and
. . .y« . +
can be written. Notice that it is not correct to write V:ﬁkl

equal to V™! since the defining equation is an overde-
q ik g €q

termined system of linear equations. The procedure chosen
: : n+1 n+1" n4+1t

is to determine w;;" from Viik and then Vi from
n+1 n+1

ul il Since wijj’ is not uniquely defined by V7', an
appropriate generalized

inverse matrix must be determined.
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— u(l+l

The Moore—~Penrose generalized inverse ATV7E1" Ay
has the properties: 1) AATA = 4, 2) ATAAT = Af, 3)
(441)" = AAT, and 4) (A1A)" = AT 4, where AH denotes
the conjugate transpose of the matrix A [17]. It also turns out
th:.t At is the inverse which minimizes the Euclidean norm of
u; i, For the present case, this inverse can be calculated as (22)
(bclow) and it can be shown that (23) (below). It is required
to show that the chosen inverse matrix defines the field
vawes at the integer grid points uniquely and continuously:
u it = Atviih = A*V?j‘;ﬁ. The second property of the
Moore—Penrose generalized inverse is now used to determine
the relationship between the RI’s just before and just after the
time n + 1 by setting

1423

= ATV = ATAATVEDT = At (a4t + B)VIEY

24)

where any matrix, B, in the null-space of Al, say, B ¢
N (AY), is added to AA'. Thus, a scattering event defines

. . - +
the relationship between V7;t!" and Vi;{!" as

VI = svitl o Vil =sviEtt (29
where the matrix S is defined as
§=AA"+B. (26)

Accepting both expressions (25) would result in the possible
contradiction

Wil = ANVEET = ATAATVTE = AT(AAT 4 B)VEEY Vil = gyl = s(sv;;;l*) =SVt @)
o 0 0 0 1 0 1 0 1 0 0 1
1 01 0 0 0O O 0 0 1 1 0
t _arpy-lur_ 110 1.0 1 0 1 0 1 0 0 0 0
A= (474) A_"z_ 0 00 0O O -Y 0O Y 0 Y -Y 0 (22)
0 Y 0 -Y o 0 0 O -Y 0 0 Y
Y 0Y 0 Y 0 -Y 0 0 0 0 0
(2 0 0 0 -1 0 1 0 0 1 1 0]
o 2 0 0 0 1 0 1 -1 0 0 1
0 0 2 0 1 0 -1 0 0 1 1 0
0 0 0 2 0 1 0 1 1 0 0 -1
1 0 1 0 2 0 0 0 1 0 0 1
i 1lo 1 o 1 0 2 0o o0 0 -1 1 0 fa
AA'=21 1 0 1 0 o0 o0 2 0 1 o o 1| W AA=sL @)
0 1 0 1 0 0 0 2 0 1 -1 0
0 -1 0 1 1 0 1 0 2 0 0 0O
1 0 1 0 0 -1 0 1 0 2 0 O
$1 o0 1 0 0 1 0 -1 0 0 2 0
(o 1.0 -1 1 0 1 0 0 0 0 2]
2 0 0 0 -1 0 1 0 0 1 1 0]
0 -2 0 0 0 1 0 1 -1 0 0 1
0 0 -2 0 1 0 -1 0 0 1 1 O
0 0 0 -2 0 1 o 1 1 o0 0 -1
-1 0 1 0 -2 0 0 0 1 0 0 1
0 1 0 1 0 -2 0 0 0 -1 1 0
Ba=ely o 21 0 0 0 -2 0 1 0 o0 1 28)
0 1 0 1 0 0 0 -2 0 1 -1 0
0 -1 0 1 1 0 1 0 -2 0 0 0
1 0 1 0 0 -1t 0 1 0 -2 0 0
i 0 1 0 0 1 0 -1 0 0 =2 0
lo 1 0 -1 1t 0 1 0 0 0 0 -2
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In general, the left side of (25) is chosen since a
scheme to move forward in time is desired, but it will
bc shown that for a particular choice of the B matrix,
both expressions in (25) can be satisfied. A series of
symmetric matrices, {Ba|Ba € N(A'), € R}, can be
determined as (28) (shown on the previous page) and the
sy mmetric scattering matrix becomes (29) (below). When a =
1,'4, the scattering matrix becomes (30) (below), which can be
compared to the symmetrical condensed node TLM method as
fcllows. In the traditional TLM method, the voltage pulses are
not denoted by their propagation direction but rather by their
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location in each cell. The voltage pulses are numbered from 1
to 12 and are scattered according to

Vitm = Sttm Viim (31

where Vi, is the vector of pulses V; to Vi2. A transformation
from Vi, to the RI’s defined herein can be defined by the use

of Table L. In the present case, we can write
yout = gyin (32

where the extra notations out and in have been used to identify
the fact that the transformation to the old notation is not the

2 o0 0 0 -1 0 1 O O 1 1 0
0 2 0 0 0 1 0 1 -1 0 0 1
6 0o 2 o0 1t 0 -1 0 o0 1 1 o0
o 0 0 2 0 1 o0 1 1 ©0 0 -1
-1 0 1 0 2 0 0 0 1 0 0 1
g -L1lo 1 0o 1 0 2 0 0 0 -1 1 0
“*~%!1 o0 -1 o o 0o 2 0 1 0 0 1
o 1 o 1 0 0 0 2 0 1 -1 0
0 -1 0 1 1 0 1 ©0 2 0 0 O
1 0 1 0 0 -1 0 1 0 2 0 O
1 0 1 0 0 1 0 -1 0 0 2 O
(o 1 0 -1 1 0 1 0 0 0 0 2]
-2 0 0 0 -1 0 1 o0 o0 1 1 0]
0 -2 0 0 0 1 0 1 -1 0 o0 1
0O 0 -2 0 1 0 -1 0 0 1 1 0
0 o 0 -2 0 1 o0 1 1 0 0 -1
-1 0 1 0 -2 0 0 0 1 O0 0 1
6 1 o0 1 0 -2 0 0 0 -1 1 0
el 9 10 0 0 -2 0 1 0 0 1 29
o 1 0 1 o 0 0 -2 0 1 -1 0
0 -1 0 1 1 0 1 0 -2 0 0 O
1 0 1 0 0 -1 0 1 0 -2 0 O
1 0o 1 0 o0 1 0o -1 0 0 -2 0
lo 1.0 -1 1 0 1 0 0 O 0 -2
o0 0o o0 0 -1 0 1 0 o 1 1 0]
6 o o o o0 1 o0 1 -1 0 0 1
o o 0 0 1 0 -1 0 0 1 1 0
6 o 0 0 o 1 o 1 1 0 0 -1
-1 0 1 0 0O O O O 1 0 0 1
i1loe 1. 06 1 o 0 0 0O 0 -1 1 0 .
Ss=%17 o -1 0 0 0 0 0 1 0 0 1 (50)
6 1 0 1 o 0 0 0 0 1 -1 0
0O -1 0 1 1 0 1 0 0 0 0 0
1 0 1 0 0 -1 0 1 ©O0 0 0 O
1 o 1 o o0 1 0 -1 0 0 O0 O
lo 1. 0 -1 1 0 1 0 O 0 0 O]
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same for each of these. That is,
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flow in the propagating waves. Recall that the Poynting vector,
defined as P = E x H can be written as

V™ = AinjumVeim,  Viim = Atim/outV™ (33) P = (E,H, - E.H,)a, + (E.Hx — E.H.)a,
+ (E.Hy — EyHy)a, = Prig + Pyay + P.a;
(36)
0 0000000 OO0 1 0 ?vhere P., Py, and P.’ de.note the energy densities flowing
000000GO0O0OT1O0 O in the z-, y-, and z-directions, respectively. The plane wave
001000000000 propagatiorf assumpt.ion relates the elecftric field in each. RI to
0000O0T1O0O00O0TO0O0O the magnetic field via the plane wave impedance, that is,
0000O0OOO0ODOO OO0 E¢ = +ZH, (37)
A =000000100000
in/tlm 10000000 O0 O O 0|’ where the sign is chosen such that Fg x (£H) defines the
00 0010O0O0O0OO0TO0TOUO direction of propagation by the right-hand rule. For example,
0 00O0O0OOOT1O0TO0T@ O left traveling plane waves (i.e., negative z-direction) give
000 0O0OOO1O0O0TGO0DO E, = —ZH,. Using this approximation, the sum of the
00010O0OTD0O0OOOO0OQO0 squares of the RI’s traveling in the same direction can be
101 000O0O0O0GOO 0 O shown to be proportional to the energy density traveling in the
_ same direction, that is,
00001000000 O
000O0O0OOOO0OT1O0TO00O0 ng-q-VL?z
100000O0OGOOUOO V§y+V§,
0000 O0OOOOT1O0TO Vl2)z+ng—1
06 00O0100O0O0OO0TO0O V33+V§z—5
A =010000000000 V2, + V3
#m/out= 10 0 0 0 00010000 VI 4V
000000000010 voEe
00000O00O0DO0O0O0O01 E? —2ZE,H, + Z°H? + E? + 2ZE.H, + Z°H]
000100000000 B 27 H, + 2°H? + E? - 22E.H, + Z°H
001000000000 EY 4 2ZE.H, + Z°H? + E - 22E.H, + Z°H
00000010000 O E? - 2ZE.H, + Z*H? + E> + 2ZE.H, + Z*H,
(34) E? - 2ZE.H,+ Z?H} + Eé +2ZE,H, + Z*H2
E?~2ZE,H, + Z*H; + E; + 2ZE. Hy + Z*H}
and we can express the traditional TLM scattering matrix in -P;
terms of the present scattering matrix as (35) (below). Since Py
any of these scattering matrices defined by (26) will satisfy =2 —by (38)
the condition for uniquely defined fields at the integer grid Py
roints, some other method of determining the appropriate Sa ~P;
{4 required. One appealing technique is to consider the energy P
"0 1 1 0 0 0 0 0 1 0 -1 0]
t o 0 o0 o 1 0 0 O -1 0 1
1 o 0o 1 o0 o 0 1 0 0 O -1
o6 o 1 o 1 0 -1 0 0 o0 1 0
o o o 1 o0 1 o0 -1 0 1 0 O
1 1 0 1 1 -1 0 0 0 -
Sum = AumjoutSAimpam= 1 0 20 000 0 Y T 0 o @5)
o o 1 o0 -1 o 1 0 o O 1 0O
i1 0 0 0o 0 -1 0 o0 o0 1 o0 1
0o -t o o 1 o0 1 0O 1 O0 0 O
-1 0o o 1 0o o0 o0 1 o0 0 0 1
lo 1 -1 0 0 0 0 0o 1 0 1 0]




Fig. 1.

RP’s propagating on computational grid {(z, 7, k)}.

Thus, the total energy density leaving a node can be
represented as the Euclidean norm of the RI’s. If the scattering
matrix is chosen such that the total energy density entering a
giid point is equal to the total energy density leaving that grid
point (i.e., after the scattering event), then this produces the
relations ||V:‘J;1+||§ = |SaViE I3 = IVEE' |3, which can
be written as

(Vi) va = (savai ) (savsi)

T
n+1~ 2y nt1”
(D ijk ) SV ijk

I

(39

siice S, is symmetric. One possible condition on the scatter-
ing matrix which satisfies this requirement is that S2 = I. If
S? is expanded for any a, it will be found that the diagonal
terms are all 8a2 + 1/2, and the off-diagonal terms are
all either ~4a? + 1/4, 4a® — 1/4, or 0, and therefore this
leads to the result that {8a% +1/2 =1, —4a? +1/4 =0} =
o = *(1/4) with associated scattering matrices given by
S_174 = I and Sy, given by (26). The first matrix results
in no scattering at all, while the second results in the same
scattering matrix as in the traditional TLM method (with the
notational differences discussed previously.) Notice that this
choice of scattering matrix allows the satisfaction of both

. . . - +
espressions (25) since now choosing V7' = 8y, Vit
n+1" __ n-+-1+ . .
as well as Vi = Sl/4V”.k implies

+ - n+1t nt1*
V?J_:I = 31/4V:ﬁ;1 = 51/4 (51/4V,-]-:1 ) = Vij-:c—l
(40)

which is now not a contradiction. Thus S),, determines the
reverse process as well as the forward process.
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IV. FINITE DIFFERENCE EQUIVALENTS AND
DISPERSION/DISSIPATION ANALYSIS

For the case where Z; = Z;11 = Zy = Zky1 = Z, the
transfer event can be written as

Vit = diag(Sh, 81,8, 5,1, 81,81, 8,71, 85,
nt

'Szlvsl S_17Sz_1) ijk

z'¥z
- - n+
(VLy)i+1,j,k
Vi. i+1,5,k
(VRy i—1,5,k
(VHZ)i—l,j,k
(VDz)i,j+1,k

= i =CVi (41)

(VUz)i,j—l,k
(VBz i,5,k+1
(VBy i,5,k+1
Fy)ij k-1
Fz)ijk-1 |

where C is the diagonal matrix of forward and backward shift
operators (i.e., S;! represents a shift of —1 units in the a-
direction). The equations developed thus far are combined to
give

wltl = AtV = Aty = atovry,

= AlCsvy, = ATC(4A" + B) (Vi)

atcaat + atcs)(viy)

ATC(AATA) + A'CBA) (uly)

= (

= (A'CAAT + ATCB) (A(uly))
= ( ijk
=

ATCA + A'CBA)(ulyy) .

(42)

Now, not only is B € N(A%), but A € N(B), and (42)
becomes

uitl = ATCA(ul) .

(43)

Notice that in the field formulation, the effect of the B matrix
is lost. Therefore, a one-time step finite difference scheme
can only represent the TLM method if Sy is used, and a TLM
method with o other than zero cannot be represented by a one-
time step finite difference scheme. Notice that in [9], Johns
states that there is no one-time step scheme for the traditional
(a = 1/4) method. A two-time level scheme can be written
by following the same procedure as in (42), but continuing the
procedure for one more time level. Thus,
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Fig. 2. Dispersion of Gaussian plane wave pulses.

Wil = (atcAat + ATCB) (Vi)

= atcaal( ;g;)+A*CB( me)

ik

= AtCAA Auly, + ATCB(ViR)

= A'CA(ulye) + ATCB (VL)

= AYCA(ufy,) + A*CBc(v;;.;“)

= ATCA(uly) + A'CBCS(VIR!)

)

)

= ATCA(uly) + A'CBC(AAT + B) (Vigh)
)

ijk
= A'CA(uly) + ATCBCAAT + A'CBCB

k
()

= A'CA(ul;) + (ATCBCAA' + A'CBCB)

A(uii)

= A'CA(ully) + (A'TCBCAA'A + AICBCBA)

- (uiz) (“4)
ard again, using AATA = A and BA = 0, we get
wil = AICA(ufy) + AleBCA(wlz!)  @9)

in which, now, the effect of the B matrix is evident. This con-
stitutes the equivalent finite difference two-time step scheme
fcr the generalized TLM methods.

The dispersion/dissipation effects of the derived schemes
hive been investigated by applying the to a propagating
Gaussian pulse plane wave (see Fig. 2). The plane wave is
assumed to propagate axially through the mesh, and was
generated using the TLM total/scattered field formulation
discussed in [5]. Notice that, except for the case where a =
1/4 (standard TLM), the schemes exhibit dissipation. This also
follows from the energy conservation used in deriving the 1 /4
scheme.
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V. CONCLUSIONS

A Series of TLM-type algorithms have been derived di-
rectly from Maxwell’s equations using the approximation
that disturbances within a computational cell, given by the
Riemann invariants, travel as a series of plane waves in the
orthogonal directions. This analysis derives not only one but an
infinite number of TLM-type methods, based on a parameter a,
with one being equivalent to the symmetrical condensed node
method (o = 1/4). The use of the principle of conservation
of power density on the scattering matrices imposes the value
of 1/4 on a. A general formulation of the equivalent finite-
difference schemes for these methods has been given, and all
but one (o = 0) correspond to a two-time level scheme. Each
of these methods gives different dispersion and dissipation
characteristics which have been investigated numerically.
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