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Abstract—A new method of choosing the regularization parameter,
originally developed for a general class of discrete ill-posed problems,
is investigated for electromagnetic inverse scattering problems that
are formulated using a penalty method. This so-called Normalized
Cumulative Periodogram (NCP) parameter-choice method uses more
than just the norm of the residual to determine the regularization
parameter, and attempts to choose the largest regularization parameter
that makes the residual resemble white noise. This is done by
calculating the NCP of the residual vector for each choice of the
regularization parameter, starting from large values and stopping
at the first parameter which puts the NCP inside the Kolmogorov-
Smirnov limits. The main advantage of this method, as compared,
for example, to the L-curve and Generalized Cross Validation (GCV)
techniques, is that it is computationally inexpensive and therefore
makes it an appropriate technique for large-scale problems arising in
inverse imaging. In this paper, we apply this technique, with some
modification, to the Tikhonov-regularized functional arising in the 2-D
Transverse Magnetic (TM) inverse electromagnetic problem, which is
formulated via an integral equation and solved using the Born iterative
method (BIM).
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1. INTRODUCTION

The inverse scattering problem consists of determining the shape,
location and constitutive parameters, i.e. permittivity, permeability
and conductivity, of an unknown bounded object immersed in a known
background medium, from the measured scattered field exterior to the
object when it is irradiated by a number of known incident fields. The
inverse scattering problem has been an area of interest during the last
two decades due to its various applications such as medical imaging and
non-destructive testing [1–7]. The research into this field has led to the
development of a multiplicity of inversion algorithms; see for example
[8–17]. These inversion algorithms attempt to minimize an appropriate
cost-functional iteratively. Two different cost-functionals have been
mostly used for formulating the inverse scattering problem [18]. The
first one is the ‘conventional’ approach where the cost-functional is
the discrepancy between the measured data and the predicted data
augmented with an additional term to stabilize the inversion. This
approach requires the solution of the forward scattering problem in
each iteration. In the second approach, an error term involving the
integral equation relating the fields inside the imaging domain to
the constitutive parameters of the unknown object, is added to the
conventional cost-functional to make a new cost-functional [9, 15]. This
approach uses the Conjugate Gradient (CG) technique for minimizing
the cost-functional and does not need the solution of the forward
scattering problem, but the number of variables to be optimized is
much larger than the conventional approach. In this paper, we use the
Born Iterative Method (BIM) [11] which is based on the conventional
approach to inversion. The focus of the paper is to study and suppress
the inherent instability associated with the mathematical formulation
of the inverse scattering problem in the framework of the BIM. The
proposed algorithm is tested against the synthetic and experimental
data.

It is well-known that the inverse electromagnetic scattering
problem is ill-posed: the solution to the mathematical problem is
not unique and does not depend continuously on the measured data.
Therefore, we usually attempt to find a solution to the ill-posed
operator by adding some constraints and additional information to
the system. This can occur after the discretization of the continuous
problem, which produces a discrete ill-posed system of equations.
There are three general classes of methods for regularizing an ill-posed
system of equations: the penalty methods, various projection methods,
and hybrid combinations of these (see [19, 20]). The Tikhonov method
is a popular additive penalty method approach to regularizing an ill-
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posed system of equations (other regularization techniques that use a
penalty approach, such as the multiplicative penalty method [9, 21],
are also available). The main idea behind the standard-form Tikhonov
regularization is that the regularized solution, xλ, to the ill-posed
system Ax = b is taken to be the one that minimizes the functional
‖b−Ax‖2

2 + λ2‖x‖2
2, for a particular choice of the regularization

parameter λ. The problem then becomes choosing an appropriate
regularization parameter. Projection methods attempt to regularize
by projecting the discretized problem onto a subspace having a basis
that can be used to represent the solution with sufficient accuracy
while maintaining stability. Some commonly used projection methods
are the Truncated Singular Value Decomposition (TSVD) [22], and
Krylov subspace methods [20, 23]. The hybrid methods seek to further
regularize the projected problem [23, 24] because, quite often, the
projection approach does not regularize the problem sufficiently.

The regularization in each of these methods usually requires the
computationally expensive step of choosing the optimum regularization
parameter. This is because the resulting solution can be very sensitive
to the choice of the regularization parameter. In the Tikhonov method,
the regularization parameter controls the weight of the penalty term,
while in the projection methods, the dimension of the subspace
is considered as the regularization parameter, and therefore in the
hybrid methods we need two regularization parameters: one for the
dimension of the subspace and the other for regularizing the projected
problem. Many regularization parameter-choice methods for Tikhonov
regularization have been proposed in the literature; for example, the
discrepancy principle, Generalized Cross-Validation (GCV), and the
L-curve have been widely used. The discrepancy principle [25] uses
the idea that the norm of the residual vector should not be smaller
than the norm of the noise in the measured data (which must be
known). There is also another form of the discrepancy principle, called
the generalized discrepancy principle [26], which also considers the
perturbation in the discrete ill-posed operator. Both tend to over-
smooth the solution [27]. Generalized cross-validation [28, 29] is a
statistical tool for choosing the regularization parameter by minimizing
a specialized functional and does not require any knowledge about the
noise variance in the data. However, the underlying assumption, used
in deriving the GCV functional, is that the noise in the measured
data (i.e., on the right hand-side) is normally distributed zero-mean
white noise. The other major parameter-choice method is the L-
curve method which tries to balance the (semi) norm of the solution
and the corresponding residual [27, 30] by choosing the regularization
parameter corresponding to the corner of the L-curve. All of the
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aforementioned parameter-choice methods are based on the norm of
the residual vector.

For a typical inverse electromagnetic problem the norm of the
noise in the measured data is not usually known and so the discrepancy
principle is of little use. On the other hand, when the GCV and L-
curve methods are combined with any of the Born iterative methods,
they become computationally expensive because a good regularization
parameter, which usually requires the Singular Value Decomposition
(SVD), must be chosen at each iteration. That is, the choice of the
regularization parameter for minimizing ‖b− Ax‖2

2 + λ2‖x‖2
2 where A

is the discretization of the ill-posed operator for the problem depends
on A (more specifically, it depends on the singular values of A). In the
Born iterative method, at each iteration A changes because the total
field inside the imaging region is updated. Therefore at each iteration
A changes and we should choose a new regularization parameter. It is
true, that for some weakly scattering problems the change will be minor
and one can keep the regularization parameter the same throughout
the iterations. But in general this is not true.

In this paper, we use Tikhonov regularization in conjunction with
a new parameter-choice method for solving the discretized inverse
scattering problem using the BIM. This new parameter-choice method
is based on the Normalized Cumulative Periodogram (NCP) of the
residual vector, as opposed to just using the norm of the residual: more
of the available information is used. This so-called NCP parameter-
choice method was recently introduced by Hansen et al. [31] for solving
discretized linear Fredholm integral equations of the first kind. The
underlying idea of their method can be explained as follows: suppose
that the measured data, contained in the vector b, can be modeled
as the sum of an exact component b̄, satisfying Ax̄ = b̄ where x̄ is
the exact solution, and a white noise component e. Then, due to the
smoothing effect of the ill-posed operator [31], the power spectrum
of the exact component, i.e., b̄, will be dominated by low frequencies
whereas the power spectrum of the white noise component will have the
same expected value at all frequencies. Therefore, this difference in the
spectral content can be used to find a good regularization parameter
for the ill-posed problem.

Adapting the NCP method to the inverse electromagnetic problem
requires that we deal with the coupled system of nonlinear integral
equations: the domain and the data equations which are well-posed
and ill-posed respectively. We apply the BIM [11], where at each
iteration the kernel of the data equation is approximated to give a
linear Fredholm integral equation of the first kind. This linearization
introduces an error in the discretized operator which now, when
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operating on x̄, no longer corresponds to the exact component of
the right-hand side b̄. At any point in the iteration procedure, b̄
may not satisfy the discrete Picard condition [32] with respect to
the approximated (linearized) ill-posed operator. Thus, the NCP
criteria cannot be applied to the linearized problem and it needs to be
adapted for this problem. Briefly, the adaptation consists of creating
a “noisy problem” by adding synthetic white noise to the right hand
side of the original problem and finding the optimum regularization
parameter in the noisy problem and applying it to the original problem.
The linearization affects not only the NCP parameter-choice method
but also both the L-curve and the GCV methods and therefore the
technique described herein should be applicable to those methods.

The new procedure is applied to two different sets of problems in
this paper: one based on synthetic data and the other on experimental
data. For the first set, we assume that data collection is done by a
set of receivers which are located on a circle around the object and
that the object is illuminated by Transverse Magnetic (TM) plane-
waves impinging on the object from different angles of incidence. The
geometrical configuration is the same as that described in [11]. In
the second set, we use measurement data collected by researchers at
the Institut Fresnel for two different targets, namely FoamDielIntTM
and FoamDielExtTM [33, 35]. Here, we use single frequency data,
at 2 GHz, for reconstructing the contrast profiles of both synthetic
and experimental data. We only show results for 2 GHz because the
higher frequency data, provided by Institut Fresnel, is very difficult
to invert using the BIM. For other inversion techniques, such as the
Distorted Born Iterative Method (DBIM) [12], the NCP parameter-
choice method for Tikhonov regularization which is proposed in this
paper, is also applicable to the case of higher frequency and multi-
frequency inversion. For the case of multi-frequency inversion the
frequency hopping method can be used [34]. A review of alternative
more robust inversion techniques, that have been used on the Fresnel
data, such as the Multiplicative Regularized Contrast Source Inversion
(MR-CSI) and the modified gradient methods, is available in [35].

For all the results presented in this paper, it is assumed that the
measurement errors on the data are unbiased and that the covariance
matrix of the errors is proportional to the identity matrix, i.e., white
noise. For the case that the noise is not white, the data can be pre-
whitened by multiplication with the inverse of the Cholesky factor
of the estimation of the noise’s covariance matrix [31], or it is also
possible to use a regularized version of the general Guass-Markov linear
model [36].
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2. FORMULATION OF THE LINEARIZED AND
DISCRETIZED PROBLEM

The nonlinear integral equation that encapsulates the 2-D time-
harmonic, scalar inverse scattering problem for transverse magnetic
fields is written as

Es
z(r;k) = k2

0

+∞∫
−∞

+∞∫
−∞

G(r, r′; k0)Ez(r′;k)O(r′)dx′dy′ (1)

where r = x
�
ax +y

�
ay represents the observation point in the Cartesian

coordinate system, k = kx
�
ax + ky

�
ay represents the wavevector, and

the wavenumber k0 is related to the wavevector by k0 = |k|. Es
z(r;k) is

the z-component of the scattered electric field defined as the difference
between the total field and the incident field. In (1), for a non-magnetic
media, O(r) = εr(r) − 1 is the contrast profile, with respect to the
dielectric constant εr, that must be recovered. It will be assumed
that the scattering object is lossless for the remainder of this paper.
The two-dimensional free-space Green’s function, assuming ejωt time-
dependency, is given as

G(r, r′; k0) =
1
4j
H

(2)
0 (k0|r − r′|) (2)

where H(2)
0 (x) is the zeroth-order Hankel function of the second kind.

Equation (1) is the basis upon which the standard domain and data
equations are defined for the 2-D/TM inverse scattering problem.

For obtaining a solution for the contrast in (1), we use the BIM
(described in [11]). This method proceeds by first using the Born
approximation [37] to linearize the problem which is then discretized
and solved for the unknown contrast using an inverse solver. The
total field inside the imaging domain, corresponding to this contrast,
is then computed using a moment-method forward solver based on
Richmond’s method [38]. The newly updated total field, E(p)

z (r;k)
for iteration p, is then used in the subsequent iteration for linearizing
the integral equation and the inverse solver is again used for obtaining
a new approximation to the contrast. This procedure continues until
the appropriate termination conditions are satisfied (given below). The
above forward solver can be accelerated using the Conjugate Gradient
(CG) algorithm with the Fast Fourier Transform (FFT) technique for
matrix-vector multiplications [39, 40]. To speed up the multi-view
forward scattering problem, it is also possible to use the marching-
on-in-source-position technique to provide a better initial guess to the
CG-FFT algorithm [18, 41].
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At each iteration step p, after discretizing the linearized integral
equation with an approximate kernel G(r, r′; k0)E

(p)
z (r′;k), we obtain a

discrete ill-posed system of linear equations Ãx = b, where Ã ∈ Cm×n,
b ∈ Cm and x is to be found using an inversion technique. The
matrix Ã is a discrete representation of the linearized kernel, while
x and b are column-wise stacked representations of the 2-D discrete
contrast function, O(x, y), and the measured scattered field, Es

z(x, y),
respectively. Note that two errors are associated with this procedure:
a linearization error as well as a discretization error. If we denote
by A the discrete representation of the exact (nonlinear) kernel, i.e.,
the discretization of G(r, r′; k0)Ez(r′;k), then the difference between
A and Ã is a representation of the linearization error. Although we
don’t have access to A, obtaining a sufficiently accurate solution to
the inverse problem requires that Ã become as close as possible to A
through the BIM procedure. Thus, we expect that at later steps in the
BIM procedure, the linearization error is reduced. This is essential for
the inversion technique that we are applying.

3. THE GENERAL-FORM TIKHONOV
REGULARIZATION INVERSE SOLVER

The pseudo-inverses of A, as well as Ã, are unbounded due to the
ill-posedness of the inverse problem. For solving the ill-posed matrix
equation Ãx = b, we use the Tikhonov regularization method, which
effectively produces a regularized pseudo-inverse operator, Ã†

λ, that
is bounded, in conjunction with a parameter-choice method based
on the NCP that keeps the solution as close as possible to the
exact solution. The general-form Tikhonov regularization method is
represented concisely as producing a solution xλ to the minimization
problem [42]

xλ = Ã†
λb = arg min

x

{∥∥∥Ãx− b
∥∥∥2

2
+ λ2 ‖L (x− x0)‖2

2

}

= arg min
x

{∥∥∥∥
[
Ã
λL

]
x−

[
b

λLx0

]∥∥∥∥
2

2

}
(3)

where λ is the regularization parameter, and L ∈ Ck×n is called the
regularization matrix which can be any matrix whose null space does
not intersect with the null space of A to ensure a unique solution [43].
The vector x0 is generally taken as a guess of the solution, and in
our case we take it to be the most recent value of the contrast (at
the previous iteration in the BIM). We consider two cases for L: we
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choose L to be either the identity operator, or the Laplacian operator
with zero boundary conditions for the unknown contrast profile. In
these cases, the null space of L is trivial and does not intersect with
the numerical null space of the ill-posed operator, making the solution
of (3) unique. It should be mentioned that L not only controls the
smoothness of the ill-posed operator but also controls the sensitivity
of the solution to perturbations of both Ã and b [44].

4. THE NCP PARAMETER-CHOICE METHOD

In this section the NCP parameter-choice method is briefly explained
so that our modifications required for the method to be effective for the
nonlinear inverse scattering problem can be better understood. The
NCP of a vector is derived from the power spectrum of the vector as
will be defined below. The main idea behind this method is to choose
the largest regularization parameter λ that makes the residual vector
rλ = b−Axλ, look like white noise. We do this by starting with a large
λ for which the residual vector does not look like white noise and then
reduce λ until the first instance where we have a residual vector that
looks like white noise. Here “look like white noise” is defined using the
Kolmogorov-Smirnov (KS) limits (to be explained below). We first
express the residual vector in terms of the left singular vectors of the
operator A. Note that the SVD of A is used only for analysis purposes
and we don’t need to take the SVD of the operator in practice.

Assumed that the exact ill-posed operator, A, is known and that
we can obtain its singular value decomposition A = UΣV H , where U
and V are the matrices of left and right singular vectors, ui and vi, of
the matrix A, with each ui and vi corresponding to a singular value σi.
Here the matrix of the singular values is defined as Σ = diag{σi}. For
simplicity of the discussion, assume that L = I, the identity matrix,
and x0 = 0, then the residual vector of the Tikhonov solution of
Ax = b = b̄+ e can be written as

rλ = b−Axλ = UΛUH b̄+ UΛUHe, Λ = diag

{
λ2

λ2 + σ2
i

}
(4)

The vectors b̄ and e are the exact and the noise components of the
right-hand side, b = b̄+e and we are assuming e to be white noise. For
the case where L �= I, in (4) the singular values will be substituted by
generalized singular values of the pair (A,L) and U will be replaced by
the orthonormal matrix in the decomposition ofA using the generalized
singular value decomposition of (A,L) [45].

The diagonal components of Λ look like a “high-pass filter” when
plotted against the index i, because the singular values decrease rapidly
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for ill-posed problems. The regularization parameter λ determines the
“cut-off” index, kc, of this high-pass filter: the smaller the value of λ,
the larger the cut-off index. Therefore, assuming a cut-off index kc,
the first term in the residual, UΛUH b̄ can be written as

n∑
i=1

ui

[
λ2

λ2 + σ2
i

uH
i b̄

]
=

kc∑
i=1

ui

[
λ2

λ2+σ2
i

uH
i b̄

]
+

n∑
i=kc+1

ui

[
λ2

λ2+σ2
i

uH
i b̄

]

≈
n∑

i=kc+1

ui

[
λ2

λ2 + σ2
i

uH
i b̄

]
(5)

In addition, because b̄ satisfies the discrete Picard condition [32], i.e.,
|uH

i b̄| for anything but the first few indices will decay to zero faster
than the singular values σi (or the generalized singular values when
L �= I), Equation (5) is almost zero for an appropriate choice of the
parameter kc, which itself depends on the regularization parameter λ.
That is, considering the high-pass filter characteristic of Λ and the
discrete Picard condition, it can be concluded that as we decrease λ,
we will reach a cut-off index for the filter which suppresses all the
significant components of b̄ in the SVD basis. Using a cut-off index
that suppresses all of the significant components of b̄ in the residual
means that we’ve used as much information as possible in the solution,
and choosing the smallest such index, i.e., largest λ, ensures a stable
solution (giving an acceptable trade-off between the regularization and
perturbation errors). The regularization parameter corresponding to
this cut-off index can be considered as the optimum regularization
parameter, λopt, because it singles out the most stable solution whose
residual does not have any dominant component of b̄. The residual
vector for this optimum regularization parameter will be

rλopt = UΛoptU
H b̄+ UΛoptU

He ≈ UΛoptU
He, Λopt = Λ|λ=λopt

(6)

Thus, for λ = λopt, the residual vector will be dominated by UΛoptU
He.

Considering the fact that the noise on the right-hand side, e, is white
noise with a standard deviation of, say, η, its covariance matrix will
be cov{e} = η2I. The covariance matrix of the vector UΛUHe can be
calculated as

cov{UΛUHe} = UΛUHcov{e}UΛUH = η2UΛ2UH ≈ η2Ikc (7)

where Ikc is the identity matrix with the first kc diagonal elements
set to zero. As long as λ is not too small, which is the case for the
optimum regularization parameter, λopt, it can be seen that UΛUHe
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behaves statistically like white noise for ill-posed problems. Therefore,
considering this fact as well as the fact that the dominant values of
|uH

i b̄| correspond only to the first few indices, one can conclude that
the optimum regularization parameter can be considered as the largest
λ, i.e., the smallest cut-off index, which makes the residual vector, rλ,
behaves like white noise.

The metric that is used to see if the residual “looks” like white
noise is the NCP of the residual. So the standard NCP parameter-
choice method starts with a large λ — in which case the NCP of the
residual vector will look like that of the data — and therefore we have
most of the data information left in the residual. We then decrease
λ until the NCP of the residual first becomes like that of white noise
(i.e., a curve between the KS limits for white noise [46], which are
bounds around a straight line). Once this happens, we can be sure
that all the important information available in b̄ has been used in
calculating xλ, even though we don’t have access to b̄. Notice that if
we decrease λ further, the residual is still white noise (or slightly high-
pass filtered white noise) but the solution is more likely to be unstable
due to perturbation errors.

One note regarding this use of the NCP parameter-choice method
is that NCP is usually defined for real vectors — because it is generally
used as a statistical time-series analysis tool [46] — but here we use
the same definition for the NCP of a complex vector. Denoting the
power spectrum of the residual as P ∈ Rn, the components of the
NCP vector, C ∈ Rn−1, are calculated as

Ci = [‖P‖1 − P1]
−1

i+1∑
j=2

Pi, i = 1, 2, . . . , n− 1 (8)

where P1 is the first (or DC) component of the vector P . In our case,
the KS-limit lines, as a function of index i, are given as i/n− 1 ± δ
where, for a significance level of 5 percent, we set δ = 1.36/

√
n.

As was mentioned above, b̄, and consequently b, have only a
few components that are significant in the SVD basis of the ill-posed
operator. Therefore, due to the similarity of the SVD basis and the
Fourier basis [31], b will also have only a few significant components
in the Fourier basis. At the index location where these significant
components occur there will also occur step changes in the NCP of b.
This means that the NCP of b will look like a staircase plot where the
step-locations correspond to the location of the significant components
of b in its Fourier basis.
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5. USING THE NCP PARAMETER-CHOICE METHOD
IN THE BORN ITERATIVE METHOD

In each iteration of the Born iterative method a discrete ill-posed
system of equations, Ãx = b is constructed where Ã is a linearized
approximation to the exact ill-posed operator. We can express Ã =
A+E where E is an error matrix due to the use of the approximated
total electric field, instead of the unknown exact field inside the imaging
domain. This error could be quite considerable in the first iteration
and gradually decreases in subsequent iterations, but the right-hand
side (i.e., the measured data) stays the same for all iterations. The
effect of this linearization error can be evaluated as follows.

We first note that, using (4) in summation form with Ũ instead of
U , the residual vector at each iteration of the BIM can be written as

rλ =
n∑

i=1

ũi
λ2

λ2 + σ̃2
i

ũH
i b̄+

n∑
i=1

ũi
λ2

λ2 + σ̃2
i

ũH
i e (9)

where ũi is a left singular vector of the linearized discrete operator Ã.
For a sufficiently large value of λ, the second term on the right-hand
side of (9) behaves statistically like white noise because it satisfies (7)
with a small kc. On the other hand, although b̄ is such as to satisfy
the discrete Picard condition with respect to A, but it does not satisfy
the discrete Picard condition with respect to the linearized operator,
Ã. Therefore, ũH

i b̄ cannot be filtered out with any choice of λ. So it is
not possible to apply the NCP criterion as the NCP of the residual
can never be made to look like that of white noise. This can be
explained as follows. Assume that at the pth iteration of the BIM,
we have Ãx = b = b̄ + e. The exact data b̄ can be decomposed into
two different terms: b̄ = b̃+ e such that b̃ is the right-hand side of the
equation Ãx = b̃. Unfortunately, we do not have access to b̃, only b. So
we end up solving Ãx = b = b̃+ δ + e via regularization, which means
that we minimize (3) with the corresponding residual expressed as

rλ =
n∑

i=1

ũi
λ2

λ2 + σ̃2
i

ũH
i b̃+

n∑
i=1

ũi
λ2

λ2 + σ̃2
i

ũH
i δ +

n∑
i=1

ũi
λ2

λ2 + σ̃2
i

ũH
i e (10)

It is obvious that if the middle term on the right-hand side did
not exist, it would be possible to find an appropriate λ to make the
residual behave like white noise. But the existence of the middle term
causes the residual to be unlike white noise for any λ because δ does
not satisfy the discrete Picard condition (with respect to Ã). In other
words, the |ũH

i δ| terms are not restricted to only first few indices. It
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should be noted that the presence of δ is an essential part of the BIM
process for converging to the solution but it makes the finding of the
regularization parameter using any of the standard parameter-choice
methods, namely GCV and the L-curve methods, as well as the NCP
parameter-choice method, difficult.

In Figure 1(a), di = |ũH
i b| for 1 ≤ i ≤ 665 are plotted for the first

iteration of the BIM for the FoamDielIntTM profile (to be described
later) where n = 1849. Also, the high-pass filter Λ corresponding to
λ = 10−4 is shown. It can be seen from Figure 1(c) that even for
such a very small λ, it is not possible to fit the NCP of the residual
into the Kolmogorov-Smirnov limits because of the small peaks in the
pass-band of the filter which are due to |ũH

i δ|. Figure 1(b) shows
the same plot corresponding to the fourth iteration of the BIM. As
expected, Ã is now closer to A compared to the first iteration and
therefore, δ is smaller. So, the NCP of the residual for this iteration
corresponding to the same λ is closer to the NCP of white noise. In
Figure 1(c), the NCP of the residual for all four iterations of the BIM
for the same λ, i.e., λ = 1e−4, are shown. It should be noted that the
optimum regularization parameters for these four different iterations
have been found using the adapted NCP method (to be explained in
Sec. 5.1) and λ = 1e−4 has been chosen just for the comparison. With
each iteration, the exact ill-posed operator is better approximated and
therefore the NCP of the residual will tend to be closer to the NCP of
white noise but can never be made to fit into the Kolmogorov-Smirnov
limits when the approximated kernel is not close enough to the exact
kernel.

5.1. Adapting the NCP Method for Use with the BIM

The underlying assumption for using standard parameter-choice
methods, like the NCP method, in conjunction with Tikhonov
regularization is that the right-hand side should consist of two parts:
the first part must satisfy the discrete Picard condition and the second
part must be white noise (or if the noise is non-white, an estimation
to its covariance matrix must be known). In different iterations of
the BIM, the right-hand side consists of three parts: b̃ which satisfies
the discrete Picard condition, e which is white noise and δ which does
not satisfy the discrete Picard condition and also it is not white noise.
Therefore, standard parameter-choice methods are not applicable to
this problem because of the presence of δ.

This fact can be seen in (10) where the residual due to the
signal part has two terms: ũH

i b̃ and ũH
i δ. The first term can be

easily suppressed by the high-pass filter Λ, but the second term is
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Figure 1. (a) di = |ũH
i b| vs. 1 ≤ i ≤ 665 where n = 1849 for the

first iteration of the BIM for FoamDielInt and the high-pass filter,
Λ, corresponding to λ = 10−4, (b) the same plot corresponding to the
fourth iteration of the BIM, (c) The NCP of the residual corresponding
to λ = 10−4 for four different iterations of the BIM for FoamDielInt.
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not restricted to only the first few left singular vectors and cannot be
suppressed by Λ. The components of δ corresponding to first few left
singular vectors should not be in the residual as they are necessary
for converging to the true profile. However, the remaining components
of δ should remain in the residual vector because otherwise they will
produce an unstable solution. For adapting the NCP method for the
BIM, we try to modify the right-hand side in such a way to satisfy the
underlying assumption of the standard parameter-choice methods.

To solve this problem, we create a new “noisy problem” by adding
synthetic white noise, esyn, to the right hand side of the equation
Ãx = b in the first step of the BIM, that is, the Born approximation.
This creates a new equation for the noisy problem, Ãx = bnew =
b̃+δ+e+esyn, which is such that those components of ũH

i δ, that are not
among the first few left singular vectors, are insignificant compared to
ũH

i (e+ esyn) which does have an NCP that looks like white noise. (The
initial amount of noise that is added is chosen so that the norm of the
additive noise, ‖esyn‖2, is about equal to the norm of the data, ‖b‖2,
guaranteeing that the components of ũH

i δ are insignificant compared
to ũH

i (e+ esyn) except for first few components of ũH
i δ). For example,

the |ũH
i b| terms for the first iteration of the FoamDielIntTM where

1 ≤ i ≤ 200 and n = 1849 are shown in Figure 2(a). These can be
compared with the fi = |ũH

i bnew| shown in Figure 2(b) where the norm
of the additive white noise has been set about equal to the norm of
the data. As can be seen from the figure, the significant components
of |ũH

i b| are not significantly affected with the addition of noise, but
looking at Figure 2(c), where the NCP of the residual corresponding to
λ = 0.08 is shown for these two cases, the noisy residual can be made
to look like white noise.

This allows us to apply the NCP parameter-choice method to the
noisy problem Ãx = b + esyn at any iteration of the BIM to find the
optimum regularization which can then be used to regularize the non-
noisy problem Ãx = b, resulting in xλopt . When the relative norm
of the solution to the non-noisy problem in two subsequent iterations
becomes smaller than a specified value, the algorithm is stopped (this
is the first termination condition). Otherwise, we iterate the BIM: we
use the contrast xλopt in the forward solver (in this case, Richmond’s
method) to find the new field inside the imaging region, and then
form the new discrete inverse problem with this new field and the
same amount of additive white noise. If the first termination condition
is satisfied, then the NCP of the residual for the non-noisy problem
corresponding to the last regularization parameter is checked. If it’s
within the KS limits, then the algorithm is complete (this is the second
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Figure 2. (a) di = |ũH
i b| vs. 1 ≤ i ≤ 200 for the first iteration of

the BIM for FoamDielInt, (b) fi = |ũH
i bnew| vs. 1 ≤ i ≤ 200 for the

first iteration of the BIM for FoamDielInt, (c) The NCP of the residual
corresponding to λ = 0.08 for these two different cases.
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termination condition). But if the NCP of the residual for the non-
noisy problem does not satisfy the KS test (meaning that the solution
is over-smooth), the level of the additive noise is decreased as much
as possible while maintaining the NCP of the residual for the noisy
problem within the KS limits and the same algorithm is applied until
these two different termination conditions are satisfied. The flowchart
of this algorithm is shown in Figure 3.

We have found that in running this algorithm it is sufficient to
use a significance level of 5% for the KS limits when using the noisy
problem to find the optimum regularization parameter and then to
increase the significance level (say, to 10%) for the second termination
condition. Slightly varying the significance level of the KS limits seems
to affect the rate of convergence but the final solution generally remains
the same.

6. NUMERICAL RESULTS

6.1. Imaging Results Based on Synthetic Data

In this section we present the results for two cases where the scattering
data is obtained synthetically from a numerical solver. The synthetic
data was produced by a method of moments (MoM) solver with
triangular meshes (3448 triangular meshes over the imaging domain)
and white noise was added such that the signal to noise ratio is
SNR = ‖b̄‖2/‖e‖2 = 10. The two scattering cases consist of (i)
a sinusoidal contrast with amplitude of 2.0, shown in Figure 4(a)
and (ii) two spatially separated sinusoidal contrasts of amplitudes
2.0 and 1.0, shown in Figure 5(a). Figures 4(b), 4(c), 5(b) and
5(c) show the resulting reconstruction using both the identity and
the Laplacian operators as the regularization matrices for these two
synthetic cases. In the BIM, the forward solution was obtained by
Richmond’s method [38] using a pulse basis on a square mesh covering
the imaging domain (The number of pulses over the imaging domains
is 40 × 40).

This low signal to noise ratio, i.e., SNR = 10, has been chosen to
show the robustness of this method to additive white noise. However,
because of this small signal to noise ratio, the reconstructed solution
will converge before reaching the maximum value of the unknown
profile. It seems that choosing L as the Laplacian operator with zero
boundary conditions allows the reconstruction of the peak contrast of
the second test case better than setting L to the identity matrix. The
reconstruction of the second synthetic case with identity operator as
the regularization matrix for SNR = 100 has been shown in Figure 6
which can be compared for the same reconstruction using SNR =
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Figure 3. The adapted NCP parameter-choice method for the BIM.
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Figure 4. First synthetic test case (a) true profile, sinusoidal profile
with peak-permittivity is 3.0 (contrast is 2.0), (b) reconstruction with
L = I, (c) reconstruction with L the Laplacian.

10 (see Figure 5b). In Figure 7, the NCP of bnew as well as the
NCP of a few residual vectors corresponding to different regularization
parameters are shown for the first test case. As can be seen in Figure 7,
for large values of λ the NCP of the residual looks like the NCP of
bnew, showing that we have not used all of the available information
in reconstructing the profile. As λ is decreased, less information is
included in the residual and more information goes into the solution.
The first NCP which fits the Kolmogorov-Smirnoff limits is the NCP
corresponding to λ = 0.02.

For comparison purposes, we’ve solved these two problems using
a modified L-curve parameter-choice method that also uses additive
noise. This modified L-curve method chooses a smaller regularization
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Figure 5. Second synthetic test case (a) true profile, two sinusoidal
profiles with peak-contrast equal 2.0 and 1.0, (b) reconstruction with
L = I, (c) reconstruction with L the Laplacian.
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and SNR = 100.
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Figure 7. (a) The NCP of bnew, (b) The NCP of the residual vector
corresponding to seven different regularization parameters.

parameter as compared to the NCP method. For example, in the
Born approximation of the first test case, the modified L-curve method
chooses λ = 0.013 as the optimum regularization parameter whereas
the NCP method chooses λ = 0.020. In Figure 8, we’ve plotted the
L-curve for the Born approximation of the first test case using 100
different λ ’s (λNCP is the regularization parameter chosen by the NCP
method). The fact that two different parameter-choice methods choose
two different regularization parameters simply reflects the fact that
there is no unique solution to the inverse problem. The reconstruction
of the first synthetic data using L-curve has been shown in Figure 9 for
the case L = I. For our implementation of the BIM, the result using
L-curve with SVD took about 11 minutes while the NCP results took
less than 6 minutes.
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Figure 9. Reconstruction of the first synthetic case with L = I using
L-curve method.

6.2. Imaging Results Based on the Experimental Fresnel
Data

The NCP method was also used to invert experimental scattering data
provided by the Institut Fresnel [33, 35]. This data is freely provided
to the inverse methods community as a standardized set of data
upon which to evaluate inverse methods. Data for several scattering
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geometries are available, but here we show the reconstructions for two
geometries which contain only lossless dielectrics: (i) FoamDielIntTM :
a cylinder of diameter da = 31 mm with contrast χ2 = 2.0±0.30, inside
a cylinder of diameter db = 80 mm with contrast χ1 = 0.45 ± 0.15,
with the inner cylinder off-set by 5 mm; and (ii) FoamDielExtTM::
the same as (i) but with the smaller cylinder located external to the
larger cylinder and butted against it. These geometries are shown in
Figure 10.

(a) (b)

Figure 10. True profiles for the two Fresnel cases considered: (a)
FoamDielInt, (b) FoamDielExt.

The inversion of both cases, using the NCP method, was
performed using single-frequency 2 GHz TM scattering data which was
calibrated for an equivalent plane-wave incident field. The bistatic
scattering data was taken for 8 transmitter positions equally spaced
every 45◦ around the scatterer, and 241 receiver locations, for each
transmitter, equally spaced every 1◦ around the scatterer with no
receiver closer than 60◦ from the transmitter. The receivers and
transmitters were placed on a circle having a radius of 1.67 m, all in the
same horizontal plane. The imaging domain is a 0.15× 0.15 m2 square
centered at the center of the receiver circle. Details of the measurement
and calibration procedure can be found in [33]. The forward solution
of the BIM was obtained by Richmond’s method [38] using a pulse
basis on a square mesh covering the imaging domain (The number of
pulses over the imaging domains is 43 × 43.)

Inversion results for the FoamDielIntTM and FoamDielExtTM
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Figure 12. Reconstruction of FoamDielExt.

cases are shown in Figure 11 and Figure 12, respectively. The
reconstructed contrast is good although the region between the two
cylinders having different contrast is slightly smoothed. This is due
to the Tikhonov regularization that has been used and may also be
due to the fact that only single-frequency data has been used for
reconstructing the profile. Although the adapted NCP method is also
applicable to multiple-frequency problems, using for example DBIM,
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the focus of this paper is the effectiveness of the NCP method as a
parameter-choice method and inversion results using single frequency
inversions are adequate for this purpose. The use of our NCP
method as well as other parameter choice methods in conjunction
with more robust inversion methods such as DBIM and Newton-based
optimization methods is a subject for a future paper.

7. CONCLUSIONS

The NCP parameter-choice method presented by Hansen et al. [31]
has been adapted for solving the nonlinear 2-D/TM electromagnetic
inverse scattering problem using the BIM. As for the original NCP
parameter-choice method, because it is based on the FFT, and the
SVD of the matrix does not need to be computed, the method is
computationally efficient. As was pointed out by Hansen, the NCP
method works for discretized linear Fredholm integral equations of the
first kind because of the fact that the data vector for such problems
will be dominated by low-frequency components in the discrete Fourier
basis and the NCP of the residual above that low-frequency cut-off
(determined by the regularization parameter) will look like that of
white noise. For the nonlinear scattering problems considered here, the
method must be adapted because the linearization of the kernel in the
BIM introduces an error in the discretized operator that contributes
energy to the residual across the whole frequency band and above the
low-frequency cut-off the residual no longer has a NCP that looks like
that of white noise. The adapted NCP method introduces additive
white noise so that this error energy above the cut-off is dominated
by the additive noise and therefore it can still be used as a parameter
choice method. A procedure for reducing the additive white noise
within the BIM has been given so that over-smoothing is avoided.

The main advantage of the NCP method is that more than
just the norm of the residual is used to determine the regularization
parameter, and by using the additive noise technique described here,
this advantage is applicable to nonlinear inverse scattering problems.
We have found that the linearization at each step of the BIM limits
the use of both the L-curve and the GCV parameter-choice methods in
conjunction with Tikhonov regularization for solving nonlinear inverse
scattering problems, but that similar additive white noise techniques
can be used to adapt these methods. These will be described in future
publications.
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