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Abstract
We consider microwave tomography (MWT) where the imaging region is
surrounded by an electrically conducting surface. This surface acts as both a
shield from outside interference, holding tank for any possible matching media,
and, in certain cases, serves to enhance the performance of electromagnetic
(EM) inversion algorithms. For the 2D transverse magnetic (TM) case and
where the surface consists of a perfect electrical conductor (PEC) in the shape
of a circular cylinder, we formulate an appropriate Greens function which is
amenable to implementation in the existing EM inversion codes. We utilize
this Greens function in the multiplicative-regularized contrast source inversion
(MR-CSI) method. Several different synthetic examples are used to test the
performance of the inversion when the PEC surface is present and the results
show that in many cases, the tomographic image is significantly improved. The
reasons for the improved inversion results are an area of active research, but are
likely to be due to the increased interrogation energy deposited into the imaging
region. Results are also shown which demonstrate the problems which may
arise if the unbounded domain Greens function is used in an MWT system that
utilizes a matching medium of finite extent—a problem which is overcome by
the inclusion of a PEC surface on the exterior of the MWT system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electromagnetic and acoustic tomography requires the inversion of a wave equation. Various
inversion techniques for wave equations arising from electromagnetic and acoustic scattering
imaging systems have been developed since the early 1980s. A substantial amount of research
during the last decade or so has focused on the full nonlinear inversion problem. These
techniques have matured to the point where researchers are taking them as serious contenders
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for biomedical imaging and identification, and experimental systems have already been created
that show good potential for electromagnetic imaging of limbs [8, 9] and breast tumours
[15, 19]. The main advantage of full inversion, as opposed to a linearized imaging technique,
is that a quantitative inversion of such material parameters as conductivity and permittivity
goes a lot further toward solving the clinical identification problem, e.g. tumour or no tumour,
and makes the technique much more useful for biomedical applications.

A large class of inversion techniques for wave-type equations are formulated as
nonlinear optimization problems which are then solved using some iterative technique (see,
e.g. [6, 20, 21]). Most of these techniques require the use of a Greens function for the
particular tomographic setup and, typically, researchers have implemented these methods with
the Greens function associated with a scatterer located in an unbounded homogeneous region.
However, this assumption rarely matches the physical situation for proposed imaging systems.
For example, several recently proposed and implemented biomedical imaging systems [15, 16,
18, 19] utilize a matching fluid contained in a tank made of material such as plexi-glass. The
assumption of a homogenous background Greens function in the inversion method ignores
the field distortions caused by the finite-extent matching medium, and may lead to inversion
artefacts, as will be shown herein. To our knowledge only one other group has implemented
MWT in an enclosed system [12].

In this paper, we consider surrounding the imaging area with an electrically conducting
boundary surface that acts both as the container for the matching medium as well as a shield
against external sources of radiation. The use of the conductor allows for more accurate
modelling of the reflections at the tank boundary, and thus the ability to incorporate them into
the imaging algorithm. While previous work has provided ways to eliminate these undesired
fields [13], and take the fields into account, [14], in this paper we consider utilizing (not just
removing or accounting for) the boundary reflections in the inversion algorithm. To this end,
we show inversion results for identical scatters for both homogenous (infinite) and enclosed
problems which show significant improvements for the enclosed case. We have found no
published comparisons of the enclosed versus homogenous systems.

While the idea of using a conducting boundary to surround the imaging region in an
inverse problem is not particular to any given inversion algorithm, in this paper we utilize
the contrast source inversion (CSI) algorithm [6–10], due to its success in solving the inverse
problem for homogenous backgrounds. The CSI method has been shown to be suitable for a
wide range of MWT problems [9–11].

In this paper, results are shown for the case where the external conductive surface may be
accurately modelled by a perfect electric conductor (PEC) in the shape of a circular cylinder,
and the EM radiation may be accurately modelled as a 2D transverse magnetic (TM) problem.
We formulate a form of the 2D circular-cylinder Greens function that is easily utilized in the
existing electromagnetic code structure. While the formulation presented herein is for the 2D
scalar wave equation, the idea is extendable into 3D and vector problems.

2. Imaging system and theoretical model

We consider a tomographic imaging system which is surrounded with an electrically conductive
surface. A schematic of the imaging system is shown in figure 1. The conductive surface serves
as both the container for any possible matching fluid and a shield from outside interference.
The inclusion of the conductive surface differs from existing tomographic imaging systems,
which typically have a plexi-glass or similar surface [15, 16, 18, 19]. The inclusion of the
conducting enclosure considerably changes the distribution of the EM energy as compared to
that of an open system. Key to the imaging system is that this distorted field is taken into
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Figure 1. The enclosed imaging system. The unknown scatterer is embedded in a matching fluid
which is surrounded by an electrically conductive surface. Here, the surface is shown as a circular
cylinder of radius a.

account in the imaging algorithm, via the appropriate Greens function. While the shape of the
surface considered herein is a cylinder, in general any shape for which a closed form of the
Greens function is known may be used.

A 2D transverse magnetic (TM) (scalar) model is used throughout this paper, and the
scalar field quantity (in this case, Ez) is represented with the symbol u. The conducting
container is modelled as a PEC. The governing differential equation is the 2D scalar wave
equation. We utilize a frequency domain model with an assumed ejωt time dependency. A
series of transmitters, with positions labelled k = 1, . . . , K , illuminates an unknown scatterer
with an incident field denoted uinc

k . The scatterer is located entirely within the region D and is
embedded in a homogenous background medium with a (possibly complex for lossy media)
background permittivity of εb, and a non-magnetic medium with a permeability of free space
(µb = µ0).

The scattered field is measured outside the region, and given by the data equation

usc
k (r) = k2

b

∫
D

g(r, r′)χ(r′)uk(r′) dr′ r /∈ D, (1)

where r is the location of the receiver, g is the background Greens function, uk is the total field
for the transmitter k, and usc is the scattered field. The background wave number is given by

kb = ω
√

εbµb, (2)

where ω is the radial frequency. The contrast, χ is

χ(r) = ε(r) − εb

εb

= k2
b

k2(r)
− 1, (3)

where k2(r) and ε(r) are the wave-number and complex permittivity inside the scattering
region, respectively. The frequency dependence of permittivities, for either the scatterer or
background, is assumed to arise only from the dc conductivity of the medium, and therefore
we may express the real and imaginary parts of the permittivity as

ε = ε′ + jε′′ = ε′ − j
σ

ω
. (4)
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For the case where the background is lossless, i.e. ε′′
b = 0, we may express the contrast as

χ(r) = χ ′ + jχ ′′ = ε′(r) − εb

εb

+ j
ε′′(r)
εb

. (5)

Thus, for lossless backgrounds, the imaginary part of the contrast is non-positive.
The fields inside the region D are modelled by the domain equation

uk(r) = uinc
k (r) + k2

b

∫
D

g(r, r′)χ(r′)uk(r′) dr′ r ∈ D, (6)

where now r is located inside the scattering region D. The data (1) and domain (6) equations
form a nonlinear ill-posed inverse problem for the unknown contrast, χ and the fields inside
the imaging domain D.

The fundamental difference in moving from an open system to a system with a conductive
enclosure is that the Greens function in the data (1) and domain (6) equations changes from
a relatively simple Hankel function to a more complicated analytic expression for the Greens
function of the enclosed problem. The closed form for the modified Greens function applicable
to the circular cylinder is given in section 4. Many of the advantages associated with the
enclosed imaging system derive from this change in the Greens function for the inverse
problem.

3. The multiplicative-regularized contrast source inversion method

While the enclosed imaging system is not particular to any given inversion method, and the
inverse problem may be solved in a multitude of ways, we utilize the MR-CSI method [6, 7]
as it has shown extensive success as an inversion method applied to both noisy computational
and experimentally collected data [8–10]. The many advantages of this inversion technique
include that it does not require any a priori information (but it may easily be taken into account
if desired), no forward solver is required in the optimization procedure, it does not require
the manual selection of a regularization parameter, and it has a computational complexity of
only approximately twice that of a forward solver. In addition, the MR-CSI is suitable for
wide-band simultaneous multi-frequency inversion. Note that the formulation of the MR-CSI
method does not depend on the particular Greens function used, and the use of a conducting
enclosure does not substantially affect the method. The data equation is first re-written as

fk(r) = k2
b

∫
D

g(r, r′)χ(r′)uk(r′) dr′ r /∈ D, (7)

where fk is the measured data. It is assumed that (7) does not hold exactly, as the data are
unavoidably corrupted with noise. In symbolic notation, we now write the data equation as

fk(r) = k2
bG

Sχuk, (8)

where the operator GS is defined as

GS[◦] := k2
b

∫
D

g(r, r′)[◦] dr′ r ∈ S, (9)

and S is a measurement surface (or set of discrete measurement points). Similarly, the domain
equation is written as

uk = uinc
k + GDχuk, (10)

where the operator GD is defined as

GD[◦] := k2
b

∫
D

g(r, r′)[◦] dr′ r ∈ D. (11)
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Next, define the contrast sources, wk as

wk(r) ≡ χ(r)uk(r) r ∈ D. (12)

By multiplying both sides of the domain equation, (10) with the contrast, χ , and utilizing the
definition of the contrast sources we may write

χuinc
k = wk − χGDwk. (13)

The CSI method formulates the inverse problem as an optimization function in two
variables: the contrast, χ and the contrast sources, w. The objective function is minimized
via an iterative optimization scheme. The core of the CSI method is the objective function

Fn = F(wk,n, χn) = FS(wk,n) + FD(wk,n, χn), (14)

where each term on the right-hand side is created by summing over the transmitter locations

FS(wk,n) =
∑

k‖ρk,n‖2
S∑

k‖fk‖2
S

and FD(wk,n, χn) =
∑

k‖rk,n‖2
D∑

k

∥∥χnu
inc
k

∥∥2
D

. (15)

Here ρ is the data error, defined as

ρk,n = fk − GSwk,n r ∈ S, (16)

and r, known as the domain (or object) error, is defined as

rk,n = χnuk,n − wk,n = χnG
Dwk,n + χnu

inc
k − wk,n r ∈ D. (17)

The index n = 1, . . . , N represents the iteration number. The normalization terms in both FS

and FD (15) are utilized to balance between the two terms in the overall objective function.
An important aspect of the CSI method is the inclusion of the domain equation inside the

objective function thus obviating the need for a separate forward solver. The minimization
over both unknowns χ and w is performed sequentially by taking alternating steps of the
conjugate gradient minimization algorithm on each unknown. Closed-form expressions used
in this minimization algorithm are available, which significantly increases the computational
efficiency. The details of the minimization can be found in [6–10].

3.1. Multiplicative regularization with total variation

The CSI method may be further enhanced via the use of the multiplicative regularization
(MR) which is based on minimizing the total variation of the contrast [7, 8]. It has been
shown that this regularization significantly improves the performance of the algorithm in
noisy environments [7] and eliminates the need for a user-selected regularization parameter,
as in Tikhonov regularization (see, e.g. [9, 20]). The MR-CSI objective function becomes

C(wk,n, χn) = FT V (χn)Fn(wk,n, χn), (18)

where

FT V (χn) = 1

A

∫
D

|∇χn(r)|2 + δ2
n−1

|∇χn−1(r)|2 + δ2
n−1

dr, (19)

where A is the area of the imaging region D, δ2
n−1 = F 2

n−1�
−2, and � is the length of a side of

single cell in the discretized domain (i.e. �−2 represents the reciprocal of the area of a single
cell area of the domain . For example, on a rectangular grid, �−2 = 1/(�x�y).

In all cases considered in this paper, we utilize the multiplicative-regularized version of
the CSI algorithm.
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4. Derivation of the scalar Greens function for cylindrical PEC bounded imaging

In order to implement both a forward solver to generate synthetic data, and the actual MR-CSI
inversion algorithm, we require an appropriate closed form of the Greens function for the
enclosed homogenous region. To get this Greens function, we seek the solution to the scalar
wave equation when the boundary condition is that of a circular PEC cylinder. Let the surface
of the PEC cylinder be denoted by S, and the region enclosed by the cylinder as V . The
governing differential equation (the wave equation) is given by

∇2u(r) + k2(r)u(r) = −F(r) r ∈ V, (20)

where u is the scalar field quantity of interest, k is the wave number (which may depend on
position), F is a source term, and r represents position. The field quantity must also satisfy
the boundary condition

u(r;ω) = 0 r ∈ S (21)

on the surrounding PEC surface.
The Greens function for a homogenous medium satisfies the equation

∇2g(r, r′) + k2g(r, r′) = −δ(r − r′) r ∈ V. (22)

Different Greens functions can be chosen based on the selection of the boundary conditions
associated with (22). The boundary conditions may be selected to best suit a particular
problem. By considering Greens second identity∫

V

(φ∇2ψ − ψ∇2φ) dV =
∮

S

(
φ

∂ψ

∂n
− ψ

∂φ

∂n

)
dS, (23)

and noting that

∇2u(r) = −F(r) − k2u(r) ∇2g(r, r′) = −δ(r − r′) − k2g(r, r′) (24)

we may write

u(r) =
∫

V

g(r, r′)F (r′) dr′ +
∮

S

(
u

∂g

∂n
− g

∂u

∂n

)
dS. (25)

If this were a free-space problem, we could eliminate the surface integral by selecting
g = 0 on S and requiring that g satisfies the Sommerfeld radiation condition. However, with
the PEC surface, we cannot utilize these conditions. Instead, we utilize the modified Greens
function method [1]. We introduce a function, p(r, r′) which satisfies the homogenous scalar
Helmholtz equation

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ V, (26)

and define the modified Greens function as

g(r, r′) = gf s(r, r′) + p(r, r′), (27)

where gf s(r, r′) is the free-space Greens function (i.e. the usual Greens function in the absence
of the PEC surface). It may be noted that the addition of the function p makes no contribution
to the right-hand side of (22). If we now assume that g satisfies the PEC boundary condition,
then we have

p(r, r′) = −gf s(r, r′) r ∈ S, (28)

and thus the differential equation for the function p becomes

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ V
(29)

p(r, r′) = −gf s(r, r′) r ∈ S.

6
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With this construction, and the assumption that the derivative of the Greens function is finite
on the surface S, the surface integral in (25) is eliminated and we get

u(r) =
∫

V

g(r, r′)F (r′) dr′. (30)

4.1. Solution for the scalar Greens function

In order to utilize the Greens function as derived above, we must find an expression for the
function p. The homogenous differential equation of (29) may be solved via the introduction
of a cylindrical coordinate system for r, (r, θ), centred at the origin and the use of separation
of variables [5]. The eigenfunction expansion of p is given by (see the appendix for the full
derivation)

p(r, θ, r′) = A0√
2π

J0(kr) +
∞∑

n=1

(
AnJn(kr)

cos(nθ)√
π

+ BnJn(kr)
sin(nθ)√

π

)
, (31)

where Jn is the nth order Bessel function of the first kind, and the coefficients An and Bn are
given by

An(r, r′) = −1√
πJn(ka)

∫ π

−π

gf s(a, θ, r′) cos(nθ) dθ

(32)
Bn(r, r′) = −1√

πJn(ka)

∫ π

−π

gf s(a, θ, r′) sin(nθ) dθ,

where a is the radius of the cylinder. In our case,

gf s(r, r′) = 1

4j
H

(2)
0 (k|r − r′|), (33)

where H
(2)
0 is the zeroth-order Hankel function of the second kind, (note this is the 2D

homogenous space Greens function corresponding to the use of ejwt time dependency).
Closed-form expressions for An and Bn may be derived (see the appendix), and are given

by

An = −π

4j
√

πJn(ka)

[
Jn(k|r′|) e−jnφ′

H(2)
n (ka) + J−n(k|r′|) ejnφ′

H
(2)
−n (ka)

]
(34)

and

Bn = −π

4
√

πJn(ka)

[
Jn(k|r′|) e−jnφ′

H(2)
n (ka) + J−n(k|r′|) ejnφ′

H
(2)
−n (ka)

]
, (35)

where H(2)
n is the nth order Hankel function of the second kind, and φ′ is the angle associated

with the position vector r′. These closed-form expressions significantly reduce computation
time for the Greens function.

Figure 2 shows a plot of the magnitude of the Greens function for a frequency of 1 GHz
inside a PEC cylinder of radius 20 cm with a lossless background of εr = 3. For comparison
purposes, the regular free-space Greens function is plotted in the same figure. Note that both
Greens functions are singular at the source, but the discretization used in figure 2 avoids these
singularities. However, it is instructive to note how much more energy is located throughout
the PEC cylinder than for unbounded space.

In the context of computational electromagnetics, it is important to eliminate the surface
integral in (25). The elimination of this integral allows for the application of standard
(frequency domain) electromagnetic computational techniques, i.e. only a minimal change
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Enclosed Greens function for f =1 GHz at Tx = (0.15,0)
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Figure 2. Example of Greens functions. (a) Greens function for a source at (0.15, 0) with a PEC
cylinder of radius 20 cm and frequency of 1 GHz. (b) Unbounded Greens function at the same
location and frequency. Significantly more energy is located inside the PEC cylinder.

is required to switch an extant computational code to the new physical situation. In addition,
we note that the only singularity of the Greens function, g, is located in the free-space term.
This is due to the fact that the term satisfies a homogenous differential equation. This means
that standard methods of extracting singularities [3, 4] in method of moments (MoM) codes
remain unchanged. This advantage is not a feature of other forms of the Greens function (see,
for e.g. [2, section 14.6.2]). To evaluate integrals of the function p, we may utilize standard
quadrature techniques, due to the fact that p is a smooth function.

5. Implementation of the modified Greens function in the MR-CSI

The use of the modified Greens function in MR-CSI requires little or no changes at the
conceptual level. All that is required is the use of the modified Greens function in the
functional to be minimized (14). However, the switch in Greens functions does affect
the numerical implementation. From a computational perspective, the most important aspects
of the PEC Greens function are that (1) the Greens function cannot be written in the form
g(r, r′) = g(r − r′) and (2) the fields do not decay monotonically as the distance between r
and r′ increases. As these two properties are the core requirements required for the FFT and
fast multipole acceleration methods respectively, the usual techniques used to make O(N2) (in
memory and computational time) matrix operations into fast O(N log N) matrix operations
are not applicable to matrices which result from the use of this Greens function. The lack of
these two desirable properties is not formulation dependent, in that they represent the actual
physics of EM point sources in a PEC enclosed structure (the existence of standing waves).
Thus, a simple re-formulation of the Green function will not allow these acceleration methods
to be applied.

Despite these apparent difficulties with the enclosed problem, a solution which does
scale as in computation time is reported in [14], thus the problem is tractable. However,
for simplicity, the results in this paper are generated with all matrix multiplication in the
format.

In practice, the infinite sum in equation (31) must be truncated. This is accomplished by
taking enough terms in the series until it converges to within some error tolerance.
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6. Computational results

Several different synthetic data sets based on a 2D model have been generated to test the efficacy
of the enclosed microwave tomographic method. The incident field for every transmitter was
a line source which was parallel to the axis of the scatterer, i.e. the incident field was taken
to be the Greens function. The data were generated with a 2D method of moments (MoM)
solver using pulse basis functions and point matching [23].

In order to test the inversion algorithm’s performance in the presence of noise, 10% RMS
additive white noise was added to all scattered field measurements as follows [22]:

f
Noisy
k = f meas

k + max
(∣∣f meas

k

∣∣,∀f meas
k

)Ns√
2
(α + jβ), (36)

where α and β are uniformly distributed random numbers between −1 and 1, and Ns is the
desired fraction of noise (in this paper, Ns = 0.1). For every inversion example, the conditions
Re(χ) > 0 and −Im(χ) < 0 were enforced at every step of the MR-CSI algorithm.

For image clarity, all results in figures 3–6 display the negative of the imaginary part of
the contrast, −Im(χ) = ε′′/εb. Furthermore, for all reconstructions displayed in figures 3–6,
we calculated the L1, L2 and L∞ vector norms based on the exact permittivity, χexact. The
vector norms are normalized by the norm of the exact contrast, and are discretized versions of
the norms for the continuous case

Lp = ‖χexact(r) − χrecon(r)‖p

‖χexact(r)‖p

, (37)

where χrecon(r) is the reconstructed contrast. These vector norms are given in table 1. Due to
the fact that forward and inverse grids are not identical, the discretized versions of (37) were
calculated by interpolating onto a finer and finer mesh until the norm converged.

6.1. Square scatterer

For the first numerical example, we consider a simple scenario consisting of a square lossy
scatterer. The operating frequency was 1 GHz, and the scatterer is embedded in a PEC
cylinder of radius 20 cm. The lossless background has a permittivity of εb = 3ε0, where ε0

is the permittivity of free space. This low value of relative permittivity was chosen to avoid
excessively small wavelengths which overburden the O(N2) computations. The scatterer is
illuminated by ten transmitters located evenly on a circle of radius 15 cm. The scattered field
is measured at 40 receiver points placed on a circle of radius 16 cm. The inversion region D
is a square with edges of 20 cm length located in the centre of the PEC cylinder. The scatterer
consists of a square object with sides of length 10 cm and a contrast of χ = 2.0 − j1.0. Thus,
the object has edges slightly larger than 0.5 λ. The exact contrast is shown in part (a) of
figure 3. The forward data were generated on a grid of 30 × 30 placed over D. In order to
avoid an inverse crime the inversion grid was selected to be 29 × 29 cells: this ensures that
numerical quadrature points for the inverse and forward problem are distinct. The inversion
results after 1024 iterations of the MR-CSI algorithm with the enclosed (PEC bounded) Greens
function are shown in part (b) of figure 3.

The reconstruction results show a good, but not perfect reconstruction of the object. The
overall shape of the scatterer is clearly visible, and the magnitude of both the real and imaginary
parts of the contrast are close to the exact values. However, the edges of the object are slightly
blurred, which is not unexpected given difference between the forward and inversion grids,
and the real part of the reconstruction overshoots the exact value of 2.0.
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(d) 2D real part of reconstructed contrast, y = 0
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(d) 2D imaginary part of reconstructed contrast, y = 0

Figure 3. Square scatterer reconstruction after 1024 steps of the MR-CSI algorithm. (a) The exact
contrast of the scatterer. (b) The MR-CSI reconstruction when the both forward data generation
and inversion include a cylindrical PEC shield. (c) Reconstruction when both the forward data
generation and inversion assume a free-space background. (d) A 2D cross section at y = 0
for (black dash line) exact, (blue solid line) enclosed reconstruction, (red dash dot) free-space
reconstruction.

For comparison purposes, new data were generated for the equivalent unbounded problem:
all input parameters for the forward solver were kept the same, except the PEC cylinder was
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(d) 2D real part of reconstructed contrast, y = 0
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(d) 2D imag part of reconstructed contrast, y = 0

Figure 4. Low-contrast concentric squares after 1024 steps of the MR-CSI algorithm. (a) The exact
contrast of the scatterer. (b) The MR-CSI reconstruction when the both forward data generation
and inversion include a cylindrical PEC shield. (c) Reconstruction when both the forward data
generation and inversion assume a free-space background. (d) A 2D cross section at y = 0 for
(black dash line) exact, (blue solid line) enclosed recon., (red dash dot) free-space recon.

removed (i.e. the regular unbounded-space Greens function was used). Thus, the target was
embedded in an infinite medium filled with the background permittivity of εb = 3ε0. The
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(d) 2D real part of reconstructed contrast, y = 0
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(d) 2D imag part of reconstructed contrast, y = 0

Figure 5. Mid-contrast concentric squares after 1024 steps of the MR-CSI algorithm. (a) The exact
contrast of the scatterer. (b) The MR-CSI reconstruction when the both forward data generation
and inversion include a cylindrical PEC shield. (c) Reconstruction when both the forward data
generation and inversion assume a free-space background. (d) A 2D cross section at y = 0 for
(black dash line) exact, (blue solid line) enclosed recon., (red dash dot) free-space recon.

forward data were then inverted in the MR-CSI reconstruction using the regular unbounded-
space Greens function. The reconstruction from the unbounded-space forward and inverse
solvers is shown in part (c) of figure 3. Although the reconstruction shows the approximate
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(d) 2D real part of reconstructed contrast, y = 0
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(d) 2D imag part of reconstructed contrast, y = 0

Figure 6. Mutli-frequency concentric squares after 1024 steps of the MR-CSI algorithm.
(a) The exact contrast of the scatterer. (b) The MR-CSI reconstruction when the both forward
data generation and inversion include a cylindrical PEC shield. (c) Reconstruction when both the
forward data generation and inversion assume a free-space background. (d) A 2D cross section at
y = 0 for (black dash line) exact, (blue solid line) enclosed recon., (red dash dot) free-space recon.

outline of the scatterer, it significantly overshoots the correct values for both the real and
imaginary parts of the contrast. More importantly, the reconstruction shows significant
structure inside the scatterer where no such structure exists (e.g. −Im(χ) varies from 0 to 3
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Figure 7. The MR-CSI objective function, C(w, χ) versus iteration number for (a) simple square,
(b) low-contrast concentric squares, (c) high-contrast concentric squares and (d) multi-frequency
concentric squares reconstruction.

inside the scatterer). If one was searching for an inhomogeneity in a target (e.g. a tumour in a
breast), this would render the reconstruction untrustworthy.

For further clarity, two-dimensional cross sections of the two reconstructions are shown
in part (d) of figure 3. The value of the MR-CSI objective function, C(w, χ), for these two
reconstructions is shown in part (a) of figure 7. The objective function is lower when the
PEC cylinder is present. In addition, as shown in table 1 the L1, L2 and L∞ vector norms are
significantly improved when the PEC cylinder is present.

In this case, it is clear that the use of the bounded-region tomographic system has
significantly improved the reconstruction. We hypothesize that the reconstruction is improved
because more energy is located inside the lossy scatterer due to the bounding of the energy
by the enclosure. However, it is unclear exactly how this extra energy effects the inversion
algorithm. This is an area of ongoing research for which we make speculative remarks in the
conclusion.

6.2. Concentric squares

6.2.1. Low contrast concentric squares. Next, we consider the same scattering object as has
been used as a test case for the MR-CSI method [6, 7]. The scatterer consists of two concentric
squares, with an inner square having sides of length λ, with a contrast of χ = 0.6 − j0.2,
embedded in an exterior square having sides of 2λ and contrast χ = 0.3 − j0.4. The exact
contrast profile is shown in part (a) of figure 4. The imaging region D consists of a square
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Table 1. Relative vector norms of reconstructed contrast functions.

Reconstruction with Reconstruction without
PEC enclosure PEC enclosure

Simple squares (figure 3)
L1 error 25.2% 60.6%
L2 error 24.6% 47.2%
L3 error 73.3% 90.7%

Low-contrast concentric squares (figure 4)
L1 error 23.1% 15.5%
L2 error 22.5% 17.3%
L3 error 45.9% 40.0%

High-contrast concentric squares (figure 5)
L1 error 26.2% 26.0%
L2 error 24.4% 29.4%
L3 error 36.8% 47.9%

Multi-frequency concentric squares (figure 6)
L1 error 27.9% 68.6%
L2 error 24.8% 59.3%
L3 error 51.6% 69.9%

having sides of length 3λ. A single frequency of 1 GHz was utilized, and free space was
assumed for the background. The forward data were generated on a grid of 31 × 31. Thirty
transmitters were spaced evenly on a circle of radius 2.33λ = 70 cm, and 40 receivers were
placed evenly on a circle of radius 2.17λ = 65 cm. The scatterer was surrounded by a PEC
cylinder of radius 90 cm or approximately 3λ.

The data were inverted via the MR-CSI algorithm with the bounded Greens function. As
before, the inversion mesh was selected to have 29 × 29 elements. The reconstruction after
1024 iterations of the MR-CSI algorithm is shown in part (b) of figure 4. The reconstruction
is not as good as for the single square case, but the inner square is clearly visible.

Again, the forward data were re-generated for the case where no PEC cylinder was
present, but keeping every other parameter of the forward solver the same. These unbounded
free-space data were inverted via the MR-CSI algorithm with the unbounded Greens function,
and the results are shown in part (c) of figure 4. Two-dimensional cross section results are
shown in part (d) of figure 4. The MR-CSI objective function versus the iteration number is
shown in part (b) of figure 7. The three vector norms of the reconstructions are also given in
table 1.

In this case, the reconstruction results are slightly better for the unbounded case, as shown
by the vector norms, and the final value of the MR-CSI objective function. However, both
reconstructions provide reasonable results in that the overall structure of the scatterer is visible
and the value of the vector norms are low in both cases. We speculate that this is due to
the fact that the contrast is lower than the previous case of the single square. These results
do not exactly match previously published reconstructions with the MR-CSI method, but this
discrepancy is due to different transmitter and receiver configurations and noise levels (more
noise was added than in [7]).

6.2.2. Mid contrast concentric squares. The concentric square example was run again, but
this time with a higher contrast scatterer, with a contrast of 150% of the previous example for
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both inner and outer squares. The dimensions were kept identical. The inner square now has a
contrast of χ = 0.9 − j0.3, and the outer square has a contrast of χ = 0.45 − j0.6. Both the
bounded Greens function and unbounded forward solvers were run again, and the data were
inverted via the appropriate MR-CSI program. All computational parameters were unchanged
from the previous concentric squares case.

The reconstruction results are shown in figure 5, the MR-CSI objective functions in part
(c) of figure 7, and the vector-norm errors in table 1. The results are very close for all metrics,
but slightly better for the enclosed case. While neither reconstruction resolves the two squares
perfectly, the inner square is unresolved when the unbounded-space Greens function is utilized.
Although the exact contrast of the inner square is not obtained in the bounded reconstruction,
the outline is at least visible.

6.3. High-contrast multi-frequency concentric squares

A high-contrast scatterer was created which consists of two concentric squares with the inner
square having sides of length 6 cm, and the outer square having sides of length 10 cm. The
contrast for the inner cylinder is given by χ = 3.6 − j0.2 at a frequency of 0.5 GHz, and the
outer square has a contrast of χ = 2.0 − j0.1 (also at 0.5 GHz). The scatterer was embedded
in a background medium with permittivity of εb = 3ε0. The object was illuminated by 12
sources, placed on a square centred at the origin with sides of 15 cm, at frequencies of 0.5, 1
and 2 GHz. Thus, at the lowest frequency, the scatterer had dimensions of L ≈ 0.29λ, and at
the highest frequency, L ≈ 1.15λ. Forty receivers were utilized on a circle of radius 16 cm.
For the forward solver, the scatterer was discretized into 45 × 45 cells, and for the inverse
solver, a grid of 47 × 47 was utilized. For the first experiment, the scatterer was surrounded
by a PEC surface of radius 20 cm. For the second, the scatterer was embedded in an infinite
homogenous background medium.

The contrast reconstructions are shown in figure 6, the MR-CSI objective function is
shown in part (b) of figure 7, and the vector-norm errors for the reconstructions are given in
table 1. The results show that the enclosed system performs much better than the unbounded
one for every single metric. While neither reconstruction is perfect, the reconstruction with
the PEC cylinder clearly shows the general shape of the object for the real part of the contrast,
and the values of the squares are quite close. Both reconstructions fail for the imaginary part
the contrast.

6.4. Matching medium artefacts produced by unbounded domain MWT

It is interesting to note that many researchers who utilize the unbounded domain microwave
tomography also use a matching media, which, for practical reasons, is of finite extent. In
theory, this invalidates the use of the unbounded homogenous domain Greens function. Good
results have been obtained due to fact that the loss associated with the matching media allows
very little energy to reach the boundaries of the matching region. However, due to the finite
dynamic range of practical MWT systems, it is desirable to not introduce a lossy matching
medium. In this section, we attempt to quantify the artefacts introduced when the unbounded
domain Greens function is utilized in a lossless matching media MWT system.

The simulated problem for this case is shown in figure 8. We simulate a tomographic
imaging system which has a cylindrical matching fluid of εb = 4ε0 with radius 30 cm. Inside
the holding tank are two cylindrical scatterers of radius 4 cm centred at (x, y) = (±5, 0) cm
and with permittivity of ε = 5ε0. Thirty transmitters are located on a circle of radius 25 cm,
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Figure 8. Simulation of a tomographic imaging system without a PEC boundary. Two cylinders
of radius 4 cm are embedded in the tank of matching fluid with ε = 4ε0. The matching medium is
surrounded by unbounded free space.
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Figure 9. Reconstruction of two cylinders with and without PEC. (a) Reconstruction when
a PEC cylinder surrounds the matching medium and is taken into account in the inversion.
(b) Reconstruction when the matching medium is surrounded by free space, and an infinite matching
medium is assumed in the inversion. The reconstruction in (b) is completely wrong.

and 40 receivers are located on a circle of radius 23 cm. An operation frequency of 1 GHz
was utilized for this example.

Two computational experiments were performed. In the first, the embedding medium was
located within a PEC cylinder. Data were generated, and inverted via the MR-CSI algorithm.
The inversion results for the real part of the contrast are shown in part (a) of figure 9. The
imaginary reconstruction is not included as the contrast is very close to zero (as required). As
can be seen, the two cylinders are reconstructed reasonably well.

In the second computational experiment, synthetic data were generated taking into account
the finite matching medium. That is, we assumed that some fictitious EM transparent tank
was holding in the matching medium. The data were generated, and inverted via the MR-
CSI algorithm assuming that the inhomogeneities were embedded in an infinite background
medium. Thus, the reflections from the edge of the embedding medium are not taken into
account in the inversion, and will produce artefacts in the reconstruction. The reconstruction
results are shown in part (b) of figure 8. As can be seen, this reconstruction is completely
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wrong due to the fact that the reflections from the edge of the matching medium completely
overwhelm the scattering from the two cylinders in the tank. Therefore, an additional advantage
of the enclosed MWT system is that these artefacts are not produced. These inversion results
would improve with the use of a lossy matching medium, but, as stated previously, this would
come at the cost of adding undesirable loss to the scattering experiment.

7. Conclusion

We have considered a method of microwave tomographic imaging where the imaging region
is surrounded by an electrically conductive surface. For the case where this surface is a
PEC cylinder, we have derived a version of the enclosed-domain Greens function which is
amenable for use in existing computational solvers with only small modifications. This Greens
function was implemented in both a MoM forward solver for producing synthetic data and in
the MR-CSI algorithm. The use of this Greens function precludes the use of standard “fast”
O(N log N) computational techniques, and currently all computations are implemented using
algorithms with O(N2) computational complexity, although this problem is tractable [14].

Several different synthetically generated examples were shown in which the use of a PEC
cylinder to surround the scattering object improved the inversion results over the usual method
of embedding the scatterer in an infinite background medium. The improvements were not
seen in every case, but, the PEC enclosure did not significantly degrade the results in any case.
We hypothesize that the improvements which are present are due to the fact that more energy
is located inside the scatterer due to the reflections from the PEC surface, but these remarks
are only speculative as the exact connection between this energy and successful inversion is
poorly understood. Another hypothesis is that the standing wave or resonant nature of the field
distribution inside the enclosure contributes to the improved imaging. Another hypothesis is
that the norm of the Greens function operator effects these improvements. It has already been
shown in [24] that the sufficient conditions for the convergence of both the distorted Born
iterative method and Born iterative inversion methods are related to the norm of the Greens
function operator. In a second paper, we will analyze this improvement in more detail.

We also showed the artefacts which are generated with the use of a tomographic imaging
system which has a finite matching medium and a reconstruction algorithm which does not
take the finite nature of the matching fluid into account. The use of the external PEC cylinder in
the tomographic system, combined with the use of the related Greens function in the inversion
algorithm does not produce such artefacts.
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Appendix A. Separation of variables derivation for the PEC bounded Greens function

We are concerned with solving the 2D differential equation

∇2p(r, r′) + k2p(r, r′) = 0 r ∈ V

p(r, r′) = −gf s(r, r′) r ∈ S
, (A.1)
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where S is a circle of radius a. We first introduce the cylindrical coordinates r = (r, θ), and
write the Helmholtz equation in these cylindrical coordinates,

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2
+ k2p = 0 0 < r < a, −π < θ < π

p(a, θ, r′) = −gf s(a, θ, r′)
. (A.2)

Assuming that p may be written as

p(r, θ) = R(r)H(θ), (A.3)

we note that
R′′

R
+

1

r

R′

R
+

1

r2

H ′′

H
+ k2 = 0, (A.4)

where prime and double prime denote first and second derivatives, respectively. Due to the
fact that R and H are independent, we note

r2 R′′

R
+ r

R′

R
+ r2k2 = −H ′′

H
= α = constant, (A.5)

which results in two separated ordinary differential equations (ODE), solvable through the
application of the boundary and periodicity conditions. The first ODE is given by

H ′′ + αH = 0, (A.6)

and the periodicity requirement gives the conditions

H(−π) = H(π) H ′(−π) = H ′(π). (A.7)

Equations (A.6) and (A.7) constitute a Sturm–Louiville system [5] with eigenvalues

α = n2, (A.8)

where n is a non-negative integer, with corresponding orthonormal eigenfunctions

1√
2π

n = 0

(A.9)
1√
π

cos(nθ) +
1√
π

sin(nθ) n > 0.

The remaining differential equation is

r2R′′ + rR′ + (r2k2 − n2)R = 0. (A.10)

Equation (A.10) is Bessels equation of order n. We know that the solution to this equation
must be a summation of the Bessel functions of the form

Jn(kr), Yn(kr),H (1)
n (kr),H (2)

n (kr), (A.11)

where Jn(kr) is the nth order Bessel function of the first kind, Yn(kr) is the nth order Bessel
function of the second kind, and H(1)

n (kr) and H(2)
n (kr) are the nth order Hankel functions of

the first and second kind, respectively. However, since the solution p is non-singular inside
the PEC region, solutions to R must be of the form

Rn(r) = Jn(kr), (A.12)

as Jn(kr) is the only solution of Bessels equation which is non-singular.
Thus, general solutions of the form p(a, θ; r′) = R(r)H(θ) may be now written as

p(a, θ, r′) = A0√
2π

J0(kr) +
∞∑

n=1

(
AnJn(kr)

cos(nθ)√
π

+ BnJn(kr)
sin(nθ)√

π

)
, (A.13)
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where the coefficients, A0, An and Bn are chosen to satisfy the boundary conditions, namely

p(a, θ, r′) = −gf s(a, θ, r′), (A.14)

or

p(a, θ, r′) = A0√
2π

J0(ka) +
∞∑

n=1

(
AnJn(ka)

cos(nθ)√
π

+ BnJn(ka)
sin(nθ)√

π

)
. (A.15)

Making use of the orthonormal nature of the eigenfunctions of H(θ), we multiply both
sides of (A.15) by 1/

√
2π , and integrate from θ = −π to θ = π , and arrive at

A0 = −1√
2πJn(ka)

∫ π

−π

gf s(a, θ, r′) dθ. (A.16)

To determine An, we multiply both sides of (A.15) by cos(mθ)/
√

π and integrate over θ ,
which results in

An = −1√
πJn(ka)

∫ π

−π

gf s(a, θ, r′) cos(nθ) dθ. (A.17)

And by similar argument

Bn = −1√
πJ0(ka)

∫ π

−π

gf s(a, θ, r′) sin(nθ) dθ. (A.18)

These two integrals may be derived in a closed form by considering the identity
([2, section 11.4.2])

H
(2)
0 (k|r − r′|) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m=∞∑
m=−∞

Jm(kr)H (2)
m (kr ′) ejm(θ−θ ′) r � r ′

m=∞∑
m=−∞

Jm(kr ′)H (2)
m (kr) ejm(θ−θ ′) r � r ′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (A.19)

where r, r ′ and θ , θ ′ are the cylindrical coordinates for r and r′, respectively. For the integrals
in (A.17) and (A.18), r > r ′, and we may write

An = −1

4j
√

πJn(ka)

∫ π

−π

(
m=∞∑

m=−∞
Jm(kr ′)H (2)

m (kr) ejm(θ−θ ′)

)
cos(nθ) dθ, (A.20)

which equals

An = −1

4j
√

πJn(ka)

(
m=∞∑

m=−∞
Jm(kr ′)H (2)

m (kr) e−jmθ ′
)∫ π

−π

ejmθ cos(nθ) dθ, (A.21)

and since ∫ π

−π

ejmθ cos(nθ) dθ = π if |n| = m (A.22)

and is 0 otherwise, An is equal to the expression given in (34). The derivation for Bn proceeds
in an analogous manner.
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