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Finite-Difference Analysis of Dispersive
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Abstract—In this paper, a finite-difference time-domain (FDTD)
analysis of the transmission line equations for a general circuit sim-
ulator is presented. A two-port circuit representation is derived
for integrating a dispersive transmission line network within a cir-
cuit/system simulator. The circuit model consists of resistive ele-
ments and dependent current sources, which are updated at every
time step by the FDTD algorithm. The frequency dependence of
the conductors’ parameters is taken care of by a recursive integra-
tion that employs the Vector Fitting algorithm. The application of
this model is presented for several examples, such as nonuniform
transmission lines, plane wave excitation of the line, and determi-
nation of overvoltages induced by a nearby lightning stroke.

Index Terms—Distributed parameter circuits, electromagnetic
coupling, FDTD methods, frequency-dependent parameters, light-
ning, time-frequency analysis, transmission line model.

I. INTRODUCTION

MULTICONDUCTOR transmission lines (MTLs) arise in
applications ranging from very long over-head lines and

cables in power transmission to tiny interconnects in VLSI tech-
nology and electronic chip packaging. Accurate and efficient
simulation is important for all these applications. A fundamental
difficulty encountered in integrating transmission-line simula-
tion into a transient circuit simulator arises because network
nonlinearities and/or time-dependent components require a time
domain analysis, whereas transmission line characteristics such
as conductor loss and dispersion are best described in the fre-
quency domain. The issue of mixed time-frequency modeling
of lossy coupled multiconductor transmission lines has been
studied in both the power systems and the electronics commu-
nities for many years.

Many researchers have studied the problem of simulating
dispersive transmission lines in the time domain. One of the
first models, referred to as the method of characteristics, can
only deal with lossless transmission lines. This simple delay
model was considered by Branin [1]. The issue of modeling
transmission lines with frequency-dependent parameters, which
has emerged as an important topic in the power systems area,
was studied by Budner [2]. He considered a modal analysis
and included the frequency-dependence of the line parameters
using a convolution of the past history of the modal voltages
and weighting functions where the weighting functions are
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the inverse transform of the two-port admittance parameters.
Only symmetric transmission lines were studied, which, how-
ever, result in a frequency-independent transformation matrix.
Because of the high computational cost of evaluating the convo-
lution integrals in Budner’s model, a more efficient model was
proposed by Snelson [3], which is formulated using forward
and backward traveling waves. Improving Budner’s weighting
functions, and modifying the method proposed by Snelson,
Marti developed an equivalent circuit impedance model, which
is an approximation to the frequency-dependent characteristic
impedance of the line [4]. His model employs modal analysis
with a frequency-independent transformation matrix and is
the progenitor of common models employed in power system
simulators (such as PSCAD [5] and EMTP [6]). One of the
disadvantages of this model is its poor accuracy in simulating
low-frequency coupling effects [7]. This deficiency is overcome
by including the frequency variation of the transformation ma-
trix in the simulation [8]. In [8], the same fitting algorithms
as those formulated in [4] were used for underground cables,
where accounting for the frequency dependence is essential. In
general, however, this approach is not guaranteed to be stable
in the case of overhead transmission lines [9]. To avoid the in-
accuracy or instability problems observed in the mode-domain
models, a variety of methods in which the matrix elements of
the propagation function and the characteristic admittance are
directly studied and fitted in the phase domain, have been pro-
posed (see, for example, [10]–[13]). A review of phase domain
models can be found in the work of Gustavsen et al. [7].

Finite-difference time-domain (FDTD) methods are a
common way of approximating the time-domain response of
transmission lines [14], [15]. The MTL equations are dis-
cretized both in time and space and the resulting difference
equations are usually solved using the leap-frog scheme [16].
Basic FDTD approaches have been applied to problems with
frequency-independent per-unit-length parameters. The in-
clusion of terminal constraints [17], lossy conductors [18],
and nonlinear junctions [19] have been addressed. The main
problem with interfacing circuit-simulator nodes to the solution
of the MTL equations is that in the standard leap-frog FDTD
implementation, the discretized line voltages and currents are
not collocated in space and time, whereas the circuit-simulator
nodal voltages and currents are collocated in both space and
time. In [17], a first-order finite-difference approximation for
one of the MTL equations was proposed to relate terminal volt-
ages and currents, and a state-variable formulation was used
to solve the whole MTL network. The skin-effect frequency
dependence of the transmission-line conductors was consid-
ered in [18], where the series transmission line impedance
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was approximated by a rational function. A technique for
incorporating the FDTD formulation in a lumped-element
network simulator using modified nodal analysis (MNA) was
introduced by Mardare and LoVetri [19]. They only considered
frequency-independent lines.

In this paper, we present a novel technique for the inclusion
of an FDTD formulation capable of modeling dispersive fre-
quency-dependent transmission lines within a circuit/system
simulator. In this method, the transmission line is represented
as a two-port stamp, which includes dependent current sources.
The current sources are updated at each time step by the FDTD
algorithm. The two-port stamp contains resistive elements only,
which makes the model independent from the scheme used by
the simulator for approximating derivatives. Using the Vector
Fitting algorithm [20], we have developed an accurate recur-
sive approximation for the convolution integrals needed for
modeling the frequency dependence of the line parameters. In
this paper, we have chosen PSCAD/EMTDC as the simulation
environment, even though the approach is applicable to other
simulators.

Details of the FDTD formulation, which include the fre-
quency-dependence of the MTL equations and the method
of including the terminal constraints, are given. We also give
details of including the coupling of an external field to the
transmission line: specifically, the fields associated with a plane
wave or a lightning discharge. In order to verify the accuracy
of the method we compare results with a frequency-domain so-
lution. We also show the method’s ability to model nonuniform
transmission lines by considering the example of a power trans-
mission line over a terrain with varying electrical parameters.

II. FDTD FORMULATION

FDTD methods are commonly used for numerical solution of
partial differential equations in electromagnetics [21], as well as
MTL equations [16]. The derivatives in the MTL equations can
be discretized and approximated with various finite differences
schemes. We chose an explicit time-space second-order central
finite-difference scheme, similar to that described by Paul [16].
In this section, the discretization of the MTL equations is pre-
sented first, and then the generation of a link between the vari-
ables in the FDTD model of the line and the terminal variables
is presented.

A. FDTD Discretization of MTL Equations

Consider an -conductor uniform transmission line,
as shown in Fig. 1. The general MTL equations in the Laplace
domain are

(1a)

(1b)

where and are -vectors of the line voltage and
current, respectively. Matrices and represent the line
shunt admittance and series impedance matrices, respectively.
The space variable is and is the Laplace variable.

Fig. 1. Geometry of the multiconductor transmission line over a lossy ground.

Assuming the conductors are insulated from the surrounding
medium with a lossy dielectric that is frequency independent,
the shunt admittance can be modeled as a simple shunt capaci-
tance and conductance. On the other hand, the series impedance
can show strong frequency-dependence due to both the ground
and the conductors losses. This is modeled as

(2a)

(2b)

(2c)

where the frequency dependence of the series impedance has
been taken into account using . In (2a), and are the
frequency-independent per-unit-length conductance and capaci-
tance matrices, whereas , and , in (2b), are determined
by using the Vector Fitting algorithm [20]. This algorithm fits

using a sum of first-order poles with corresponding
residues , a proportional term , and a constant term . For
the overhead line cases considered in this paper, is initially
determined using the physical parameters and Carson’s formu-
lation [22].

For ease of exposition and without loss of generality, the
FDTD discretization scheme is described as applied to a single-
conductor transmission line. The extension of the formulation
to multiconductor transmission lines is straightforward. This is
an inherent advantage of this technique, whereas other methods
are often difficult to extend to the multiconductor case.

Using (2), we now write (1) in the time domain as

(3a)

(3b)

where, in (3b), represents the convolution operator. Usually,
the convolution term is employed directly in the form given in
(3b). In order to calculate the convolution integral more accu-
rately we introduce the following modification

(4)
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Fig. 2. Interlaced voltages and currents of the FDTD approximation of a
transmission line that is connected to networks with lumped elements. Despite
the lines voltages and currents, the terminal voltages and currents are both
collocated in time and space.

This means that, instead of convolving with the current,
we convolve the integral of with the time-domain deriva-
tive of the current:

(5a)

(5b)

The advantage of this approach is discussed later.
Using (5), we can rewrite (3b) as

(6a)

where

(6b)

(6c)

An FDTD model is developed by discretizing (3a) and (6a).
We divide the line into spatial segments each of length ,
and consider the time step to be . In order to ensure the
stability of the discretization and second-order accuracy of the
scheme, the voltages and currents are interlaced both in time and
space. As shown in Fig. 2, voltage and adjacent current points
are separated by in space and in time. This is also
true for the terminals, but in order to incorporate the terminal
constraints we need to collocate the line voltages and currents at
the terminations. The procedure for this will be described later.
The second-order central difference approximations to (3a) and
(6a) become

(7a)

(7b)

Fig. 3. Piece-wise-linear approximation for the mirrored and shifted current
derivative. The data points of this curve are denoted as DI .

In (7), and are space and time indices, respectively.
Solving (7b) for and (7a) for , we obtain the
update equations. However, in order to make the algorithm time
and memory efficient, the convolution term in (7b) should be
calculated recursively. The recursive approximation we use is
discussed next.

B. Recursive Convolution Integral

The idea of recursive integration using exponentials com-
bined with FDTD has been discussed in several papers (for ex-
ample, [16]–[18]). In [16], the author showed how to include
the skin effect into the series impedance of a two-wire line in
free space using a variation. This was then modeled in the
time domain as a sum of exponentials using the Prony’s method
presented in [23] to obtain a recursive integration scheme. It has
been shown, however, that this approximation gives prediction
errors that are significant in some classes of problems [24].

In this paper, the exponential approximation, which is ob-
tained by the Vector Fitting method [20], makes the recursive
integration possible. To visualize the convolution integral, we
assume a typical waveshape for the time derivative of the cur-
rent at data point . To perform the convolution it has to
be mirrored and shifted in time by time steps (see Fig. 3). De-
termining the convolution integral in (7b) over segments each
of length , we can write

(8)

In the calculation of (8), we use the half-time-step shift be-
tween the voltage and current points to our advantage. Using a
central difference approximation for the calculation of the time
derivative of (8), the data points of the time derivative of the cur-
rent are evaluated at integer multiples of the time step, which is
similar to the voltage points. A piecewise-linear approximation
of the current time derivative in (8) is used over each time step,
as shown in Fig. 3. In this figure, the data points of the mirrored
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and shifted current derivative are denoted by . Using
this approximation, we can rewrite (8) as

(9a)

where

(9b)

(9c)

(9d)

(9e)

The integrals in (9d) and (9e) can be calculated recursively as

(10a)

(10b)

(11a)

(11b)

In this way, we do not need to store the whole history of the
currents and the computation cost is dramatically reduced.

Finally, the convolution integral (8) can be evaluated as

(12)

where, from (9b) and (9c)

(13a)

(13b)

Identifying the last summation of (12) as

(14)

and using (10b) and (11b), one can easily show that

(15)

which requires storage of only and three previous current
vectors in order to calculate the integral term in (7b).

C. FDTD Update Equations

The FDTD update equations for and can now

be defined. First, (7b) is used to update , which is half
a time step leading the voltage as

(16a)

where

(16b)

(16c)

(16d)

(16e)

(16f)

Then, (7a) is used to update as

(17a)

where

(17b)

(17c)

It is worth noting that all the parameters involved in (16) and
(17) (except for ) are not changing with time and need to be
calculated only once. Even contains constants that require
evaluation only at the beginning of the algorithm. This update
scheme is illustrated in Fig. 4. The values of the line voltages at
time step and previous values of the line currents are used to
update the line currents at time step , and then the line
voltages (except for the terminal voltages) are updated at time
step . The updating process for the terminal voltages and
currents are taken care of by the circuit/system simulator, which
is discussed next.

D. Terminal Constraints

The update equations of the FDTD scheme cannot be applied
to the terminal voltages. The essential problem in incorporation
of the terminal conditions is that the FDTD voltages and cur-
rents at each end of the line are not collocated in space or time,
whereas the terminal conditions relate the voltage and current at
the same position and time (see Fig. 4). The terminal currents,
which we denote as and , are collocated in time and space
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Fig. 4. Time-space distribution of the line voltages (o) and currents (+). At
the terminal, the voltage and currents are collocated both in time and space.

with the terminal voltages, and . At the terminal,
the first MTL equation given in (3a) is discretized at as
[17]

(18)

Solving (18) for yields

(19a)

where

(19b)

(19c)

Similarly, (3a) can be discretized at the other terminal to obtain

(20a)

where

(20b)

Observe that the terminal current at this point is directed into
the line in order to provide symmetry of the equivalent circuit.
This has been taken into account by the negative sign of the first
term on the right-hand side of (20b).

The circuit representation of (19a) and (20a) is demonstrated
in Fig. 5. This circuit is composed of resistive elements and de-
pendent current sources that are updated by (19c) and (20b). In
each time step, the FDTD algorithm is called by the circuit sim-
ulator and the line’s internal currents and voltages

and are up-
dated based on their past values and the terminals’ voltages past
values, and . Next, the history current sources, and

Fig. 5. Two-port stamp for the transmission line circuit model. The FDTD
algorithm at each time step updates history current sources I and I . G
is determined by the line parameters and the time and the space steps.

Fig. 6. Example of a transmission line illuminated by (a) a plane wave and
(b) the fields generated by a nearby lightning stroke.

, are updated and their values are passed to the circuit simu-
lator, which then solves the network and updates the terminals’
currents and voltages.

E. External Field Coupling

Simulation software based on terminal-characteristic models,
such as PSCAD and EMTP, are not capable of calculating ex-
ternal-field coupling, whereas one of the inherent features of
distributed models is the capability of determining the response
of the line to external exciting fields. The source of such
electromagnetic fields can be, for example, a plane wave or
a nearby lightning stroke (see Fig. 6). The external fields are
introduced into the transmission line equations as voltage and
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current sources at the right hand side of the equations. Thereby,
(3a) and (3b) are rewritten as [16]

(21a)

(21b)

where the exciting current and voltage sources are defined in
terms of the transverse electric field and normal magnetic flux
density [25]

(22a)

(22b)

In (22), is the height of the line, and the integration path is
along the cross section of the line, from the ground to the con-
ductor.

Note that when applying the discretization scheme of the
FDTD approach to the source terms, the sources should also be
interlaced both in time and space. Since (21a) and (21b) are ex-
panded at time and location and time and location

, respectively, we can write (22) as

(23a)

(23b)

In the derivation of (23a) and (23b), we have assumed that the
exciting fields are constant along the cross section of the line.
Now, for the case of an external-field excitation, the FDTD up-
date equations (16a) and (17a) should be revised, considering
the source terms derived in (23).

III. SIMULATION RESULTS

The FDTD method described in the previous section has the
capability of providing access to both the per-unit-length pa-
rameters as well as the transmission-line variables along the
whole length of the line. This can be used to simulate the effect
of distributed external field excitation, for example. The source
of such an external electromagnetic field can be a plane wave
or a nearby lightning stroke. The method also enables simula-
tion of nonuniform lines for which the per-unit-length parame-
ters are functions of the line’s spatial parameter. In this section,
four cases are studied. First, a simple single-conductor over-
head line with frequency-dependent parameters is simulated.
The simplicity of the problem allows us to investigate the ca-
pability of the proposed approach for the modeling parameters.
A nonuniform line is presented next. Finally, two examples in-
vestigating plane wave and lightning-stroke-generated field cou-
pling to transmission lines are presented. All of these results

TABLE I
SINGLE-CONDUCTOR LINE PARAMETERS

Fig. 7. Terminal voltages of the uniform line when excited by a trapezoidal
waveform. FDTD Results are compared to those obtained using a direct
frequency-domain (FD) method.

have been generated using PSCAD as the circuit simulation plat-
form. The extension of this method to multiconductor transmis-
sion lines is fairly straightforward.

A. Uniform Single-Conductor Transmission Line

To examine the accuracy of the FDTD algorithm, we first
consider a single-conductor overhead transmission line whose
parameters are given in Table I. The line is excited by a unit-
amplitude trapezoidal waveform that has a 22- s duration and
2- s rise and fall times and is terminated with 100- loads
at both ends. Using the FDTD technique, implemented in the
PSCAD environment, the voltages at the two terminals of the
line were calculated as shown in Fig. 7. A time step of

was chosen, and poles were used to approxi-
mate the line’s frequency-dependent series impedance. The ac-
curacy of the simulated waveforms was confirmed by compar-
ison with a direct frequency-domain solution of the transmission
line system. The ability of the method to accurately model the
effect of loss and dispersion is evident in the results.

Assuming that the simulator dictates the time step , there
are two parameters in the proposed FDTD algorithm whose
values should be determined. One is the space step , and the
other is the number of poles . For a specified time step the
space step should be chosen as

(24)

in order to ensure the stability of the algorithm [16]. Here, is
the maximum propagation speed of a signal on the transmission
line. For a general lossy line there is no specific propagation
speed, but one can choose to be the speed of light which guar-
antees that the algorithm is stable for any line. In our examples,
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Fig. 8. RMS error of the computed (a) sending end and (b) receiving end
voltages of the line for different number of poles and different values of the
time step. A frequency-domain solution was used as the reference.

we choose as small as possible, as determined by the lower
limit in (24), which minimizes numerical errors.

Fig. 8 shows the RMS difference (over a 200- s window)
between the terminal voltages calculated using FDTD method
and those calculated using a frequency-domain method for dif-
ferent values of the time step and number of poles. These results
show that the FDTD neither requires a very small time step (as
compared to the exciting waveform risetime) nor needs a large
number of poles to accurately simulate the frequency-dependent
behavior of the transmission line.

B. Nonuniform Transmission Line

One of the advantages of the proposed FDTD method is that
it can be used to simulate nonuniform transmission lines, whose
electrical characteristics are varying with spatial variable. As an
example, we consider the case for which the conductivity of the
ground is changing, such as that encountered when a section of
the transmission line traverses a body of water. The same line
configuration and excitation as the previous example (Table I
and Fig. 7) is used, except in this case, the middle 2 km of the
line is over water with a resistivity of 0.25 m. The rest of line
has a ground resistivity of 10 000 m, as before. The simulated
waveforms at the two terminals are plotted in Fig. 9. The results
were the same as those obtained using PSCAD with three cas-
caded frequency-dependent line models. When compared with

Fig. 9. Terminal voltages of the nonuniform line, when excited by a trape-
zoidal waveform. FDTD Results are compared to those obtained using PSCAD.

Fig. 10. Induced voltages at the line terminals and at the middle of the line.
The line is illuminated by a Gaussian plane wave. The amplitude of the incident
electric field is 1 kV/m.

Fig. 7, the effect of the reflection and increased loss from the
section over water is evident.

In general, any desired variation of the line characteristics,
including gradual changes, can be implemented with the FDTD
approach. We chose a rapid change so that we can confirm the
accuracy of the method by comparing with other models.

C. Plane Wave Excitation

We next consider an external plane wave excitation of a trans-
mission line. This could be used to simulate the coupling of a
source far from the transmission line. The transmission line is
the same as that used in part , terminated, in this case, with its
high frequency surge impedance. The electric field of the inci-
dent plane wave has a Gaussian waveform with a peak value of 1
kV/m and 10%–90% risetime of 2.4 s. The incidence direction,
referring to Fig. 6(a), is , and the polarization
angle is . The induced voltages at the two terminals of
the line, as well as the mid point of the line are plotted in Fig. 10.

D. Nearby Lightning Stroke

Nearby lightning strokes can generate a high transient voltage
on transmission lines. As shown in Fig. 6(b), we model the
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Fig. 11. Channel-base current generated using the Heidler formulation [27].
The peak value of this waveform is 22 kA, and it has a 10%–90% risetime of
0.8 �s, and a 29.6 �s half- magnitude width.

Fig. 12. Transverse electric field (a) and the normal magnetic field (b) along
the line, generated by the lightning return-stroke channel. Note that when x >
x [see Fig. 6(b)], the polarity of the magnetic field is inverted.

lightning return stroke channel as a monopole antenna that ra-
diates electromagnetic fields into the free space. The Modified
Transmission Line Linear (MTLL) model was chosen for the
return stroke channel, which assumes that the current wave is
linearly attenuated as it travels along the lightning channel [26].
A channel-base current, with a peak value of 22 kA, a 10%–90%
risetime of 0.8 s, and a 29.6 s half-magnitude width, is chosen
for this example, as shown in Fig. 11. We have used Heidler for-

Fig. 13. Induced transient voltages caused by a nearby lightning stroke. The
current waveform of the return stroke channel is shown in Fig. 11.

mulation [27] for generating this waveform. Once the current
distribution along the channel is determined, the formulation
presented in [28] is used to calculate the transverse component
of electric field and normal component of magnetic field along
the line. In Fig. 12, the electromagnetic fields at the two ends
of the line, as well as the middle point, are plotted assuming
the location of the lightning return stroke channel to be at point
( m, m). Fig. 12 indicates the near-field
nature of the electromagnetic fields and how their waveforms
change as a function of distance from the source [26], [28]. Fi-
nally, the induced voltages at the two terminals and at the middle
of the line are plotted in Fig. 13.

IV. CONCLUSION

In this paper, a circuit model for integrating a lossy dispersive
transmission line within a circuit simulator was presented. This
model is based on a time-domain finite-difference solution of the
transmission-line equations. Each conductor of the line is mod-
eled as a two-port stamp, which only includes resistive elements
and dependent current sources. This makes the scheme indepen-
dent from the method used for solving the differential equations
by the circuit simulator. The model is amenable to simulating
both nonuniform lines and external excitation sources.
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