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- The Finite-Difference Time-Domain Solution of
Lossy MTL Networks with Nonlinear Junctions

Doru Mardare and Joe LoVetri, Member, IEEE

Abstract— In this paper, we describe a numerical technique
to solve lossy multiconductor transmission line (MTL) networks,
also known as tube/junction networks, which contain nonlinear
lumped circuits in the junctions. The method is based on using a
finite-difference technique to solve the time-domain MTL equa-
tions on the tubes, as well as the modified nodal analysis (MNA)
formulation of the nonlinear lumped circuits in the junctions. The
important consideration is the interface between the MTL and
MNA regimes. This interface is accomplished via the first and last
finite-difference current/voltage pair on each MTL of the network
and, except for this, the two regimes are solved independently of
each other. The advantage of the FDTD method is that the MTL
equations may contain distributed source terms representing
the coupling with an external field. We apply the method to
previously published examples of multiconductor networks solved
by other numerical methods, and the results agree exceptionally
well. The case of an externally coupled field is also considered.

I. INTRODUCTION

N A GENERAL electromagnetic topology we encounter
all three of the classical electromagnetic regimes: lumped
circuit, distributed parameter, and field problems. All three
regimes can be formulated as time-domain differential equa-
tions, with the main difference being the number of space di-
mensions. Multiconductor transmission line (MTL) networks,
i.e., tubes and junctions [1], are ubiquitously present in elec-
tromagnetic topology problems, where one is interested in
the flow of electromagnetic energy from one part of the
topology to another. Thus, the solution of these networks
from an electromagnetic compatibility, as well as functional
standpoint, is important. The representation of the junctions
as black-boxes characterized by measured or calculated S-
parameters is an important technique which can give a useful
approximation of the energy levels flowing in the topology [2].
These methods are based on the BLT equation approach, which
is a frequency-domain analysis [1] for which various methods
of approximation have been published [2], {3]. Simultaneously,
many numerical solution techniques have been published by
groups interested in the operational aspects of MTL networks
[4]-[8]. From an EMC standpoint, where the coupling of an
external field to the MTL is of interest, the finite-difference
time-domain method has been used previously for a single
MTL {9], [10], but not for tube/junction networks. The ability
to solve these networks with nonlinear junctions and external
field coupling is an important aspect of the finite-difference
time-domain procedure described herein.
Manuscript received June 20, 1994; revised December 1, 1994.
The authors are with the Department of Electrical Engineering, University

of Western Ontario, London, ON N6A 5B9 Canada.
IEEE Log Number 9410256.

Thus, as an initial step to solving a complete electromagnetic
topology problem, we describe the time-domain solution of
general MTL networks with nonlinear lumped circuit junc-
tions. It is important that we accomplish the interface between
the lumped and distributed regimes at the numerical level,
using an interface condition which couples the two time-
domain solutions and not by incorporating the lumped model
equations into the MTL equations, or vice versa. The reason is
that strict adherence to this paradigm will make it simpler to
interface a time-domain field modeler to the code in the future.

II. TIME-DOMAIN MTL NETWORK FORMULATION

The time-domain formulation of multiconductor transmis-
sion line problems (in the TEM approximation) has been
known for a long time (see, for example, [12], [13]). The
MTL’s, or tubes, can be described by a system of partial
differential equations in (z,t), and so explicit finite-difference
equations can be obtained and solved, subject to boundary
and initial conditions [14]. The voltage and current on an
n + 1 conductor MTL are described by the coupled partial
differential equations ’

i} d s .
a P) .
—(;j;I(x,t) + CEV(x,t) + GV =I(z,t) (2)

where V(z,t) [V] and I(z,t) [A] are column vectors of the
n voltages and currents on the MTL, and V*(z,t) [V/m] and
I’(z,t) [A/m] are the column vectors of the n distributed
voltage and current sources produced by, for instance, an
external electromagnetic field. The n x n matrices L, R, C,
and G are the per unit inductance, resistance, capacitance, and
conductance matrices describing the MTL. If these matrices
are constant with respect to x, then the MTL is said to be
uniform. In the more general case, these are a function of
frequency to take into account the dispersive nature of the
MTL (due to such phenomena as the skin effect).

Many of these MTL tubes can be connected in a tube-
junction topology, as shown in Fig. 1, where the junctions
represent a connection of the MTL’s through some sort of
lumped network [1], [4]. The objective is to calculate the
current or voltage at any point in the topology, given the
sources in the lumped network (i.e., junctions) and/or dis-
tributed sources on the tubes. We do this by using a finite
difference technique in the time-domain, as will be described.

0018-9375/95804.00 © 1995 IEEE
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Fig. 1. Tube-junction topology.

III. NUMERICAL SOLUTION OF TUBE-JUNCTION TOPOLOGY

Time-domain methods have been suggested in the past for
this problem. In [4], several techniques are presented to calcu-
late the time-domain response of multiconductor transmission
lines. A time stepping solution is based on discretizing the
transmission line equations in space and time, and it is shown
to be the same as solving a lumped-circuit equivalent of the
transmission line by the Euler method. Unfortunately, the
forward-time, center-space, time stepping scheme chosen by
Djordjevic et al. is unstable, and a time-step one twentieth
that suggested by the Courant limit, was required. This biased
the CPU resource requirements for their code to seem greater
than is actually necessary—for example, when a center-time,
center-space, time stepping scheme, such as in [10], is used.

Djordjevic et al. also describe a time-domain modal analysis
technique, which can only be applied to lossless lines with
frequency-independent parameters [4]. It can be easily inter-
faced to the analysis of terminal networks, which may contain
nonlinear elements. Modal analysis in the frequency-domain
can be applied to lossy lines, which may have frequency-
dependent parameters. The terminal networks must contain
only linear elements in this case. The fast Fourier transform
(FFT) is used to obtain the time-domain response.

The last technique described in [4] is based on the evaluation
of the line Green’s functions (i.e., the line responses to delta-
function excitation). This method can be applied to the most
general case of lossy transmission lines with nonlinear terminal
networks. No reference is made in [4] to the coupling with
an external incident EM field, or to the response of MTL
networks.

In [10], the time-domain transmission line equations for uni-
form transmission lines excited by a transient nonuniform EM
field are derived from Maxwell’s equations. The transmission
line equations are then discretized by a time-space centered
finite-difference technique. The analysis is limited to a single
multiconductor transmission line section, terminated at both
ends. In [11], time-domain modal analysis is applied to lossless
tube networks. The scattering matrix for the junction is used to
calculate the transmitted and reflected waves at the junction.
The scattering matrix is calculated using KCL and KVL at the
lossless junction. The method assumes that there are no lumped
elements in the junction—just branches (tubes) interconnected
to one another.

In {7], a method is developed for analyzing the time-
domain response of systems consisting of an arbitrary number
of multiconductor transmission lines, which can be mutu-
ally interconnected and terminated by linear networks. The
frequency-domain response is found and, by applying the

inverse FFT, the time-domain response can be evaluated. This
approach has difficulty when the analysis must span a time
interval of several line transient time, because of the large
number of points that must be added to the analysis to avoid
aliasing problems. In [8], an alternative approach based on the
numerical inversion of the Laplace transform is presented. The
formulation is based on the modified nodal analysis (MNA)
[16] for describing the transmission lines, the terminal, and
the interconnecting networks. The method was not applied to
the case of MTL coupling with an external EM field.

Recently, Tang and Nakhla [6] have proposed a new method
for the transient analysis of lossy transmission line coupled
networks, including nonlinear elements. The method com-
bines the asymptotic waveform evaluation technique with a
piecewise decomposition algorithm. The equations describing
the transmission line system and the equations describing the
terminal and interconnecting networks are formulated using
the modified nodal analysis. The approach in [6] doesn’t treat
the external coupling case.

The method we chose to discretize the MTL equations is an
explicit time-space centered finite-difference scheme, similar
to that described by Agrawal et al. in [10]. The final update
equations are written in matrix form as

1 ]an/z
In+1/2_<£+§> k+1/2 (i_ﬂ)ln—x/z
At 2 2 At 2

k+1/27 k+1/2

n41/2 n—1/2

[ Vf+1/2 +Vf+1/2
Arx 2
3)
with k = 1,2,---,km — 1, and
n—1/2
V”+1* £+ g -t IIf+1/2 g _ g 1744
T \Ar T 2 2 \at 2/)°F
n+1/2 n+1/2 n n
Ik+1/2“ k—1/2 r; " + I3
Az 2
@)

with k& =1, 2, ---, km where km = D/Ax, and D is the line
length. This is equivalent to approximating each MTL as a
series of T-cells. A three-line (n = 2) MTL example is shown
in Fig. 2.

We specify the lumped circuits at the junctions, using the
modified nodal analysis (MNA) technique, described in [15],
[16], and couple the MTL equations to the MNA equations via
the last half-section of T-cells at each junction. It is important
to use a coupling scheme which preserves the stability of the
update equations (which will be described next).

IV. FORMULATION AND SOLUTION OF
THE JUNCTION NETWORK EQUATIONS

On each MTL, the finite-difference scheme used is space
and time centered and, in the spirit of the Yee algorithm,
the voltage and current variables are interlaced in space and
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Fig. 2. T-cell discretization of MTL with » = 2 (no distributed sources).
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Fig. 3. Interconnection model between two MTL’s.

time. In [9] and [10], the terminal currents are obtained by
extrapolating the currents at the closest two current nodes. The
form of the extrapolation may pose stability problems for the
FDTD scheme [17], especially in the case of MTL networks.
We chose to introduce these terminal currents as unknowns
in the lumped model of the terminal and interconnecting
networks.

We specify the lumped circuits, using the modified nodal
analysis (MNA) technique, described in [15], [16], and couple
the MTL equations to the MNA equations, via the last half-
section of T-cells at each junction. Fig. 3 shows the model for
the interconnection of two MTL’s each with n = 2. Vi1 im
and Vi rm represent the voltages on the last voltage node
of the first MTL. V433 and Vip; are the voltages on the
first voltage node of the second MTL. Ry, Ri2, L11, L12 and
Ro1, Roa, La1, Loy are the per-unit-length parameters (resis-
tance and inductance) of the first and second MTL, respec-
tively. At each time step, the lumped network is solved and the
currents at the terminal ends of the lines (111 km, J124m, 21,0
and 23 o) are determined, so that the voltages at all the voltage
nodes along the MTL’s can be calculated using the FDTD
updating scheme.

In the general case of a linear network, the s-domain
network equations can be expressed as

Y(5)X(s) = W(s) ®)

where Y (s) represents the modified nodal admittance matrix,
X (s) is the unknown vector which includes the nodal voltages
and the branch currents introduced by the additional constitu-
tive relations for the branches that contains voltage sources or
current controlled elements. The source vector W (s) includes
the values of voltage and current sources, as well as initial
conditions for capacitors or inductors.

In the time-domain, the elements of the modified nodal
matrix Y can be stored in two constant matrices: a matrix

D that includes the values of Y which are not coefficients of
partial derivative terms in the network equations; and a matrix
E that includes the values of Y which are coefficients of partial
derivatives (i.e., coefficients containing the Laplace variable,
s) in the network equations. Thus, in the time-domain (5)
becomes

DX+EX' =W or EX'=W-DX. ©)

The matrices D and E are determined in a straightforward
manner by using stamps for ideal lumped elements [15], [16].

If we consider the backward Euler formula with time-step
At

X'(n+1)= é(x’“r1 - X" 7

then the finite difference formula for (6) becomes

EX" = EX™ + At(W"! - DX™t1)  (8)

_1_ n+1_i n +1 :
(D+AtE)X _AtEX +wn , ©)]

and the explicit update equation can be written as
X"t = M1 X"+ M2 W (10)

where

M1= D+iE _liE
- At At

1 -1
M2_—.(D+ EE> . (11)

As can be seen from Fig. 3, the source term W for a
terminal or interconnecting network contains, in addition to
the independent sources present in the network, equivalent
voltage sources representing the terminal voltage nodes on the
individual lines in the MTL. The variables (i.e., unknowns) in
X in which we are interested, are the terminal currents on the
lines since these are required in the MTL update equations. In
Fig. 3, these are Ill,km,flz,km,lm’o, and 122,0. If the time-
step at which we determine these currents is n + 1/2, then the
equivalent voltage sources in W corresponding to the terminal
voltage nodes on the lines will be those calculated at time
n. In the updating relation (10), the only term that needs to
be updated at every time-step is the source vector W. The
matrix inversion is computed just once, at the beginning of
the computation.
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A. Validation of the Interface Condition

To validate the use of the MNA formulation for junctions
interconnecting two MTL’s, we consider two identical lossless
MTL’s, as shown in Fig. 4. Each MTL is a 3 conductor line
(ie., n = 2) 1.4 [m] in length and is characterized by the
per-unit-length inductance and capacitance matrices

1946 633
L_{63.3 494.6][“}1/“’]

C= [60.054 —7.685

60.054 ] [pF/m].

The equivalent lumped circuit of the direct interconnec-
tion between the MTL’s is shown in Fig. 5, where L, =
LiiAx. Ly = LosALand L, = (AZ/?)[L12+L21], L., being
the total mutual inductance between the two lines.

The MTL’s are assumed to be embedded in a homogeneous
medium, so they have equal mode velocities: v1 = vy =
1.85x 10® {m/s]. The MNA matrices required in (10), (11) are:

—7.685

0 06 0 1 1 0 0 0 07

0o 6 0 0 0 -1 1 0 0 O

o 0 0 0 0 0 01 10

0O 0 0 0 0 0 00 1

D= 1 06 0 0 0 0 0 0 0 0

1 -1 6 0 0 0 0 0 0 0

60 1 0 0 0 0 0 0 00

0o 6 1 0 0 0 0 0 00

6 0 1 -1 0 0 0 0 00

o 0 0 1 0 0 0 0 0 0J
o 0 6 0 0 0 0 0 0 07

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

g 0 0 0 0 4] 0 0 0 0
E— g 0 0 0 0 ] 0 0 0 0
100000 —-L 00 —Ln O
0 0 0 0 0 0 0 0 0 0

0O 0 0 0 0 0 0 0 0 0
00000 L, 00 —Ly 0
0 0)00 0 00 0 o0l

X = [Vn,l ‘/nZ Vn,3 Vn 1 I ;11%:’3 7/712 I L,

FATR HA<i PR v o

W:[O 000 Vﬁ,km 0 Vznm W15 km0 V27§,1]T~

The voltage source e(¢) is a 1 [V] rectangular pulse with
a rise/fall time of 1.5 [ns] and a total duration of 5.5 [ns].
The voltage waveforms along the driven lines of the two
MTL’s are shown in Fig. 6, at different time-steps. The time-
step size was calculated using the Courant stability condition:
At = Az /v, and our space step was set to Az = 1 [cm]. As
can be seen from the figure, the square pulse propagates across
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Fig. 5. Interconnecting lumped model for circuit in Fig. 4: (a) initial; (b)
simplified.

the junction without any numerical reflection. This result gives
us confidence that the method will perform well when more
complicated junctions are introduced.

V. TERMINAL AND INTERCONNECTING NETWORKS
WITH NONLINEAR ELEMENTS

In the case of nonlinear lumped networks, there is no change
in the topological equations since the KVL and KCL equations
are independent of the branch relations. The description of
a nonlinear element is given in implicit form. That is, for
nonlinear resistive, capacitive, and inductive branches, the
implicit equation can be expressed as i

L(i’Lv QSL) =0
(12)

plvg,ir) = wr, Clvc,qc) =0, and

respectively, where qc and ¢ are the capacitor charge and
inductor flux. The constitutive equations for branches with
nonlinear capacitors and inductors are given by the linear
differential relations ic = g and vy, = ¢/, respectively.

To incorporate the nonlinear elements in the modified nodal
formulation, the capacitor charges and inductor fluxes are
introduced as variables in the vector of unknowns X [15].
This will increase the size of the system, but the differential
equations become linear and the nonlinearities are transformed
into algebraic equations. Thus, the modified nodal formulation
can be written in the form

fIX'.X.Wt)=EX +DX +p(X)-W=0 (13

where D and FE are, as before, constant matrices which
describe the linear lumped elements and independent sources.
The nonlinear components in the network are collected in the
term p(X), X represents the vector of unknowns, and W is
the source vector.

The nonlinear analysis problem reduces now to one of
solving the set of algebraic-differential equations (13). In
choosing the solution method, of particular importance is the
stability and convergence properties of the algorithm used.
The solution method we chose is based on using a first order
backward differentiation formula to approximate the derivative
in, and the Newton—Raphson iteration technique for solving
the derived corrector equation [15], [18].

We obtain accurate results by using the first order predictor
formula, given by

X, =2X, - Xay (14)
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Fig. 7. Single MTL (n = 2) with nonlinear loads.

and corrector formula given by

(XYies = 5

nt+1 — E(Xiﬂ - Xn)a X2+1 = Xf—f—l (15)

which is the well-known backward Euler formula. Note that
here we are now using subscripts n to denote the time-step
and superscripts 7 to denote the iteration number. The vector
X, ., found via this scheme is used in the discretized version
of (13) given as

fiH—l((Xl)iL—Hv ;+17Wj1+17t)
=E(X"), 1+ DX,y +9(X51) - W, =0
(16)
which is then solved for X ; 41 using the Newton—Raphson

algorithm. That is, at each time-step the Newton—Raphson
iteration proceeds as follows

MfzﬂAXviwrl = —fi+1 ¥))
X::—ll =X +AX
X0 =X (18)

where M, ,, is the Jacobian matrix and can be written as

1 8
Mo, = (E>E+D+3Xpﬂ. (19)

The iterations proceeds until the error norm is less than a
predefined value {|AX} || < e

To avoid the long operation of matrix inversion of the
Jacobian at each iteration, (17) can be solved for AXZ‘1 +1
by LU factorization. Sparse matrix methods can also be used
because the nonzero elements of the Jacobian matrix are fixed
by the circuit topology and remain unchanged from iteration to
iteration. The Newton—Raphson algorithm has a fast quadratic

Fig. 8. Equivalent circuit of the nonlinear terminal network for the MNA
formulation.

convergence when started close to the solution, and since our
time-step is limited by the time-step of the MTL algorithm,
there is no need for a more accurate solution method.

In summary, the algorithm we use to solve the nonlinear
terminal or interconnecting lumped networks can be specified
as follows [15]. '

1) Predict X f 41 using the predictor formula (14).

2) Calculate X/, using (15).

3) Calculate the vector function f, +1, (16).

4) Calculate the Jacobian (19).

5) Apply the Newton—Raphson iteration (17) and (18).

6) If the error norm condition is not satisfied, go back to

Step 2.

Stamps for nonlinear elements, similar to those used for
linear networks, can be used to fill in the entries in the Jacobian
[15].

A. Nonlinear Termination Example

We now apply this method to an MTL with nonlinear
termination. Consider the coupled three-conductor (i.e., n = 2)
lossy transmission line shown in Fig. 7. This configuration was
solved by Djordjevic et al. using a Green’s function method
[19]. We use a line length of 0.5 [m], and the transmission
line parameter matrices are given as

309 217
L‘[21.7 309} [nft/m]

o= |3 ] werm
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¢= [—11.8 905 } [nS/m].

In [19], the resistances and the conductances were assumed
to vary with frequency. Currently we neglect this variation, but
have found almost no difference with the results given in [19].
The active line is driven by a 1 [V] rectangular voltage source
with an internal resistance of 50 [€}], a rise and fall time of
0.5 {ns], and a total duration of 6 [ns]. At the right-hand side
the lines are terminated in a series combination of a 10 [Q]
resistor and a diode. The characteristic of the diode is given by

oeon ()

with 74 = 10 [nA] and V7 = 25 [mV].

The equivalent circuit of the nonlinear load termination for
the MNA formulation is shown in Fig. 8. The circuit elements
in the figure are given by

(20)

1 1

G :Ru(A.L‘/Q)*}—lO [S]. G = RQQ(A£/2)+10

[s],

L1 = LQ = Lll(A.T/Q) [H], Lm = L12(Al‘/2) [H].

and the matrices necessary to determine f, 41 of (16) are as
shown at the bottom of this page, and

) node 1, (---) node 2; Right: (

1 i
10¢0°% " 150078 20w10°0
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Fig. 10. Tang and Nakhla interconnect model with lossy MTL’s.
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where V,,; to V¢ are the voltages at nodes 1-6, shown in
Fig. 8.

The line is discretized using a spatial step size of Az = 2
[mm]. The mode velocities (calculated from the eigenvalues of
the product matrix LC, with a lossless conductors assumption)
are v; = 1.52127 x 10® [m/s] and v, = 1.482428 x 108
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[m/s]. The time-step is calculated using the Courant condition:
At = Azlv, [s] where v, is the largest mode velocity—in this
case v;. The calculated value is At = 1.31469 x 1011 [s].
The terminal voltages at nodes 1-4 of Fig. 7 are shown in
Fig. 9. The results are in excellent agreement with those of
[19].

B. Nonlinear MTL Network Example

For an example of a nonlinear MTL network, we consider
an interconnect model with lossy multiconductor transmission
lines, shown in Fig. 10. This example is identical to the one
solved by Tang et al. [20].

The length of both MTL’s is 0.1 [m]. The two conductor
line has the per-unit-length parameters given by

4946 633
L :[63.3 494.6][DH/m]

o= [ it e

B

¢

"
leO-g

1
4x10_9

L
5x10°

Time {5

PR B
B0

) node 3, (- - -) node 4; Right: (

-
x10

)

S
o= [ 2]

and the four conductor line has the parameters

r4946 633 7.8 0.0

633 4946 633 78 | .
78 633 4946 633 | /™
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The nonlinear elements are defined by V, = 20i, +

21.5:1/3¢ and V, = 20i, + 21.5z’é/3. The response at various

points in the network are shown in Fig. 11, and are in good
agreement with the published results in [20]. We also introduce
a distributed current source on line one of the first MTL to
demonstrate the capability of introducing such sources. We
chose a distributed current source waveform representative of
a furniture electrostatic discharge, but with smaller amplitude,
given by

wt

l(f) = 10»()(’,70'9'10% - sin (W

> [A/m]. 2n
This source is imposed over the ten finite difference cells in
the middle of the conductor (i.e., a 1.0 [cm] segment of line)
and some results for the mutual coupling on various lines are
shown in Fig. 12. The voltage source e(t) is still active, but
the mutual coupling, due to the distributed current source,
overwhelms its contribution.

V1. CONCLUSION

We have described a finite-difference time-domain approach
to the solution of MTL network problems having nonlinear
junctions. The nonlinear lumped circuit junctions are formu-
lated via the MNA method, and the solution for each time-step
of the nonlinear junctions and the MTL’s are coupled via
a numerical interface, consisting of the last section of each
MTL. The use of the FDTD method allows us to incorporate
distributed sources on the MTL’s to model impinging elec-
tromagnetic fields. The finite-difference technique chosen for
the MTL’s is compatible with that used in Yee type FDTD
field solvers, which makes the interfacing with our FDTD field
modeler a realistic possibility. We will be investigating the
viability of this in the future.
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