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Abstract-A comparison of various time domain numerical 
techniques to model material dispersion is presented. Methods 
that model the material dispersion via a convolution integral as 
well as those that use a differential equation representation are 
considered. We have shown how the convolution integral arising 
in the electromagnetic constitutive relation can be approximated 
by the trapezoidal rule of numerical integration and innple- 
mented using a newly derived one-time-step recursion relaition. 
The superiority of the new method, in terms of accuracy and 
computer resources, over four previously published techniques 
is demonstrated on the problem of a transient electromagnetic 
plane wave propagating in a dispersive media. All of the methods 
considered are easily incorporated into 3-D codes where the 
requirement for efficiency is very important. 

I. INTRODUCTION 

T IS WELL known that in the time domain a dispelrsive 
medium exhibits electromagnetic memory and can be mod- 

eled via a convolution integral [ 11. Recently, several numerical 
schemes have been suggested to model material dispersion in 
the time domain [2]-[7]. In this letter, the first approach we 
consider is the method by Joseph et al. where the constitu- 
tive relation relating the electric flux density D(z , t )  to the 
electric field E(z ,  t )  is expressed via a second-order ordinary 
differential equation [4]. The second technique we consider is 
that of Luebbers and Hunsberger (and later on by Kelley and 
Luebbers) in which the constitutive relation for a general Nth 
order Lorentz dispersive medium is represented as a recursive 
convolution integral [ 5 ] ,  [6]. Finally, Sullivan formulates the 
constitutive relation using the 2 transform and obtains a 
recursive relation between electric flux density and the electric 
field [7]. Other schemes have been published, but these three 
seem to be the most popular. We then summarize our new 
higher-order convolution scheme, which was described in [8], 
and give comparative results from applying all the schemes 
on a sample problem. 

II. NTH ORDER LORENTZ DISPERSION 

A commonly used mathematical model to account for the 
presence of dispersive material is to relate the electric flux 
density to the electric field in the frequency domain by 
a frequency-dependent constitutive relation. Specifically, an 
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order-A4 Lorentz dispersion relation 

(1) 
can be used to model a wide variety of material where, 
in general, the M = 2N complex conjugate poles in the 
summation model the natural resonances exhibited by the 
medium. In (1) wp represents the pth resonant frequency, 6, the 
pth damping coefficient, E, is the high-frequency permittivity, 
and E, the static permittivity. The time domain equivalent can 
be represented as a convolution integral, as described in [l], 
[SI, or by taking the inverse Fourier transform of (1) as a 
second-order ordinary differential equation, as was done for 
M = 2 in [4]. 

111. REVIEW OF NUMERICAL 
APPROXIMATIONS FOR DISPERSION 

In all the numerical methods described, Maxwell's curl 
equations are solved by the standard FDTD method, but the 
frequency-dependent nature of the constitutive relation must 
now also be approximated. The procedure developed in [4] 
uses the inverse Fourier transform of the complex permittivity 
given by (1) to derive a second-order differential equations 
between E ( z ,  t )  and H ( z ,  t ) .  A second-order finite difference 
approximation is then derived for this equation and an update 
equation for En+' is obtained. This scheme requires the 
storage of 2M - 1 real variables in addition to the field 
values of the general FDTD method. The above scheme will 
be referred to as JHT in the following discussion. 

The procedure described in [SI approximates the convolu- 
tion integral by a (0th order) discrete summation and then 
derives a recursive method for implementation. This method 
will be referred to as the Constant Recursive Convolution 
(CRC) method and is summarized in [5]. For an order-M 
medium, M additional complex variables are required to be 
stored over the standard FDTD method, i.e. for a general 
dispersive material with P poles, a total of P real variables are 
required in addition to the field values of the FDTD scheme. 

Recently a new method was presented by Kelley and Lueb- 
bers [6] in which the electric field in the convolution integral 
is represented as a piecewise linear function of time. This 
Piecewise Linear Recursive Convolution (PLRC) has shown 
significant improvement over the CRC scheme. However, this 
new method requires one extra level of back storage of the 
electric field, En-1, in addition to the CRC scheme. 
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Finally, Sullivan demonstrated that a Z transform technique 
can be employed to model dispersive media in conjunction 
with the FDTD method [7].  The convolution integral of the 
constitutive relation is represented by a recursive relation 
obtained from its Z Transform and is incorporated into a new 
update equation for the electric field. The FDTD calculations 
of a dispersive medium with two poles demand three additional 
real variables beyond the current field values of the general 
FDTD method. We will denote this method as the ZT method. 

IV. DISCRETE TRAPEZOIDAL CONVOLUTION METHOD 

The main computational advantage of the convolution 
method CRC over the ordinary differential equation method 
(JHT) and the Z transform method (ZT) is that only one 
level of back storage is required for the auxiliary variable 
qn used in the method. The reason the CRC scheme requires 
only one time level of back storage is that the electric field 
is assumed to be “constant” over each At interval in the 
discretized convolution (this being the 0th-order integration 
approximation). At first sight it seems that if we try to increase 
the order of the integration to the first-order “trapezoidal rule” 
instead of the “constant” approximation, we would require 
two time levels of back storage (thus sacrificing memory 
requirement for accuracy). This idea of using a piecewise 
linear approximation to approximate the convolution integral 
was recently used by Kelley and Luebbers in order to obtain 
better accuracy [6]. Our trapezoidal rule is also a piecewise 
linear approximation of the convolution integral, but we’ve 
been able to implement it using a one time step recursive 
scheme given by [SI 

r n 

, _  + E, 

O b  #(qat x -  + E, + - P-1 
Eo 2 

where 

and the discrete auxiliary function 4: is found by the recursive 
procedure 

(3) 

Electric Field vs. Position 
0 . 6 r  ” ” ” ” ” ” ” ”  I 

0 1000 2000 3000 4000 
Position (Cell Number) 

(a) 

Absolute Error 

- 0 . 0 6 L 2  I I I ,  I I I if I 1 
0 1000 2000 3000 4000 

Position (Cell Number) 

(b) 

Fig. 1. (a) Electric field and (b) difference between methods of a hyperbolic 
secant envelope with, carrier in a second-order dispersive medium after 5000 
time steps using TRC, CRC, and PLRC. 

In the remaining discussion we will refer to this new method 
as the TRC method. This scheme is more accurate than the 
CRC scheme when the slope of the electric field in one At 
differs appreciably from a constant (i.e. for waveforms with 
high frequency [content). 

V. EXPERIMENTAL RESULTS 

We give results comparing all five methods on the linear 
dispersive problem proposed in [4]. A sinusoidal carrier of 
frequency f = 1.37 x Hz is modulated by a hyperbolic 
secant envelope with time constant of 14.6 fs and propagated 
in a second-order dispersive medium (where E, = 5.25, E, = 

10-17~,Ax = 5 nm). Results after 5000 time steps using 
all three recursive convolution schemes are shown in the first 
plot of Fig. 1. The absolute difference between the TRC and 
CRC methods as well as between the TRC and PLRC methods 
are shown in the second plot of Fig. 1. It is evident that our 
higher-order corivolution method TRC is more accurate than 
the original constant convolution method CRC and also our 
earlier claim of interchangeability of PLRC and TRC schemes 
is also supporteld by Fig. 1. 

Next, we compared our TRC scheme with the other, 
nonconvolution-based schemes, i.e. JHT and ZT. A small, 
yet significant, ‘difference was observed between the results 

2.25,w1 = 4.0 x = 1.0 x 109,at  = 2.25 x 
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Fig. 2. (a) Electric field and (b) difference between methods of a hyperbolic 
secant envelope with carrier in a second-order dispersive medium after 5000 
time steps using TRC, JHT, and ZT. 

obtained by the different schemes, as can be seen in Fig. 2. 
The numerical dissipation produced by the schemes is the 
least for the TRC method followed by PLRC, ZT, JHT, and 
CRC. 

In terms of computational efficiency, the CPU times per cell 
per time step are shown in Table I. We see that using our new 
TRC requires only an 8% increase in computation time over 
the CRC and requires the same amount of storage space. 
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TABLE I 
CPU TIME FOR THE DIFFERENT SCHEMES 

Scheme RC JHT TRC PLRC ZT 

% increase 0 4% 8% 31% 31% 
ps/cell/step 2.6 2.7 2.8 3.4 3.4 

VI. CONCLUSION 
We have described a new higher-order convolution scheme, 

TRC, which is based on the trapezoidal rule, and have derived 
a one time step recursive scheme to compute it. This new 
method has been compared to four previously published tech- 
niques and the results show the TRC method to be superior in 
terms of accuracy and required computer resources. This new 
method is a general method capable of modeling order-M 
dispersive media whereas the JHT and ZT schemes have been 
derived only for a second-arder dispersive media. Furthermore, 
the PLRC method requires the storage of one more real 
variable per electric field component than the TRC scheme. 
This will be very important in 3-D applications. 

REFERENCES 

[ l ]  C. A. Balanis, Advanced Engineering Electromagnetics. New York 
Wiley, 1989. 

[2] M. D. Bui, S. S .  Stuchly, and G. I. Costache, “Propagation of transients 
in dispersive dielectric media.” IEEE Trans. Microwave Theorv Tech.. 
vol. y9, pp. 1165-1172, July 1991. 

[31 0. P. Gandhi, B. 0. Gao, and J. Y. Chen, “A freauencv dependent finite - . I  

difference time domain formulation for general dispersive media,” IEEE 
Trans. Microwave Theory Tech., vol. 41, pp. 658-665, Apr. 1993. 

[4] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration 
of Maxwell’s equations in linear dispersive media with absorption of 
scattering and propagation of femtosecond electromagnetic pulses,” Opt. 
Left., vol. 17, pp. 1412-1414, 1991. 

[5] R. J. Luebbers and F. Hunsberger, “FDTD for nth-order dispersive me- 
dia,” IEEE Trans. Antennas Propagat., vol. 40, no. 11, pp. 1297-1301, 
Nov. 1992. 

[6] D. F. Kelley and R. J. Luebbers, “The piecewise linear recursive 
convolution method for incorporating dispersive media into FDTD,” in 
I Ith Ann. Rev. of Progress in Applied Computational Electromagnetics, 
Monterey, CA, Mar. 1995, vol. 1, pp. 526-533. 

[7] D. M. Sullivan, “A frequency dependent FDTD method for biologi- 
cal applications,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 
532-539, Mar. 1992. 

[8] R. Siushansian and J. LoVetri, “An efficient higher order numerical 
convolution for modelling Nth-order Lorentz dispersion,” in IEEE 
Antenna and Propagation Symp., Newport Beach, CA, June 1995. 


