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coefficient, &. that precedes. In fact, both forms of expression could 
be used to obtain the secular equation as shown in [2, (7)].  

Nevertheless, the authors agree that there are typing mistakes in 
[2]. The amendments are made as follows: 

1. Section 11-B-2: “y 1 la1 should be written as “lyl 2 a”; 
2. Expression (6a): IC\, should be written as 

1 
h 2 ( x .  y)cos2 (7rs/2c)  

2ac(1/2 + l / T )  LaLC Iit, = 

. cos2 (xy/4a)  dx dy 

since the limits on T must be f c  and the limits on y must be 
fa. 

3. Section 11-B-2: The boundary condition (iii) should be written 
as 

d H z ~ / a x  = d H z ~ / d s  = 0 at x = f c  

which corresponds to the requirement that the vertical compo- 
nent of the electric field (but not the magnetic field as described 
by [l]) should vanish on the metallic wall. 

In fact, if the boundary conditions (i) and (ii) are applied 
to the field equations (5a) and (5b), the secular equation (7) 
can be obtained. Boundary condition (iii) is applicable only for 
higher-order solutions. 

4. Table 111: “100 MHz” should be written as “100 GHz” 
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Comments on “A Class of Symmetrical 
Condensed Node TLM Methods Derived 

Directly from Maxwell’s Equations” 

M. Krumpholz and P. Russer 

The derivation presented in [ I ]  is erroneous for the following 
reasons: 

1) No mathematical justification is given for the approximation of 
Maxwell’s equations by a system of first order two-dimensional 
partial differential equations, (10). Adding the three (10) yields 

, ~ ~ a , . I I + A F d y l l + . ~ c a Z 1 /  = 3 d [ U  (1) 

which is in contradiction to the correct (1). For the derivation of 
numerical methods simulating the evolution of the electromag- 
netic field, an approximation of Maxwell’s equations should 
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only be made by the discretization of the partial differential 
equations and not by replacing the partial mfferential equations 
by different partial equations. This results in unphysical, spu- 
rious solutions: The discretization of the system of first order 
two-dimensional partial differential equations, (lo), does not in 
general yield an algorithm conserving the energy (only in the 
special case of a = 1/4). This is in contradiction to the energy 
conservation embodied in Maxwell’s equations. 

2) For the discretization of the system of first order two- 
dimensional partial differential equations, (IO), the authors 
are using cWzave = CnIesh, where cua>e represents the wave 
propagation velocity and &,e& the velocity of the voltage 
pulses on the mesh. This is in contradiction to the correct 
relation cwave = cme,1,/2 for the TLM scheme based on the 
condensed symmetric TLM node [2], [3]. 
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Reply to Comments to ‘(A Class of Symmetrical 
Condensed Node TLM Methods Derived 

Directly from Maxwell’s Equations” 

Joe LoVetri and Neil R. S. Simons 

In our paper, [ l] ,  we derive the three-dimensional symmetrical 
condensed node TLM algorithm using a characteristic based field 
decomposition of Maxwell’s equations. We obtain identical scattering 
and transfer events as those originally presented in [2]. The goal and 
eventual result of our investigation was to present a mathematically 
sound method for deriving the TLM scattering and transfer events 
directly from Maxwell’s equations (without recourse to the approx- 
imation of space by a mesh of transmission lines). The statement 
made by Krumpholz and Russer, that the derivation presented in [ 11 
is erroneous, is not valid and the two specific points they raise will 
now be considered. 

First, Kmmpholz and Russer suggest that, in [I], the use of the 
three two-dimensional partial differential equations, (lo’), 

~ ~ u + A L . D ~ u  = 0, ~ / u + A & . ~ ~ u  = 0. 3 t1 /+Ac;d ,~  = 0 
(1)  
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to approximate (1’) 

3 1 ~ .  + AF; dz7L + AF d , ~  + AG d , ~  = 0 (2) 

is incorrect since (2) does not follow from (1 )  by summation (we 
use primed numbers to refer to equations appearing in [I]). This is 
obvious and it was never suggested that (2 )  could be derived from 
(1). Instead, as was described in [l] ,  the three equations of (1) are 
found by the approximation of assuming there to be no field variation 
in the spatial directions missing in each equation. This was explicitly 
described in the first paragraph of Section 111 of [ l ]  entitled Numerical 
Approximations. Of course if one requires (1 )  to be exactly derivable 
from (2) then one could change (1) to 

d r U  + 3 A E  dzU = 0, diu + 3 i l F  d,U = 0, 

dtu + 3Ac d 2 u  = 0 (3) 

which is typical of dimensional splitting methods [3]. A finite 
difference method for a 1/3 time step could then be used for each 
of the three equations. This was not done so as to not obscure the 
physical interpretation of the approximation being made (Le., of plane 
wave propagation along the rectangular arms of each cell). It should 
also be noted that (3) would produce the same Riemann invariants 
as in (1) but propagating at three times the speed. 

Starting from this approximation a class of TLM algorithms, based 
on a parameter CY, were derived. The principle of energy conservation 
was then used to set c1 = 1/4 It was found that other values of <I 

caused the numerical scheme to be dissipative and the only reason 
these other values of o were investigated was for the possibility of 
strategically using a small amount of artificial dissipation at different 
points in the mesh. This possibility has yet to be investigated. 

The second point raised by Krumpholz and Russer is the disparity 
between c,,,~ and C R [ .  (We refer to cWave as the group velocity 
for wave propagation in the mesh as Al/A + 0, and C R I  as 
the propagation velocity of the Riemann invariant or voltage pulse 
variables). This disparity has been associated with the TLM method 
since its introduction in 1971 [4]. Originally (in the two-dimensional 
formulation) Johns formulated the method with cRr equal to the 
velocity of light in  free space co. The resultant c ~ ~ \ ~  is c o l a .  and 
therefore Johns referred to the “free space” medium modelled by the 
mesh as having a relative permittivity of 2 and a relative permeability 
of 1.0. To obtain results in a true free-space medium, frequency 
renormalization is required. For the three-dimensional symmetric- 
condensed TLM model, cwave = c ~ 1 / 2 .  In the development of 
this model Johns no longer referred to C R I  as c0, and therefore 
the frequency renormalization is avoided, since it can be assumed 
that cwavp = co. In general, when developing a TLM model, 
the relationship between cwave and C R I  should be determined by 
dispersion analysis as has been the case for the development of 
alternative two-dimensional TLM models [5]-[7]. The specification 
of a physical significance to C R I  is not required. In fact, C H I  can be 
considered to represent a propagation velocity of information within 
the mesh. This information-propagation aspect of C R I  was beneficial 
in the development of the two dimensional TLM models presented 
in [6] and [7]. 

In our derivation, we do not assume that the velocity of the physical 
wave being modelled will be equal to C R I .  In fact, as was explained 
above, in  the derivation one has the freedom to change the velocity 
of the voltage pulses relying on dispersion analysis to determine the 
correct speed. Unfortunately, we did not expand on this aspect of the 

derivation in our paper. The result is a sound and correct derivation 
(with the parameter a = 1/3) of the three-dimensional symmetric 
condensed node TLM algorithm. Any criticisms regarding spurious 
modes or other nonphysical behavior should be directed to the CEM 
community at large, and not to our specific derivation of the TLM 
method. 
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Comments on “Improvement in Calculation of 
Some Surface Integrals: Application to Junction 

Characterization in Cavity Filter Design” 

G. G. Gentili 

In [I], the authors claim to have “. . .developed a rigorous 
method..  ., allowing the reduction of a surface integral to a contour 
integral” with application to mode-matching analysis of waveguide 
junctions. The method have the advantage of a 50%# time reduction in 
the evaluation of the coupling integrals in mode-matching techniques. 

The authors have applied the method to analyze the transition from 
circular waveguide to rectangular waveguide. 

This same method has been derived in [2] in its general form. In 
[3] some preliminary results on the discontinuity between ridged and 
rectangular waveguide have been presented. 

The only original contribution recognized in [ I ]  is therefore the 
application of method [2] to the analysis of coupling between circular 
cavities through rectangular irises. 
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