
Abstract—A new method of choosing the regularization
parameter, originally developed for a general class of
discrete ill-posed problems, is investigated for
electromagnetic inverse scattering problems that are
formulated using a penalty method. This so-called
normalized cumulative periodogram (NCP) parameter-
choice method uses more information available in the
residual vector, as opposed to just its norm, and attempts
to choose the largest regularization parameter that makes
the residual resemble white noise. This is done by
calculating the NCP of the residual for each choice of the
regularization parameter, starting from large values and
stopping at the first parameter which puts the NCP inside
the Kolmogorov-Smirnov limits. The main advantage of
this method, as compared, for example, to the L-curve
and Generalized Cross-Validation (GCV) techniques, is
that it is computationally inexpensive and therefore
makes it an appropriate technique for large-scale
problems arising in inverse imaging. In this paper, we
apply this technique to the general-form Tikhonov-
regularized functional arising in the 2-D/TM inverse
electromagnetic problem, which is formulated via an
integral equation and solved using the Born Iterative
Method (BIM).

Keywords; Electromagnetic inverse scattering, general-
form Tikhonov regularization, normalized cumulative
periodogram, Born iterative method.

I. INTRODUCTION

It is well-known that the inverse scattering problem
is ill-posed; the solution to the mathematical problem is
not unique and does not depend continuously on the
measured data. Therefore, we usually attempt to find a
solution to the ill-posed operator by adding some
constraints and additional information to the system.
Three general classes of handling an ill-posed system of
equations are the penalty methods, various projection
methods, and hybrid combinations of these (see [1, 2]).
The Tikhonov method is the best-known penalty method

approach to regularizing an ill-posed system of
equations. The main idea behind the standard-form
Tikhonov regularization is that a regularized solution
with a small norm and sufficiently small residual norm
can be considered a good approximation to the desired
unknown solution to the ill-posed system. The second
approach, i.e., projection methods, try to project the
problem onto a subspace with a good basis for the
solution. The most famous projection method is the so-
called truncated singular value decomposition (TSVD)
[3], but usually projection is achieved using iterative
methods such as the conjugate gradient method,
GMRES, or other Krylov subspace methods [4]. The last
class of approaches are the hybrid methods [5], which are
based on regularizing the projected problem. This is
done because quite often the projection approach, which
casts the problem in a smaller subspace, does not
regularize the problem sufficiently.

The regularization in each of these methods usually
requires the computationally expensive step of choosing
an optimum regularization parameter. This is because the
resulting solution can be very sensitive to the choice of
regularization parameter. In the Tikhonov method, the
regularization parameter controls the weight of the
penalty term, while in the projection methods, the
dimension of the subspace is considered as the
regularization parameter, and therefore in the hybrid
methods we need two regularization parameters: one for
the dimension of the subspace and the other for
regularizing the projected problem. Many regularization
parameter-choice methods have been proposed in the
literature, for example, the discrepancy principle,
Generalized Cross-Validation (GCV), and the L-curve
have been widely used. The discrepancy principle [6]
uses the idea that the norm of the residual vector should
not be smaller than the norm of the noise in the measured
data, but is difficult to apply to electromagnetic inverse
problems. Generalized cross-validation [7] is a statistical
tool for choosing the regularization parameter by
minimizing a specialized functional and does not require
any knowledge about the noise variance in the data. The
other major parameter-choice method is the L-curve
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method which tries to balance the (semi) norm of the
solution and the corresponding residual [8] by choosing
the regularization parameter that puts one on the corner
of the L-curve. All of the aforementioned parameter-
choice methods are based on the norm of the residual
vector. They are also computationally expensive for
inverse methods, such as the Born Iterative Method
(BIM), where the optimal regularization parameter must
be chosen from an unknown wide range of possible
values at each iteration.

In this paper, we use a new parameter-choice
method for solving the inverse scattering problem which
is based on the Normalized Cumulative Periodogram
(NCP) of the residual vector, as opposed to just using the
norm of the residual; more of the available information is
used. This approach is called the NCP parameter-choice
method and was recently introduced by Hansen et. al.
[9]. The underlying idea of this method can be explained
as follows: we can model the measured data, contained
in a vector as the sum of a signal component and a white
noise component but, due to the smoothing effect of the
scattering operator, the power spectrum of the signal
component will be dominated by low frequencies
whereas the power spectrum of the white noise
component will have the same expectation at all
frequencies. Therefore, the spectral behavior of the
signal component is different from the spectral behavior
of the white noise and this difference can be used to find
a good regularization parameter for our ill-posed
problems [9]. As presented in this paper, this algorithm
can be used when the residual vector of the discrete ill-
posed system of equations looks statistically more like
white noise as we decrease the regularization parameter.
An extension of this inversion method to get around this
restriction has been developed (the details are provided
in [10]).

II. FORMULATION OF THE PROBLEM

The nonlinear integral equation that encapsulates
the 2-D time-harmonic, scalar inverse scattering problem
for transverse magnetic (TM) fields is written as

(1)

where  represents the observation point
in the Cartesian coordinate system, 
represents the wavevector, the wavenumber  is related
to the wavevector by .  is the z-
component of the scattered electric field defined as the
difference between the total field and the incident field.
In  equ a t ion  (1 ) ,  fo r  a  non-magn e t i c  med i a ,

 is the contrast profile which must be
recovered. The two-dimensional free-space Green’s
function, assuming an  time dependence, is given
as,

(2)

where  is the zeroth-order Hankel function of
the first kind.

For the results given in this paper, we assume that
data collection is done by a set of receivers which are
located on a circle around the object and that the object
is illuminated by TM plane-waves impinging on the
object from different incidence angles. The geometrical
configuration is the same as that described in [11]. For
obtaining a solution for the contrast in equation (1), we
use the Born iterative method [11]. This method
proceeds by first using the Born approximation [12] to
linearize the nonlinear integral equation which is then
solved for the unknown contrast using an inverse solver
(below we describe our inverse solver that is based on the
general-form Tikhonov regularization in conjunction
with the NCP parameter-choice method). The total-field
inside the imaging domain, corresponding to this
contrast, is then computed using a moment-method
forward solver (we use Richmond’s method [13]). The
newly updated total-field is then used in the subsequent
iteration for linearizing the integral equation and the
inverse solver is again used for obtaining a new
approximation to the contrast. This procedure continues
until a termination condition is satisfied: when the
change in the relative norm of the solution is less than a
specified value.

III. THE GENERAL-FORM TIKHONOV 
REGULARIZATION INVERSE SOLVER

After discretizing the linearized integral equation,
we obtain a system of linear equations , where

,  and  is to be found. The matrix
 is a discrete representation of the linearized kernel,

while  and  are column-wise stacked representations
of the 2-D discrete contrast function, , and
measured scattered field, , respectively. The
pseudo-inverse of  is unbounded due to ill-posedness
of the inverse problem. Therefore, for solving this matrix
equat ion ,  we  use  the  genera l - form Tikhonov
regularization method, which effectively produces a
regularized pseudo-inverse operator that is bounded, in
conjunction with a parameter-choice method based on
NCP that keeps the regularized solution as close as
possible to the exact solution. The general-form
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Tikhonov regularization method can be represented
concisely as producing a solution  given as,

(3)

where  is the regularization parameter, and 
is called the regularization matrix which can be any
matrix whose nullspace does not intersect with the
nullspace of  [14]. The vector  is generally taken as
a guess of the solution, and in our case we take it to be
the most recent value of the contrast (at the previous
iteration). We take  to be either the identity matrix or
the Laplacian operator with zero boundary conditions for
the unknown contrast profile. In these two cases, the
nullspace of  is trivial and will not intersect with the
numerical nullspace of the ill-posed operator, making the
solution to equation (3) unique.

IV. THE NCP PARAMETER-CHOICE 
METHOD

Consider the measured data, i.e., the scattered
electric field, as a matrix  where  denotes
the number of different angles at which the TM plane
wave illuminates the object and  denotes the angle at
which the qth receiver is located (on a circle around the
object). As mentioned previously, the measured values
in the matrix  consist of signal and noise components
and therefore this matrix can be represented as a signal
component matrix  and a white noise component
matrix : .

For simplicity of discussion assume that in equation
(3),  where  is the identity matrix and ,
then the residual vector of Tikhonov solution can be
written as,

(4)

where  and  is the matrix of
left singular vectors, , of the matrix , with each 
corresponding to , a singular value. The vectors  and

 are obtained by stacking the columns of  and  into
a vector of length . For the case where , the
singular values will be substituted by generalized
singular values of the pair  and  will be the
orthonormal matrix in the decomposition of  using the
generalized singular value decomposition of 
[15].

The diagonal components  look like
a high-pass filter when plotted against the index ,
because the singular values decrease rapidly for ill-posed

problems. The regularization parameter  determines
the “cut-off” index k of this highpass characteristic; the
smaller the value of , the larger the cut-off index. This
means that as we decrease the regularization parameter

, the first term in the residual,  will have little
contribution from these initial vectors since it can be
written as,

. (5)

It has been argued by Hansen et al. [9] that  has
few significant (i.e., non-zero) components in the
S ingu la r  Va lue  De compos i t i on  (SVD)  bas i s
corresponding to the first few left singular vectors of 
and the remaining components are almost zero. That is
why the smaller the  (i.e., the larger the cut-off index),
the less contribution from the first term in the residual
vector (in equation (4)). Thus, using a cut-off index that
suppresses all of the significant components of  in the
residual means that we have used as much information as
possible in the solution, and choosing the smallest such
index ensures a stable solution (giving an acceptable
trade-off between the regularization and perturbation
errors). The regularization parameter corresponding to
this cut-off index can be considered as the optimum
regularization parameter because it singles out the most
stable solution whose residual does not have any
important component of . The residual vector for this
optimum regularization parameter will be dominated by

, but  behaves statistically like white
noise for ill-posed problems because,

(6)

where  is the standard deviation of the additive white
noise and  is the identity matrix with the first 
diagonal elements set to zero. For ill-posed problems k is
very small and this covariance will be very similar to the
covariance of white noise. Therefore, the optimum
regularization parameter can be considered as the largest

 which makes the residual vector behaves statistically
like white noise.

The metric that is used to see if the residual “looks”
like white noise is the NCP of the residual [16]. So the
regularization procedure that we follow is to start with a
large , which is usually less than one, in which case the
NCP of the residual vector will look like that of the
data—meaning that we have a lot of the data information

xλ

xλ A†
λ

b minx
Ax b– 2

2 λ2 L x x0–( ) 2
2+

⎩ ⎭
⎨ ⎬
⎧ ⎫

= =

λ L Ck n×∈

A x0

L

L

B Cp q×∈ p

q

B

B
E B B E+=

L I= I x0 0=

rλ b Axλ– UΛUHb UΛUHe+= =

Λ diag λ2 λ2 σi
2+( )⁄{ }= U

ui A ui
σi b

e B E
p q× L I≠

A L,( ) U
A

A L,( )

λ2 λ2 σi
2+( )⁄

i

λ

λ

λ UΛUHb

ui
λ2

λ2 σi
2+

------------------ui
Hb

i 1=

n
∑ ui

λ2

λ2 σi
2+

------------------ui
Hb

i 1=

k
∑ +=

ui
λ2

λ2 σi
2+

------------------ui
Hb

i k 1+=

n
∑ ui

λ2

λ2 σi
2+

------------------ui
Hb

i k 1+=

n
∑≈

b

A

λ

b

b

UΛUHe UΛUHe

cov UΛUHe{ } UΛUH cov e{ }[ ]UΛUH= =

UΛUH η2I[ ] UΛUH( ) η2 UΛ2UH( ) η2Ik≈=

η
Ik k

λ

λ

209 ACES JOURNAL, VOL. 23, NO. 3, SEPTEMBER 2008



left in the residual. We then decrease  until the NCP of
the residual first becomes like that of white noise (i.e., a
curve between the Kolmogorov-Smirnov (KS) limits for
white noise, which are bounds around a straight line).
Once this happens, we can be sure that all the important
information available in  has been used in calculating

. Notice that if we decrease  further, the residual is
still white noise (or slightly highpass filtered white
noise) but the solution is more likely to be unstable due
to perturbation errors.

One note regarding our use of the NCP parameter-
choice method is that NCP is usually defined for real
vectors—because it is generally used as a statistical time-
series analysis tool [16]—but here we use the same
definition for the NCP of a complex vector. For finding
the NCP of the vector , we first find the power
spectrum of this vector as,

(7)

where  denotes the Hadamard product (i.e., element-
wise multiplication) and  denotes complex conjugate.
The components of the NCP vector, , can be
calculated as

, . (8)

In our case, the Kolmogorov-Smirnov (KS) limit
lines as a function of index  are given as 
where, for a significance level of 5 percent, we set

.

As was mentioned above, , and consequently ,
have only a few components that are significant in the
SVD basis of the ill-posed operator. Due to the similarity
of the SVD basis and the Fourier basis [9],  will also
have only a few significant components in the Fourier
basis. At the index location where these significant
components occur there will also occur step changes in
the NCP of . This means that the NCP of  will look
like a staircase plot where the step-locations correspond
to the location of the significant components of  in its
Fourier basis. In [9], a permutation matrix, , has been
introduced to reorder the elements of the power spectrum
of  such that all the significant information inside the
NCP of , i.e., the steps in the original NCP plot, are
moved to the first elements of the NCP vector. We’ve
observed that using this permutation matrix has no effect
on choosing the optimum regularization parameter.

V. NUMERICAL RESULTS

We present the results for two cases: a sinusoidal
contrast with an amplitude of  and also two
spatially separated sinusoidal contrasts of amplitudes

 and . Figures 1 and 2 show the true contrast
function for the first and second test cases respectively.
The synthetic data was produced by an MoM solver with
triangular meshes — 3448 meshes over the imaging
domain — and then white noise was added such that the
signal to noise ratio  was 8 in the first
case and 2 in the second case. In the different iterations
of the BIM, the forward solution was obtained by
Richmond’s method [13] using a pulse basis over the
imaging domain (the number of pulses over the imaging
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domain is ). The resulting reconstructions for
both test cases using the identity and the Laplacian
operator as the regularization matrices are shown in
Figures 3 to 6. It seems that choosing  as the Laplacian
operator with zero boundary conditions allows the
reconstruction of the peak contrast of both test cases
better than setting  to the identity matrix. On the other
hand, using the identity operator as the regularization
matrix makes the computations faster because we can
use the multishift conjugate gradient least squares
(CGLS) method for solving equation (3) [17]. In Fig. 7,
the NCP of the synthetic data, , is shown. The NCP of
some residual vectors corresponding to six different
regularization parameters are shown for the Born
approximation of the first test case in Fig. 8. As seen in
Fig. 8, for large values of  the NCP of the residual
looks like the NCP of , showing that we have not used

all of the available information in reconstructing the
profile. As we decrease the , we include less
information in the residual and more for the solution. The
first NCP which fits the Kolmogorov-Smirnov limits is
the NCP corresponding to . As a comparison,
we’ve solved these two problems using the L-curve
parameter-choice method and it seems that L-curve
chooses a smaller  regularizat ion parameter  in
comparison with the NCP method. For example, in the
Born approximation of the first test case, the L-curve
chooses  as the optimum regularization
parameter (as compared to the NCP’s ). This
simply reflects the fact that there is no unique solution to
the inverse problem. The L-curve for the Born
approximation of the first case is shown in Fig. 9 using
100 different .
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VI. CONCLUSION

We’ve shown that the NCP parameter-choice
method can be very useful in large-scale inverse
problems because it is based on the Fast Fourier
Transform (FFT), and the SVD of the matrix does not
need to be computed. The main advantage of the NCP
method is that more than just the norm of the residual is
used to determine the optimum regularization parameter.
Also, the implementation of the NCP algorithm is much
easier than the L-curve and GCV parameter-choice
methods because finding the corner of the L-curve and
the minimum of the GCV functional is difficult. We’ve
also found that using the Laplacian operator as the
regularization matrix seems to result in a better
reconstruction compared to the identity operator;

although, using the identity operator as the regularization
matrix makes the computations faster because this
allows the use of the multishift CGLS algorithm for
solving equation (3).

The NCP method, as presented here, is only
applicable when the residual tends to behave like white
noise as we decrease the regularization parameter. This
requirement can be checked by finding the Tikhonov
solution for a very small regularization parameter, say

, and checking the NCP of the corresponding
residual. If it satisfies the NCP criteria, then this method
should work well. On the other hand, if it does not satisfy
the NCP criteria for such a small , then the method
must  be modified.  The detai ls  of  the required
modifications are provided in [10].
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