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On the Statistics of a Sum of Harmonic Waveforms

Serguei Primak, Joe LoVetri, and Jasmin Roy

Abstract—In this paper, we address certain aspects of the problem of sta-
tistically characterizing the electromagnetic field inside an enclosure. The
field that we are interested in describing is time-harmonic and a three-di-
mensional spatial vector; therefore, two random variables are required for
each vector component at each location in the enclosure. We could describe
either the magnitude (or intensity) and phase, or the real (in-phase) and
imaginary (quadrature) parts, of each spatial component. It is the relation-
ship between these two modes of description that is addressed in this paper.
We show that this relationship is given by the Blanc–Lapierre transform
and when there is a sum of more than one time-harmonic field, by equa-
tions first derived by Kluyver. The relationships are derived for any form
of distribution taken on by any of the random variable. We also address is-
sues related to the approximation of the probability density function (pdf)
of the amplitude of an electromagnetic field given a known pdf of the inten-
sity of this field. The work presented herein fills in some of the gaps which
were left in some recent literature wherein the independence of the vari-
ables to each other was assumed, that is, the independence of the in-phase
to the quadrature variables.

I. INTRODUCTION

In a number of publications, an attempt has been made to statisti-
cally characterize the electromagnetic field inside a leaky enclosure
[1]–[10]. Experimentally, the distribution of the intensity of the field
can be measured directly and a few statistical models have been sug-
gested. However, in numerical simulations, the probability distribution
of the amplitude of the field is required. To the best of our knowl-
edge, the papers addressing this issue start from the assumption that the
in-phase and quadrature components are independent; however, this is
true only in the particular case of a Gaussian distribution for the am-
plitude of the field (or, equivalently, a�2 distribution of the intensity).
In this paper, we provide the proper relation between the distributions
of the in-phase and quadrature components and the distributions of the
magnitude and intensity of the field. While an exact integral equation
is given, a few approximations can be useful when the integrals cannot
be calculated analytically. We provide two kinds of approximation: one
allows us to calculate the moments of the unknown distribution through
those of known distributions, and the second represents the unknown
probability density function (pdf) in the form of a generalized Fourier
series (i.e., Gram–Charlier expansions).

A traditional approach to statistically modeling the electromagnetic
field inside a complex enclosure is to assume that, at any particular
point, the field is a superposition of a large number of independent
harmonic oscillators. These can be thought of as arising from the ex-
cited modes (i.e., eigenfunctions) of the enclosure [1], [2] or from a
ray theory approach, as the multiple reflections of rays from the walls
of the enclosure. Thus, we assume that at any particular location in-
side the enclosure each component of electric (or magnetic) field can
be represented as

E(t) = exp(!0t)

N

n=1

ane
j'

: (1)
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It follows from the Large Number Theorem that, if all the magnitudes
have the same distribution and their number approaches infinity, then
the distribution ofE(t) approaches a Gaussian. We adopt the same
model here and show how the pdf of the intensity is related to the pdf
of the magnitude of the individual components. A number of practically
important examples are considered.

II. BLANC–LAPIERRETRANSFORMATION AND ITS EXTENSION

TO THE CASE OFMORE THAN ONE SUMMAND

Let us consider the following pair of random processes (in-phase and
quadrature components):

�R(t) =A(t) cos[!0t+ �(t)] = A(t) cos	(t)

�I(t) =A(t) sin[!0t+ �(t)] = A(t) sin	(t) (2)

whereA(t) is a slowly varying random function with respect to
cos(!0t) and�(t) is a slowly varying random function with respect
to !0t. The random processA(t) is called the envelope (magnitude)
of �R(t) and can be described by its pdfpA(a). The total phase,	(t),
can be described by its pdfp	( ). These can also be described by the
joint pdf pA;	(a;  ). The process�R(t) can be described by its pdf
p� (x). It can be shown (see [15] for a detailed derivation) that

p� (x) =
1

2�

1

�1

�� (u) exp[�jxu] du

=
1

2�

1

�1

1

0

J0(ua)pA(a) exp[�jxu] da du (3)

and
pA(a)

a
=

1

0

J0(ua)�� (u)udu

=
1

0

uJ0(ua)
1

�1

p� (x) exp[jxu] dx du: (4)

Here

�� (u) =
1

�1

p� (x) exp[jxu] dx (5)

is the characteristic function of the random process�R(t), defined as
the Fourier transform of its pdf [11]. The transform-pair given by (3)
and (4) is known as the Blanc–Lapierre transform [15]. It is worth
noting that, unlike what was done in [1]–[8], (3) and (4) are derived
here without the assumption that the in-phase�R(t) and quadrature
�I(t) components are statistically independent. Despite the difference
in the equations, both methods produce the same result in the case of
Gaussian random process�R(t). However, they differ in all other cases.

It also follows from the derivation of (4) that the joint distribution
p� ; � (x1; x2) of in-phase and quadrature components is given by

p� ; � (x1; x2) =
1

2�

pA(a)

a
=

1

2�

pA x2
1
+ x2

2

x2
1
+ x2

2

: (6)

In the case of a Rayleigh distribution for the magnitude (or, equiv-
alently, �2 distribution for the intensity),p� ; � (x1; x2) is just a
product of two Gaussian distributions, i.e., the in-phase and quadrature
components are independent. However, this is not the case in general.
Furthermore, it is shown in [15] that the Gaussian case is the only one
where the components are, in fact, independent. It is interesting that
the authors of [3]–[6] obtain results, which are apparently in good
agreement with experiment, assuming the independence of the compo-
nents. In our opinion, this may be explained by the fact that, although
they may indeed be dependent, the components are uncorrelated1 —a
condition which is somewhat weaker than independence. However,

1This follows from the even symmetry of the joint pdf (6).
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the difference does appear in the high-order moments and may not be
important for the specific case considered by those authors.

The Blanc–Lapierre transform can be extended to the case of a sum
of N complex processes. Indeed, let a random complex processZ

be a sum ofN independent stationary random processesZn, n =
1; 2; . . . ; N

Z = X + jY =

N

n=1

Zn =

N

n=1

Xn + j

N

n=1

Yn (7)

whereXn = Re(Zn),Yn = Im(Zn). Let us assume that we know the
joint pdf pX ;Y (xn; yn) for each individualZn. This can be recast
in terms of a joint pdf of the magnitudeAn and the phase	n as

Zn =An exp(j	n);

An = X2
n + Y 2

n ;

	n =atan
Yn

Xn

(8)

PA ;	 (an; 'n) = anpX ;Y (an cos'n; an sin'n)

=
1

2�
pA (an): (9)

The processZ itself can also be described by the joint pdf of its real and
imaginary partpZ(x; y) or, equivalently, by its characteristic function

�Z(u; �) =
1

�1

1

�1

pZ(x; y) exp[j(ux+ �y)] dx dy: (10)

SinceZ is a sum ofN independent random variables its characteristic
function is a product of the characteristic functions of each single sum-
mand,2 [11] i.e.,

�X(u) =

N

n=1

�X (u)

=

N

n=1

1

0

J0(uan)pA (an)dan

=

N

n=1

hJ0(uan)i (11)

where

�X (u) =
1

0

J0(uan)pA (an)dan (12)

is the characteristic function of thenth component of the sum (1) and
the expectationh�i pertains to the random variableA. In turn, ac-
cording to the Blanc–Lapierre transformation (4),pA(a) can be ex-
pressed in terms of�X(u) as

pA(a) = a
1

0

J0(ua)�X(u)udu

= a
1

0

J0(ua)

N

n=1

hJ0(uan)iudu

= a
1

0

J0(ua)

N

n=1

1

0

J0(uan)pA (an)dan udu:

(13)

This equation relates the distribution of the magnitude of the sum
through distributions of the magnitude of each individual component.

2This is equivalent to the fact that PDF ofX is the convolution of PDF of
eachX [11].

In practice, it is the value of magnitude squared,I = A2, which is
available for measurements. In this case, the pdf of the intensityI can
be easily found to be

pI(i) =
pA

p
i

2
p
i

=

p
i
1

0

J0 u
p
i

N

n=1

1

0

J0(uan)pA (an)dan udu

2
p
i

=
1

2

1

0

J0 u
p
i

N

n=1

hJ0(uan)iudu: (14)

The last equation was originally derived in [16].

III. RELATIONS BETWEENMOMENTS OFpA (an) AND pI(i)

Equation (14) can rarely be used to produce analytical results. How-
ever, a useful relation between the moments of the sum and those of
its components can be analytically obtained. We start by relating the
momentsmIk of a distribution to the Laplace transform of its pdf

�(�) =
1

0

e
��i

pI(i)di

=
1

0

1

k=0

(��i)k
k!

pI(i)di

=

1

k=0

(��)k
k!

1

0

i
k
pI(i)di

=

1

k=0

(��)k
k!

mIk: (15)

Another Taylor-type expansion for�(�) can be obtained directly
from (14), first noting that

�(�) =
1

0

e
��i

pI(i)di

=
1

0

e
��i 1

2

1

0

J0 u
p
i

N

n=1

hJ0(uan)iududi

=
1

0

N

n=1

hJ0(uan)iudu 12
1

0

e
��i

J0 u
p
i di

=
1

2

1

0

N

n=1

hJ0(uan)iudu 1

�
exp �u2

4�
: (16)

Furthermore, using the following substitution of variables in (16)

x =
u2

4�
; u =

p
4�x; du =

p
�

dxp
x

(17)

so that (16) becomes

�(�) =
1

2

1

0

N

n=1

J0
p
4�xan exp(�x)dx (18)

and expandingJ0(
p
4�xan) into the Taylor series with respect to vari-

able�, one can obtain using [12, eq. 9.1.10],

�(�) =

1

m=0

(�1)mcm�mm! (19)
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where

cm =

1

k =0

1

k =0

� � �

1

k =0

�

ha2kN�1iha
2k

N�1 i � � � ha2k1 i
kN !kN !kN�1!kN�1! � � � k1!k1!

k =m

: (20)

Comparing this to (15), we see that

mkI = k!k!ck

= k!k!

1

k =0

1

k =0

� � �
1

k =0

� ha2kN�1iha
2k

N�1 i � � � ha2k1 i
kN !kN !kN�1!kN�1! � � � k1!k1!

k =k

(21)

which allows us to express the moments of the intensity of the sum
through the moments of the magnitude of individual components.

IV. GRAM–CHARLIER SERIES FORp� (x) AND pI(i)

As has been mentioned above, it is the distribution of the intensity
pI(i) which is usually available for measurements. At the same time,
it is important for numerical simulations of the coupling field to know
and reproduce the statistic of the amplitudep� (x). The exact analyt-
ical form, given by (3)–(6), is rarely achievable (however, a number
of results can be found in [15]). Important relations like (21) give us
insight into how the distribution behaves but does not really allow its
numerical simulation. In this section, we derive some results allowing
the reconstruction of the pdfp� (x) from the pdf of the intensitypI(i).

As the first step, let us rewrite the Blanc–Lapierre transformation (3)
in terms ofpI(i), using the fact that

pI(i) =
pA

p
i

2
p
i

) pA
p
i = 2

p
i pI(i) (22)

and thus

p� (x) =
1

2�

1

�1

1

0

J0(ua)pA(a)da exp[�jxu] du

=
1

2�

1

�1

1

0

J0 u
p
i pA

p
i

� exp[�jxu] dud
p
i

=
1

2�

1

�1

1

0

J0 u
p
i 2

p
i pI(i)

di

2
p
i

� exp[�jxu] du
=

1

2�

1

�1

exp[�jxu] du
1

0

J0 u
p
i pI(i)di: (23)

Now let the pdfpI(i) be represented by its expansion through the
Laguerre polynomialsLk(�i), i.e.,

pI(i) = � exp[��i]
1

k=0

�kLk(�i) (24)

where

�k =
1

0

pI(i)Lk(�i)di (25)

and1=� is a mean value ofI . In this case, (23) becomes

p� (x) =
1

2�

1

�1

exp[�jxu] du
1

0

J0 u
p
i �

� exp[��i]
1

k=0

�kLk(�i)di

=
�

2�

1

k=0

�k
1

�1

exp[�jxu] du

�
1

0

J0 u
p
i Lk(�i) exp[��i] di

=
�

2�

1

k=0

�k
1

�1

Fk(u) exp[�jxu] du (26)

where

Fk(u) =
1

0

J0 u
p
i Lk(�i) exp[��i] di: (27)

Using [14, p. 847, integral 7.421.2] one can obtain

Fk(u) =
1

k!�k+1
u

2

2k

exp � u2

4�
: (28)

Rewriting (26) by taking into account (28), one can obtain

p� (x) =
�

2�

1

k=0

�k
1

�1

Fk(u) exp[�jxu] du

=
�

2�

1

k=0

�k
1

�1

1

k!�k+1
u

2

2k

� exp �u2

4�
exp[�jxu] du

=

p
�

�

1

k=0

�k
k!

1

�1

t2k

� exp(�t2) exp �j 2 � x t dt

=

p
�

�

1

k=0

�k
k!

Gk(x) (29)

where we use the notation

Gk(x) =
1

�1

t2k exp(�t2) exp �j 2 � x t dt

= exp[��x2]
1

�1

t2k exp � t+ j � x
2

dt: (30)

Comparing the standard integral 3.462-4 in [14, p. 338]

1

�1

xn exp[�(x� �)2] dx = (2j)�n
p
�Hn(j�) (31)

one can obtain

Gk(x) = exp[��x2]
1

�1

t2k exp � t+ j � x
2

dt

=2�2k(�1)k exp[��x2]p�H2k � x (32)

and thus

p� (x) =

p
�

�

1

k=0

�k
k!

Gk(x)

=

p
�p
�
exp[��x2]

1

k=0

(�1)k�k
22kk!

H2k � x : (33)
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HereHn(x) is the Hermitian polynomial of ordern [12]. The last ex-
pression should not come as a surprise to us. IfpI(i) is an exponential
distribution (�2 of two degrees of freedom), then�0 = 1 and�k = 0
for k > 0. This reduces (33) to the Gaussian pdf as it must. At the
same time, (33) is nothing but the Gram–Charlier expansion of the pdf
p� (x). The odd order terms are missing due to the fact thatp� (x) is
a symmetrical pdf.

Although analytical expressions have been provided herein for
some relatively complicated probability distributions, the detailed
discussion of questions related to numerical generation of such
non-Gaussian random processes is out of the scope of this paper.
Gaussian-correlated random processes can be generated relatively
easily by the linear filtering of white Gaussian noise (WGN) [18]–[23].
This approach has been used in [3]–[9] to couple Gaussian correlated
random electromagnetic fields, which were postulated as a good
model for the fields existing in complex enclosures, to transmission
lines. In [6], the authors introduce a complex approximate procedure
in order to simulate the more demanding Lehman distribution.

In contrast to these efforts, some recently suggested techniques
[24]–[26] allow us to obtain a random process with any probability
density function and exponential correlation. This can be achieved by
nonlinear filtering of WNG. A useful algorithm based on the Markov
chain approximation of continuous random processes can be found in
[27]. It is worthwhile to note here that, using the approach suggested
in [27], one can generate a random envelope (magnitude)A(t) of the
random electromagnetic field as well as its uniformly distributed (and
correlated) phase�(t). The fieldE(t) can then be obtained as

E(t) = A(t) exp(j�(t)): (34)

V. EXAMPLES

A. K Distribution

TheK distribution

pA(a) =
2b

�(�)

ba

2

�

K��1(ba); � > 0; x � 0 (35)

which describes the distribution of the envelopeA(t) is a rare case
when the Blanc–Lapierre transformation can be calculated analytically.
The corresponding distribution of the intensity is given by

pI(i) =
b2

2�(�)

b
p
i

2

��1

K��1 b
p
i : (36)

Let us first find the characteristic function of the pdf (35) using the
Bessel transform [15]

�� (s) =
1

0

pA(a)J0(sa)da

=
b�+1

2��1�(�)

1

0

A
�
K��1(ba)J0(sa)da

=
b2�

(s2 + b2)�
: (37)

The pdfp� (x) itself can be found by using an inverse Fourier trans-
form of its characteristic function (37) [11]

p� (x) =
1

2�

1

�1

�� (s) exp(�isx)ds

=
b�

2�

1

�1

exp(�isx)
(s2 + b2)�

ds

=
2��+1=2b

�(�)
p
�

(bjxj)��1=2K��1=2(bjxj): (38)

Fig. 1. Approximation of the Gamma distribution by its Gram–Charlier series.
The approximation using four terms (dotted line) almost completely coincides
with the exact pdf (solid line).

Thus, the distribution of instantaneous values corresponding to the
K distribution of the magnitude is again expressed in terms of the mod-
ified Bessel functionK.

B. Gamma Distribution

Letting the pdf of the intensity be the Gamma distribution

pI(i) =
��+1i� exp(��i)

�(�+ 1)
(39)

the coefficients�k of the expansion (24) can be found as

�k =
1

0

pI(i)Lk(�i)di

=
1

0

��+1i� exp(��i)
�(�+ 1)

Lk(�i)di =
�(k� �)

k!�(��) : (40)

Substituting (40) into (33) results in the following expression for the
pdf of the amplitude of the distribution:

P� (x) =

p
�p
�

exp[��x2]

�
1

k=0

(�1)k

22kk!

�(k� �)

k!�(��) H2k �x : (41)

A few examples showing the accuracy of the approximation of the
Gamma pdf can be found in Fig. 1. Since the coefficients of the expan-
sion (41) decay as fast as�k , one can expect that the approximation
(41) converges as fast to the exact pdfp� (x) as the corresponding ap-
proximation ofpi(I) converges to the exact Gamma pdf.

C. Log-Normal Distribution

The log-normal distribution is also frequently used in modeling
random electromagnetic fields [7], [8]. In this case, we have

pI(i) =
1

i�
p
2�

exp � (ln i� �)2

2�2
(42)

with the moments, given by

mLn = exp an+
n2�2

2
: (43)
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Fig. 2. Approximation of log-normal PDF by its Gram–Charlier series.

It is impossible to obtain an expression similar to (40) in this case.
However, the fact that the moments of this distribution are analytically
known can be used as follows.

Let us rewriteLk(�i) as a power series of (�i)

Lk(�i) =

k

l=0

a
(k)
l (�i)l (44)

where the coefficientsa(k)l can be recursively calculated using [12, p.
775, eq. 22.3.9]

�
(k)
l = (�1)l

k

k � l

1

l!
= (�1)l

k!

(k � l)!l!

1

l!
: (45)

Plugging (44) into (25), one can obtain a recursive algorithm for the
calculation of coefficients in expansion (33) as

�k =
1

0

pI(i)

k

l=0

a
(k)
l (�i)l dI =

k

l=0

a
(k)
l �

l
ml

=

k

l=0

a
(k)
l �

l exp al +
l2�2

2
: (46)

Substituting (46) into (33) thus leads to the final expression forp� (x)

in the form

p� (x) =

p
�p
�

exp[��x2]
1

k=0

1

22k
H2k �x

�
k

l=0

(�1)k�l

(k � l)!l!l!
�
l exp al +

l2�2

2
: (47)

A few examples showing the accuracy of the approximation of the log-
normal PDF can be found in Fig. 2.

VI. CONCLUSION

In this paper, we have derived relations between the distributions of
the amplitude�R(t), magnitudeA(t) and intensityI(t) of a random
electromagnetic field. We have also provided a detailed derivation of
the relations between the moments of the intensity of an electric field
which is made up of a sum of many harmonic components, and the
moments of the magnitude of the individual plane-wave components

themselves. Convenient expansions have also been derived which allow
us to calculate the distribution of the amplitude of the electromagnetic
field from the distribution of its intensity in the case when the integrals
in Blank–Lapierre transformation cannot be analytically calculated.
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