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SUMMARY

In this paper, two, under certain conditions, equivalent models of electromagnetic plane wave coupling to
multiconductor transmission lines (MTLs) are described. The &frequency-to-time domain' (FTD) model
incorporates the e!ect of the impinging electromagnetic waves by means of distributed voltage and current
sources whose expressions are found through mathematical approximations made in the frequency domain
followed by a transformation to the time domain. The approximations were made in order to gain an
advantage in computation time in the discrete FTD (DFTD) model. In contrast to this approach, the same
distributed sources of the &approximate analytic' (AA) model are derived by directly evaluating the
corresponding integral formulas. It is shown that, although the same second-order-accurate discretization
technique has been employed to create both the DFTD and the discrete AA (DAA) models, the simulation
results are not the same. In the case of the DFTD model, signi"cant numerical error can be seen in the
simulation results, whereas the DAA model does not show such a behaviour. It is shown that time averaging
of the forcing terms in the DFTD model helps to reduce the numerical errors signi"cantly at no extra
computational cost. Copyright ( 2001 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.

KEY WORDS: multiconductor transmission lines; MTL; external "eld coupling; numerical simulation;
discretization techniques; forcing terms

1. INTRODUCTION

Assuming the quasi-TEM mode of propagation, in terms of total voltages, the m#1 conductor
multiconductor transmission line (MTL) depicted in Figure 1 is modelled by the following partial
di!erential equations [1]:
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Figure 1. Multiconductor transmission line illuminated by an external electromagnetic "eld.

where the m]m per-unit-length (PUL) inductance and capacitance matrices, ¸ and C, are
known or estimated parameters. The m]1 total voltage and current column vectors, V(t, y)
and I (t, y), are the unknowns which are to be solved. The forcing functions, which are due
to the external "eld coupling to the MTL, are the induced voltage density, V

&
(t, y), and the

induced current density, I
&
(t, y). In terms of the incident electric "eld, E*, these can be expressed as
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Figure 2. Speci"cation of the incident electromagnetic wave.

In the line integral terms, A
j
denotes the point in which the a-plane, which is perpendicular to

the y-axis, intersects the jth line of the MTL. The a-plane intersects the y-axis, which is co-linear
with the reference conductor 0, at the point A

0
whose co-ordinates are (0, y, 0). In (2), E*

t
denotes

the transverse component of the incident electric "eld intensity vector; that is the projection of E*

onto the a-plane. The longitudinal component of the incident electric "eld is denoted by E*
y
.

In practice, MTLs are usually terminated by complicated non-linear circuits and a system of
MTLs having junctions of such circuits form a non-linear MTL network. In order to simulate
such MTL networks, we employ [5}7] the popular modi"ed nodal analysis (MNA) formulation
at the non-linear junctions (this is the formulation used in SPICE). For the case of a single MTL
with linear terminations, one of the two scattered "eld formulations described in References [3,4]
prove to be more e$cient than the total "eld formulation. Unfortunately, a method of combining
the scattered "eld formulation with the MNA description of non-linear junctions in an MTL
network is not known. Therefore, we use the total "eld formulation for the coupling of electro-
magnetic "elds to the MTLs where no such problem exists.

The speci"cation of the incident plane wave is shown in Figure 2, where we denote the unit
vectors of the spherical co-ordinate system as aL

r
, aL h and aL

(
. As can be seen in the "gure, the

direction of propagation!aL
r
of the incident electromagnetic plane wave is speci"ed by the angles

h and /, whereas the polarization is speci"ed by the angle f of the electric "eld vector E* being
measured from aL h towards aL

(
. Since the medium outside the MTL is being assumed to be free

space, characterized by k
0
and e

0
, the plane wave propagates with a speed of v

0
"(k

0
, e

0
)~1@2.
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In the Cartesian co-ordinate system of Figure 2, denoting the unit vectors as aL
x
, aL

y
and aL

z
, the

incident plane wave can be speci"ed as

E* (t, r)"e; E
0
(t!v ) r/Dv D2) (3)

where r"xaL
x
#yaL

y
#zaL

z
is the position vector, t is the time, and e; is the unit vector specifying

the direction of the electric "eld, and E
0
( ) ) is the electric "eld waveform function. In terms of the

parameters described above, this unit vector e( can be written as,
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where R
41)

denotes the transformation matrix between the spherical and Cartesian co-ordinate
systems:

R
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From this it follows that, in Cartesian co-ordinates, the direction of the incident electric "eld can
be written as
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The velocity vector of the wave can also be written in Cartesian co-ordinates as,
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With the exception of some boundary conditions, which describe the electrical terminal
conditions of the MTL, equations (1)}(3), (6) and (8) complete the mathematical model of the
physical problem we are interested in. This mathematical model must be solved numerically and
in this paper we consider the standard second-order-accurate interlaced leap-frog scheme for the
solution of the MTL partial di!erential equations:
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The voltage, Vn
k
+V (n*t, k*y), and the current, In~1@2

k`1@2
+I ((n!1/2)*t, (k#1/2)*y), vectors are

interlaced in space and time. The derivation of this computationally e$cient numerical scheme
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has been described in Reference [1]. In the following section, we present two methods to
discretize the forcing functions [V

&
]n
k`1@2

and [I
&
]n`1@2
k

.

2. APPROXIMATE MODELS

If the illuminating "eld is plane wave, it is possible to "nd a simple form for the distributed voltage
and current sources of (2). If the external "eld is not a plane wave, the problem becomes more
complex, but still treatable by numerical methods. Several researchers have evaluated the
distributed sources for a transmission line (TL) embedded in an inhomogeneous medium when
illuminated by an external "eld [8}11]. The perturbation of the incident "eld by the dielectric
medium is often assumed to be negligible and thus ignored. It has been found in Reference [6]
that for the case of a plane wave impinging on an MTL embedded in an inhomogeneous dielectric
medium, the perturbation of the incident "eld due to the dielectric must be included for a correct
solution of the problem. The same ideas are re#ected in References [12,13].

In the following two sections, approximate models are described for modelling plane waves
impinging on MTLs embedded in strictly homogeneous media. The numerical details of these
models are studied since they form the basis for extending the analysis to the case of MTLs
immersed in a heterogeneous dielectric medium. In Section 2.1, a new discretization procedure is
presented which is more accurate than the more common technique described in Section 2.2 (see
also Reference [1]). Finally, in Section 2.3, the formulations of the two approximate models are
compared. Numerical experiments are also presented to validate the arguments.

2.1. Analytic-approximate (AA) models

One way to determine an explicit formula for the forcing functions V
&
(t, y) and I

&
(t, y) is to

substitute the functional form of the plane wave into Equation (2) and analytically evaluate the
integral terms therein. After the considerable simpli"cation given in the appendix of Reference
[14], we "nd that
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has been introduced to simplify the expressions. From Equation (10) we see that all elements of
the forcing functions V

&
(t, y) and I

&
(t, y) are directly proportional to the di!erence in the intensity

of the electric "eld at the corresponding conductor and at the reference conductor at appropriate
instants of time. Hereafter we refer to the group of equations [(1), (10)}(12)] as the analytic-
approximate (AA) model of our problem.

In (12), q is the time it takes for the plane wave to travel from the jth conductor to the reference
conductor. We remark that no approximations have been made in the derivation from Equations
(2)}(10). The only approximation that will be made is in terms of the discretization procedure
which will now be described.

As required by Equation (9), the discrete model of the problem (1), the forcing functions given
by (10) have to be discretized so that [V

&
]n
k`1@2

and [I
&
]n`1@2
k

are obtained. Thus, the distributed
voltage forcing function is discretized by using centred di!erencing at integer time and half spatial
locations, whereas the distributed current forcing function is discretized at half time and integer
spatial locations:
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has been used. We denote the approach of using the discrete forcing functions given by
Equation (13) as the discrete analytic-approximate (DAA) model.

As it is written in (13), the DAA solution produces high-frequency numerical oscillations
around the true solution. An example of such oscillations is presented in our numerical study (see
Section 3). In order to add damping to the numerical scheme, time averaging is used in the source
terms. Hence, from (13) we obtain,
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to which, in the rest of this work, we refer as the averaged-source DAA (ADAA) model.
The time averaging has to be carried out for each element of the [V

&
]n
k`1@2

and [I
&
]n`1@2
k

vectors. Since the E
$
(t, y, q) function is a di!erence function, the computational cost of the time

varying part of (14) for each forcing function consists basically of two subtraction, one addition
and one multiplication operation for each conductor since the factors ( f

j
v
y
/g

j
!e

y
)/2 and

f
j
v2
0
/(2g

j
) do not depend on time and can be calculated before the time iteration starts. Thus, this

scheme requires four #oating point operations for each conductor and for each forcing function,
that is 8]m #oating point operations for the MTL.

2.2. Frequency-to-time domain (FTD) models

An alternative approach is to "rst convert the original forcing functions V
&
(t, y) and I

&
(t, y) to the

phasor domain, carry out some analytic manipulations making some approximations based on
the wavelength as compared to the distance between conductors, and subsequently convert back
to the time domain. The complete procedure is described in Reference [1] and, employing the
present notation, the approximate frequency-to-time domain (FDT) forcing functions can be
written down as
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In order to obtain these formulas, the approximation
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has been made. Hence, (
j
must be small in order for this approximation to be applicable. This

approximation restricts the method to MTLs with small cross-sectional size as compared to the
wavelength of the incident impinging wave; quite a valid assumption considering that the same
restriction applies to the use of the quasi-TEM formulation of the MTL equations in the "rst
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place! Hereafter, we refer to the set of equations [(1), (15) and (16)] as the frequency-to-time domain
(FTD) model of our "eld coupling problem.

The FTD forcing functions, given by (15), are now discretized using a second-order-accurate
"nite di!erence scheme, as was done in the AA formulation, to arrive at the discrete form forcing
functions:
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In the rest of the work we refer to (17) as the forcing function of the discrete FTD (DFTD) model.
It is now easy to see that, in this case, the computational cost of the time-varying terms for each

of the forcing functions consists of only one subtraction for the whole MTL and one multiplica-
tion for each conductor, that is 2](m#1) #oating point operations. As before, the factors
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) and f
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/*t are independent of time. This formulation is more computation-

ally e$cient than the ADAA formulation, which is the only advantage of the FTD model over the
AA model.

2.3. Comparison of FTD and AA models

Comparing the forcing functions of the AA and FTD models, given by Equations (10) and (15), we
"nd that if the partial derivative term in (15) is approximated by
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and the time step *t is chosen the same as the time it takes the wave to travel from the jth
conductor to the reference conductor, that is,

*t"q"g
j
/v2

0
, (19)

then the jth element of both forcing functions given by (15) become exact expressions, vis-a-vis
equation (10). Therefore, (18) and (19) constitute the basic relationship between the AA and FTD
models. Any di!erent value of *t than g

j
/v2

0
can cause signi"cant inaccuracies. Of course, it is

impossible to choose a *t which makes all terms exact, since for each conductor g
j
is di!erent.

That is, one can replace *t in (17) separately for each one of the conductors with the appropriate
value dictated by (19), but then the DFTD model becomes the same as the DAA model, hence
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Figure 3. Transmission line used for numerical study.

losing its computational advantage. We "nd it important to underline that, when talking about
the approximations of the source terms given by (15), the required *t in (18), or (17) as a matter of
fact, can be di!erent from the best possible time step which could be used in (9) in order to obtain
the least amount of numerical dispersion.

For example, it is well known that, in order to obtain the least amount of numerical dispersion,
the leap-frog scheme should be run with a time step equal to the maximum time step allowed by
the Courant stability limit, i.e. *t"*x/v

.!9
, where v

.!9
is the maximum modal-speed on the

MTL. From this, using (19), we see that for minimum dispersion we require
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v
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v
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%&&
"qv

0
is the e!ective cross-sectional distance between the conductors. For a transmis-

sion line in free space we have v
.!9

"v
0

and thus we see that satisfying (19) implies setting
*x"d

%&&
. This may be a much smaller value than that required for resolving the shortest

wavelength, j
#
, and this will result in an ine$cient use of computer resources. If, on the other

hand, we set *x"j
#
/10Od

%&&
, then we violate condition (19).

3. NUMERICAL ANALYSIS

We incorporated the two types of forcing functions, i.e. ADAA and DFTD, into the same
numerical algorithm containing the interlaced leapfrog scheme in order to solve the same
problems. We considered three- and two-conductor transmission lines, with and without ground
planes, and varied the incident plane wave in terms of its angle of incidence h and /. We found
that the solutions obtained with the two kinds of forcing functions agreed very well, except for the
numerical dispersion. This phenomenon occurs regardless the number m#1 of conductors the
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Figure 4. The waveform of the electric "eld.

transmission line contains or the presence/absence of a ground plane. Therefore, we present the
results in the simplest case, that is a two-conductor lossless transmission line in free space, with no
ground plane in its proximity.

The transmission line is made of two wires of radius r
8
"10 mils and length l"1 m, which are

parallel to the y-axis and placed at a distance h"2 cm from each other, as shown in Figure 3. In
this con"guration the PUL parameters of the transmission line are given by
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and they evaluate to C"6.3621 (pFm~1) and ¸"1.7465 (lHm~1).
In the numerical experiments, the angle h was varied from 0 to 903, while maintaining

/"!903 and f"03. The waveform used for the electric "eld is shown in Figure 4.
The frequency content of the waveform is well below 1 GHz (i.e. the wavelength;cross-

section of the transmission line). According to the theory, both the AA and FTD models should
produce accurate results but, as will be seen, the discrete DFTD counterpart of FTD model
produces some numerical oscillations which, we believe, are due to the neglect of the phase term
in the approximation given by (16).

For the particular problem considered here, we have
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Figure 5. The error of the DFTD solution when the proper *t, i.e. *t"g
j
/v2

0
, is used

in the forcing function and when h"203.

as forcing functions of the AA and FTD models, respectively. Based on (19), *t in (18) should be
varied as a function of h as

*t (h)"
h

v
0

cos h (23)

in order to obtain the exact AA forcing functions for the FTD model. A simulation example
for such a substitution of *t in (18), that is (17), is shown in Figure 5, which depicts the
corresponding ADAA solution, which is assumed to be accurate, and the deviation of DFTD (17)
solution from it.

In the numerical examples the l"1 m long transmission line is discretized using 100 equal
length intervals, hence *y"1 cm. The "nite di!erence scheme (9) itself produces the minimum
amount of numerical dispersion if run at its Courant limit. Therefore, since the maximum modal
TEM propagation speed on our transmission line equals the speed of light v

.!9
"c"

3]108 ms~1, at the Courant limit *t"33.(3) ps, hence resolving the rising edge of the pulse into
a quite high number of N

3*4*/'
"30 intervals.

Just by substituting (19) into (17) one does not obtain total equivalence of the DAA and
DFTD models, since the time instances in which the source "eld values are sampled are
di!erent in these two cases. In order to reach total equivalence, the discretization of (18)
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Figure 6. The error of the DFTD solution when *t"g
j
/v2

0
and the source term is approximated by

backwar di!erencing (DAA-DFTD equivalence study for h"203).

has to be done by using backward di!erencing and not centred di!erencing as in (17). As Figure 6
shows, the di!erence between the non-averaged source using DAA and DFTD models disappears.

In Figures 7}10 comparative plots for various values of h are shown. We note that the
dispersion of the DFTD method varies with the angle h, but it is not proportional to cos h. For the
most frequently studied cases, such as end-"re (Figure 7) or side-"re (Figure 10) excitation, most
interestingly there is an insigni"cant numerical dispersion occurring in the DFTD method. The
numerical dispersion can be minimal as for the case shown in Figure 9, or quite signi"cant as for
the case shown in Figure 8.

From Figures 7 and 10 it is clearly visible that some of the di!erences between the ADAA and
DFTD models are due to the incorrect time instances the incident "eld is sampled in the case of
the DFTD model. The &DC' error in the rising and falling edges of the FTD solution gives a clear
indication of this fact. Also, in these cases there are no oscillations around the solutions since the
incident wave does not &see' the cross-sectional dimension of the TL.

4. CORRECTION PROCEDURE FOR THE FTD METHOD

The amount of numerical dispersion generated by use of the DFTD formulation
can be, in certain cases, completely eliminated by time averaging the discretized forcing
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Figure 7. Comparison of the terminal voltages calculated by the two methods for h"03 (end-"re case).
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Comparing (17) and (24) one can easily see that there is no increase in the computational cost of
the time varying terms of the forcing functions, hence the algorithm can be as e$cient as the
original DFTD scheme. On the other hand, in some cases the form of the "eld may not be known
via an analytic formula, that is it may be calculated using its own time-stepping procedure, and
then the use of this new improved version of the DFTD scheme would require more storage since
the "eld is needed a full time step ahead and behind the current update time.
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Figure 8. Comparison of the terminal voltages calculated by the two methods for h"203.

Figure 9. Comparison of the terminal voltages calculated by the two methods for h"703.
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Figure 10. Comparison of the terminal voltages calculated by the two methods for h"903 (side-"re case).

Figure 11. The error in the solution of the DFTD model with averaged source terms.
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The improvement in the simulation results is displayed in Figure 11. Since the result is
presented for one of the worst cases (h"203), compared to Figure 8, the indicated improvement is
quite signi"cant. For other angles of incidence the improvement is at least as good as for h"203.

Although the high-frequency oscillations are damped, the previously mentioned &DC' error
persists, which was expected, since the averaging by itself does not solve the problem of
appropriate "eld sampling in the source terms.

5. CONCLUSIONS

Two models of external "eld coupling to MTLs have been compared. It has been shown that the
mathematical approximations of the "eld coupling phenomena in case of the FTD model lead to
un-predicted numerical error. Simulation results have been compared to the predictions of the
computationally less e$cient but more accurate AA model. It has been shown that time
averaging of the forcing terms in the FTD model reduces signi"cantly the numerical errors at no
extra computational cost.
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