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On the Statistics of a Sum of Harmonic Waveforms It follows from the Large Number Theorem that, if all the magnitudes
o ) _ have the same distribution and their number approaches infinity, then
Serguei Primak, Joe LoVetri, and Jasmin Roy the distribution ofE(t) approaches a Gaussian. We adopt the same

model here and show how the pdf of the intensity is related to the pdf
of the magnitude of the individual components. A number of practically

Abstract—n this paper, we address certain aspects of the problem of sta- important examples are considered.

tistically characterizing the electromagnetic field inside an enclosure. The
field that we are interested in describing is time-harmonic and a three-di-

mensional spatial vector; therefore, two random variables are required for 1I. BLANC—LAPIERRE TRANSFORMATION AND ITS EXTENSION

each vector component at each location in the enclosure. We could describe TO THE CASE OF MORE THAN ONE SUMMAND

either the magnitude (or intensity) and phase, or the real (in-phase) and

imaginary (quadrature) parts, of each spatial component. Itis the relation- Let us consider the following pair of random processes (in-phase and

ship between the_se two_modgs (_)f d(_escription thatis addres_sed in this paper. quadrature components):

We show that this relationship is given by the Blanc—Lapierre transform

and when there is a sum of more than one time-harmonic field, by equa- Er(t) = A(t) cos[wot + ¢(t)] = A(t) cos ¥(¢)

tions first derived by Kluyver. The relationships are derived for any form iy s o .

of distribution taken on by any of the random variable. We also address is- E1(t) = A() sinfwot + o(1)] = A(#) sin W(#) @)

S;Jehs relatel_d tg thffl apPIFOXimation 0f_thfe_ Fl)éobabi"tykdensny Ll;n}:tii?n_(pdf) where A(#) is a slowly varying random function with respect to

of the amplitude of an electromagnetic field given a known pdf of the inten- | R . : .

sity of this field. The work presented herein fills in some of the gaps which cos(wot) and¢(?) is a slowly varylng random function with re_spect

were left in some recent literature wherein the independence of the vari- {0 wot. The random procgs&(t) 1S called the envelope (magnitude)

ables to each other was assumed, that is, the independence of the in-phas@®f £ (¢) and can be described by its pdf(a). The total phaseJ (¢),

to the quadrature variables. can be described by its pgf; (). These can also be described by the
joint pdf pa w(a, ¢). The procesgr(#) can be described by its pdf

|. INTRODUCTION peg(2). It can be shown (see [15] for a detailed derivation) that

In a number of publications, an attempt has been made to statisti- peg () = 1 / O¢ () exp|—jru] du
cally characterize the electromagnetic field inside a leaky enclosure 2m —oo
[1]-[10]. Experimentally, the distribution of the intensity of the field _1 /°° /m To(uaypa(a)exp[—jou] dadu  (3)
can be measured directly and a few statistical models have been sug- 2 J_oo Jo ‘
gested. However, in numerical simulations, the probability distributicand
of the amplitude of the field is required. To the best of our knowl-  pa(e) _ [~ . (o),
: . . = Jo(ua)O¢, (u)u du
edge, the papers addressing this issue start from the assumption thatthe « 0

in-phase and quadrature components are independent; however, this is i [ . .

true only in the particular case of a Gaussian distribution for the am- = /0 uJo(ua) /_oopr(‘l’) expljzu] de du. “)
plitude of the field (or, equivalently, g* distribution of the intensity). Here

In this paper, we provide the proper relation between the distributions -

of the in-phase and quadrature components and the distributions of the O p(u) = / peg(@) expljru] de (®)
magnitude and intensity of the field. While an exact integral equation —oo

is given, a few approximations can be useful when the integrals canpso%
be calculated analytically. We provide two kinds of approximation: o . . O
allows us to calculate the moments of the unknown distribution throuré%]edFourler transform of its pdf [11]. The transform-pair given by (3)

R (4) is known as the Blanc—Lapierre transform [15]. It is worth
those of known distributions, and the second represents the unknor%rging that, unlike what was done in [1]-{8], (3) and (4) are derived

probability density function (pdf) in the form of a generalized Fourieﬁere without the assumption that the in-phasét) and quadrature

series (i.e., Gram—Charlier expansions). L . . .
o - . ¢ (t) components are statistically independent. Despite the difference
A traditional approach to statistically modeling the electromagne - .
the equations, both methods produce the same result in the case of

N . .
f|e!d |n5|de.a cqmplex enclos'u_re IS to assume that, at any partlcuEltéussian random process(t). However, they differ in all other cases.
point, the field is a superposition of a large number of independen

. . - It also follows from the derivation of (4) that the joint distribution
harmonic oscillators. These can be thought of as arising from the ex- . o
(z1, =) of in-phase and quadrature components is given by

cited modes (i.e., eigenfunctions) of the enclosure [1], [2] or from& 7 &1

he characteristic function of the random procgs&), defined as

ray theory approach, as the multiple reflections of rays from the walls 1 pala) 1 Pa (\/;L»f + a2 )
of the enclosure. Thus, we assume that at any particular location in-  Pegr, ¢, (21, 22) = 5% a0 on ﬁ (6)
side the enclosure each component of electric (or magnetic) field can Tit

In the case of a Rayleigh distribution for the magnitude (or, equiv-
alently, x* distribution for the intensity)pe . ¢, (z1, 22) is just a
N i product of two Gaussian distributions, i.e., the in-phase and quadrature
E(t) = exp(wot) Z Anem (1) components are independent. However, this is not the case in general.
n=l Furthermore, it is shown in [15] that the Gaussian case is the only one
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the difference does appear in the high-order moments and may not bl practice, it is the value of magnitude squargds A?, which is

important for the specific case considered by those authors. available for measurements. In this case, the pdf of the intefisiain
The Blanc—Lapierre transform can be extended to the case of a soeneasily found to be

of N complex processes. Indeed, let a random complex prafess

be a sum ofN independent stationary random proces8gsn = pa (\/; )
1,2,..., N (i) = ——~
1 T( ) 2\/7-
N N N oo N o
Z=X+jY = Z Zn = Z Xn+yJ Z Y. (7) \/1_/ Jo (uﬂ) |:H/ Jo(uan)pa, (a,)da, |udu
n=1 n=1 n=1 _ 0 n=1"0
. B Wi
whereX,, = Re(Z,),Y, = In(Z,). Let us assume that we know the - ~
joint pdfpx,, vy (#n, ys) for each individualZ,, . This can be recast _ l/ To (u\/g) H (Jo(uan))u du. (14)
in terms of a joint pdf of the magnitudé,, and the phas#&,, as 2 Jo feglier}
Zn = A, exp(j¥.,), The last equation was originally derived in [16].
A, =+/X2+7Y2,
- Ill. RELATIONS BETWEEN MOMENTS OFp A, (@ ) AND p1(#)
¥, =atan 8)
“An ) Equation (14) can rarely be used to produce analytical results. How-
Pa, w,,(an, on) =anpx,,, vy (@n €osQn, an sinop) ever, a useful relation between the moments of the sum and those of
_ L pa,(an). (9) its components can be_ an_alytically obtained. We start by_ relating the
27 momentsn 7, of a distribution to the Laplace transform of its pdf
The proces¥ itself can also be described by the joint pdf of its real and oo
imaginary parp (z, y) or, equivalently, by its characteristic function B(N) = / e Mpi(i)di
0
o0 o0 oo 00 _ Nk
Oy (u, v) :/ / pz(x, y)explj(uxr + vy)|dady.  (10) _ / Z ( 2\’7/) p1(i) di
—o0 J —o0 0 =0 v,
SinceZ is a sum ofV independent random variables its characteristic = (=N ) di
function is a product of the characteristic functions of each single sum- - kzo k! 0 Fpiti)di
mand? [11] i.e., -~ R
= Z (_k') M. (15)

B
I
S

N
Ox(u)= ] ©x,(v)
" Another Taylor-type expansion fak(\) can be obtained directly

=1
N . . .
- 11 / To(uan)pa, (an) dan from (14), first noting that
n=1 70 oo
N B(N) :/ e Npr(i)di
= 1] (Jo(uan)) (12) 0
n=1 geel OO N
—Xil T .
= e = Jo u,\/; (Jo(uay,)yududi
where /0 ’ /0 ( ) E
" O oo N ge's]
Ox, (u) :/ Jo(uan)pa, (a,)da, 12) I/ H (Jg(uan))u,d'ué/ e Mo (uﬁ) di
0 0 n=1 0
roo N
is the characteristic function of theh component of the sum (1) and _ 1 / H (Jo(uan))udu 1 exp <_ﬁ) . (16)
the expectation(e) pertains to the random variablé. In turn, ac- 2 Jo g " A 4
cording to the Blanc—Lapierre transformation (#),(a) can be ex-
pressed in terms d x (u) as Furthermore, using the following substitution of variables in (16)
o0 2
pala) :a/ Jo(ua)O x (u)udu =4 — /A _. dx
A ©= 0 4 e, du A NG a7)
O N
:d/ To(ua) T] (Jo(uan)yudu so that (16) becomes
0 n=1
v N 0 1 [ N
:a/ Jo(ua) |:H / Jo(uan)pa, (an)day, |udu. B(N) = —/ H <J0 (\/ 4/\wan>>exp(—$) dx (18)
0 n=1 70 2 0 p=1
13)

and expandingdo (vV4Aza, ) into the Taylor series with respect to vari-
This equation relates the distribution of the magnitude of the sugble\, one can obtain using [12, eq. 9.1.10],

through distributions of the magnitude of each individual component.

2This is equivalent to the fact that PDF &f is the convolution of PDF of B(N\) = Z (=)™ e AN m! (19)
eachX,, [11].

m=0
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where

DI SRS S

kny=0 ky_1=0 k1=0
k; 2k 5
(X NN (a3 0
Dk tken kxR !
Zn 1kn:m
Comparing this to (15), we see that
my; = klklcs
DD I
kny=0 ky_1=0 k1=0
PYR k; -
(A2 a2 - o™ 21
Ve e 1 eyt Fey !
Zn L Fn=k

andl/j3 is a mean value df. In this case, (23) becomes

00

exp[—jxu] du /

0

1 [ -
Peg(x) = ﬂ/ Jo (u,\/;) ¥

- exp[— 3] Z arLy(Bi)di

k=0

- Zi i / exp[—jzu] du
/ o (u\ﬁ) Ly (i) exp[—pi] di
0
= 2/i Z O /oo Fk(u) exp[—jwu] du

where

Fio(u) = /OO Jo (mﬁ) L (Bi) exp|— 3] di.
0

which allows us to express the moments of the intensity of the sudsing [14, p. 847, integral 7.421.2] one can obtain

through the moments of the magnitude of individual components.

IV. GRAM—CHARLIER SERIES FORpg . () AND pr(i)

As has been mentioned above, it is the distribution of the intens

pr(i) which is usually available for measurements. At the same time,

it is important for numerical simulations of the coupling field to know
and reproduce the statistic of the amplityde, (). The exact analyt-
ical form, given by (3)—(6), is rarely achievable (however, a number
of results can be found in [15]). Important relations like (21) give us
insight into how the distribution behaves but does not really allow its
numerical simulation. In this section, we derive some results allowing
the reconstruction of the pd ., () from the pdf of the intensity;(i).

As the first step, let us rewrite the Blanc—Lapierre transformation (3)
in terms ofp, (¢), using the fact that

Frp(u) =

e () e (-4
rpe \2/) P\ )

%pwriting (26) by taking into account (28), one can obtain

oo

J5] o
Zak/ I (u) exp[—jau] du

2k
QWZ / Avmkﬂ _)

- exp < 1 ) exp[—jru] du

VB o= ap [
=k
k=0

—oc

- exp(— t)exp[ (ﬁz)]dt
k=0

PéR(

:

fzk

™

where we use the notation

pr(i) = # = pa (ﬁ) =2Vipi(i) (22)
and thus
pep(a) = / / Jo(ua)pa(a)daexp[—jzu] du
s L ) ()
exp[ Jjau] du dvi
— [ [ n(A)2in )
(\Xp[—,) xu] du ‘
= % /:1 cxp[—.imr]du/ooo Jo (uﬂ) pr(i)di. (23)

oo )

Gr(x) = exp[—pa® 1%k —(t+j/Ba) | dt
Now let the pdfp; (i) be represented by its expansion through the wl@) = exp[=fa ]/ﬂo exP { ( +J\/3L) } ‘
Laguerre polynomiald . (3¢), i.e :Z’Zk(—l)kexp[—ﬂﬁ]\/FHgk (ﬁm)
pi(i) = Bexp[-3i] Y arLi(3i) (24) andthus
k=0
peg(x) = \/_Z ok T (@)
where
(o0 Vi . 2 —1)k‘lkv 3 .
a, :/0 pi(i) Li(Bi) di (25) =z el ]Z WH% (ﬁl)

Gr(z)

/ +2F exp(—t?) exp [—) (2 5] T) f] dt
exp[—,@wz]/ g2

2" exp[—(z — §)*]de = (2j) 7" V7 Hu(j5)

/.

one can obtain

exp {— (t +j\/B;z:)2} dt

Comparing the standard integral 3.462-4 in [14, p. 338]
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@7

(28)

(29)

. (30)

(€1Y)

(32

(33)
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HereH,, (x) is the Hermitian polynomial of order [12]. The last ex- ] , __ Aoproximalion of Gammapdl ,
pression should not come as a surprise to ys: (if) is an exponential \ : — .
d|str|but|0n (XQ Of two degrees Of freedom), ’[he"ﬂJ =1 anda,k — 0 0.9_\\ i Y ___ ?)izfm -
for £ > 0. This reduces (33) to the Gaussian pdf as it must. At tr | == 3terms
same time, (33) is nothing but the Gram—Charlier expansion of the °-°"\‘ S S ’ 4 terms | 7

pex(«). The odd order terms are missing due to the factipate)is | % . T
a symmetrical pdf. TN 5 : ' 3

Although analytical expressions have been provided herein f ggh. . '..oiii i b i
some relatively complicated probability distributions, the detaile \ : :
discussion of questions related to numerical generation Of SU BOSF i ERRRTR
non-Gaussian random processes is out of the scope of this pa . '
Gaussian-correlated random processes can be generated relat
easily by the linear filtering of white Gaussian noise (WGN) [18]-[23]
This approach has been used in [3]-[9] to couple Gaussian correla
random electromagnetic fields, which were postulated as a go
model for the fields existing in complex enclosures, to transmissic
lines. In [6], the authors introduce a complex approximate procedt
in order to simulate the more demanding Lehman distribution. -

In contrast to these efforts, some recently suggested techniq % 1 2 3 4 5
[24]-[26] allow us to obtain a random process with any probability
density function and exponential correlation. This can be achieved gy, 1. approximation of the Gamma distribution by its Gram—Charlier series.
nonlinear filtering of WNG. A useful algorithm based on the Markowrhe approximation using four terms (dotted line) almost completely coincides
chain approximation of continuous random processes can be foundavith the exact pdf (solid line).
[27]. It is worthwhile to note here that, using the approach suggested
in [27], one can generate a random envelope (magnitddg) of the
random electromagnetic field as well as its uniformly distributed (anfi
correlated) phase(t). The field E(¢) can then be obtained as :

oF

7

Thus, the distribution of instantaneous values corresponding to the
distribution of the magnitude is again expressed in terms of the mod-
ified Bessel functioni’.

E(t) = A(t) exp(i6(1))- (34) B, Gamma Distribution
Letting the pdf of the intensity be the Gamma distribution
V. EXAMPLES ) G exp(—31)
o pu(iy = e P) (39)
A. K Distribution Fla+1)
The R distribution the coefficientsy;, of the expansion (24) can be found as
pata) = 2 ("N K, e, ws0, 230 (35) = [ i) Le(Bi)di
IA,,—I_(V) 5 v—1(ba), , x2 ak—o pi(v) i) da
o0 pa+l o _ A A
which describes the distribution of the envelapét) is a rare case = / M Li(pi)di = P (40)
when the Blanc—Lapierre transformation can be calculated analytically. 0 (a+1) T(~a)
The corresponding distribution of the intensity is given by Substituting (40) into (33) results in the following expression for the
et pdf of the amplitude of the distribution:
(i) = <b ﬁ) K (b \/?) (36)
prit) = - p N y—1 L) . 7 )
2D \ 2 Pel) = % exp[— 7]

Let us first find the characteristic function of the pdf (35) using the (—1)¢ T(k
- v —

Bessel transform [15 . —7) . Bz ).
[13] £ 2R RIT(—a) o (‘/?J> (“1)

Oenls) = /0 pa(a)Jo(sa)da A few examples showing the accuracy of the approximation of the
prHL ) ) ’ Gamma pdf can be found in Fig. 1. Since the coefficients of the expan-
= 5% 1T(0) / A"K,_1(ba)Jo(sa)da sion (41) decay as fast as., one can expect that the approximation
52 0 (41) converges as fast to the exact pgf (+) as the corresponding ap-
= W (37) proximation ofp;(I) converges to the exact Gamma pdf.
s v
The pdfpe . () itself can be found by using an inverse Fourier trand=- -0g-Normal Distribution
form of its characteristic function (37) [11] The log-normal distribution is also frequently used in modeling
1 e random electromagnetic fields [7], [8]. In this case, we have
Peg() = . /_Oo be,.(s5) exp(—isx)ds ' 1 (Ini — a)?
pili) = ——= exp |- (42)
_b exp(—isx) s Lo vem
Tom Jo o (s24b2) with the moments, given by
g—v+1/2p Cise 2 52
=T/ (bla])” 2K, _y o (b)) (38) MLp = exp <a,n + 2" ) . (43)
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Log~nonmai POF approximation
0.7 T T T T T T T T T

exact

1 term
5terms
10 terms
20 terms

(1]

(2]

(3]
(4]
(5]

(6]
(71

(8l
It is impossible to obtain an expression similar to (40) in this case.
However, the fact that the moments of this distribution are analytically [9]
known can be used as follows.

Let us rewriteL (37) as a power series of}()

Fig. 2. Approximation of log-normal PDF by its Gram—Charlier series.

(20]
k

() =" al (i)

=0

“y

(&) can be recursively calculated using [12, p. [12]

(13]

where the coefficients;
775, eq. 22.3.9]

(k) k 1 k! 1
o = (=1 (k l)l'_( T
[15]

Plugging (44) into (25), one can obtain a recursive algorithm for the

(45) [24]

calculation of coefficients in expansion (33) as [16]
oo k k [17]
ap = / pr(i) <Z agk)(ﬁi)l> dI = Z agk)ﬂlml
0 =0 =0
k 2 2 (18]
_ (k) gt o
= a;’ 3" exp <al + —) . 46
> al 5 “o
Substituting (46) into (33) thus leads to the final expressiopfqi(«)
in the form [20]
. VB — 1 :
pen(e) = % xpl=a"1 3 g o (V57
(=Dt [21]

k 120_2
Z A" exp <al + T) . 47
=0
A few examples showing the accuracy of the approximation of the log*
normal PDF can be found in Fig. 2.

(k— D
[22]

VI. CONCLUSION [23]

In this paper, we have derived relations between the distributions of
the amplitudet r (), magnitudeA () and intensityZ(¢) of a random  [24]
electromagnetic field. We have also provided a detailed derivation of
the relations between the moments of the intensity of an electric flel(,il2
which is made up of a sum of many harmonic components, and the
moments of the magnitude of the individual plane-wave components
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themselves. Convenient expansions have also been derived which allow
us to calculate the distribution of the amplitude of the electromagnetic
field from the distribution of its intensity in the case when the integrals
in Blank—Lapierre transformation cannot be analytically calculated.
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