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Overview and Classification of Some Regularization
Techniques for the Gauss-Newton Inversion Method

Applied to Inverse Scattering Problems
Puyan Mojabi and Joe LoVetri, Senior Member, IEEE

Abstract—Different regularization techniques used in conjunc-
tion with the Gauss-Newton inversion method for electromagnetic
inverse scattering problems are studied and classified into two
main categories. The first category attempts to regularize the
quadratic form of the nonlinear data misfit cost-functional at
different iterations of the Gauss-Newton inversion method. This
can be accomplished by utilizing penalty methods or projection
methods. The second category tries to regularize the nonlinear
data misfit cost-functional before applying the Gauss-Newton
inversion method. This type of regularization may be applied
via additive, multiplicative or additive-multiplicative terms. We
show that these two regularization strategies can be viewed from
a single consistent framework.

Index Terms—Inverse scattering, regularization.

I. INTRODUCTION

I N electromagnetic inverse scattering, one attempts to recon-
struct the complex permittivity of the domain of interest

using scattering measurements collected outside this domain.
There are many applications for the inverse scattering problem,
including industrial non-destructive testing [1], [2], geophys-
ical surveys [3], [4], through-wall imaging [5] and biomedical
imaging [6]–[8]. The inverse scattering problem is nonlinear and
ill-posed. The nonlinearity of the problem is handled by utilizing
different optimization algorithms such as the Gauss-Newton [3],
[6], [9]–[18], quasi-Newton [19], conjugate gradient [20], [21],
modified gradient [8], [22], [23], and global optimization tech-
niques [24], [25]. The ill-posedness is treated via regularization.
The general approach for regularizing an ill-posed problem is
to set an appropriate constraint (or constraints) on the solution;
e.g., limiting some (semi)norm of the solution or enforcing the
solution to lie in an appropriate subspace. Different regulariza-
tion methods usually require determining one or more regular-
ization parameters which weight the regularization.

In this paper, we overview some regularization strategies
which have been used with the Gauss-Newton Inversion (GNI)
method for the electromagnetic inverse scattering problem.
These strategies are classified into two main categories based
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on the type of the cost-functional to be minimized. We show
that these regularization strategies can all be viewed from a
similar framework.

II. PROBLEM STATEMENT

Consider a bounded domain of interest , with an unknown
complex relative permittivity , , which is immersed
in a known background medium with complex relative permit-
tivity . The electric contrast, defined as

(1)

is to be found using the measured electric field data on a mea-
surement domain outside . Denoting as the mea-
sured scattered field on and as the simulated
scattered field on due to a predicted contrast , the inverse
scattering problem may then be formulated as the minimization
over of the data misfit cost-functional

(2)

where and denotes the -norm on functions
defined on . The normalization constant is chosen to be

. Denoting the wavenumber of the background
medium as and, for simplicity of notation, assuming the 2D
Transverse Magnetic (TM) formulation, the simulated scattered
field on due to the contrast can be written as

(3)

where represents the total field inside and is
the appropriate Green’s function for the problem. The total field

inside is related to the contrast via the so-called
domain equation

(4)

where is the incident electric field inside the domain
of interest which is assumed to be known. As can be seen
from (3) and (4), the scattered field on the measurement domain
is a nonlinear function with respect to the contrast ; thus,
making a nonlinear cost-functional. In this paper, we use
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the GNI method to deal with the nonlinearity of the problem.
Note that the 2D TM formulation is utilized for simplicity of no-
tation but the main result of the paper, i.e. the consistent frame-
work in which to represent the different regularization schemes
presented in Section V, is applicable to any other integral equa-
tion formulation of the inverse scattering problem, including
vector scattering formulations based on the Green’s dyadic.

Throughout this paper, we assume that the contrast is
discretized into a complex vector where is the
number of discretized elements in . We also assume that there
is a finite number of measurements on . We, therefore, repre-
sent and as two complex vectors

and where is the number of measurements
on .

III. THE GAUSS-NEWTON INVERSION METHOD

The Gauss-Newton inversion method is based on the Gauss-
Newton optimization [26] where the nonlinear cost-functional
is approximated with a quadratic form corresponding to the cur-
rent iteration. The stationary point of the quadratic model is then
chosen as the next iterate. Herein, the cost-functional to be min-
imized, say , is either the data misfit or an aug-
mented form thereof.

For the cost-functional , we take the complex vector
and its complex conjugate as two independent variables over
which to perform the minimization. It is shown, [27], [28], that
this procedure is equivalent with minimizing over the vec-
tors and , the real and imaginary parts of the complex
vector . Therefore, the Newton correction can be found by
solving

(5)

where and are the Hessian and gradient of respec-
tively. These are defined as

(6)

(7)

In the GNI method, the derivatives and
are ignored to avoid their computational

costs. Therefore, the Gauss-Newton (GN) correction at the
iteration may be found by solving

(8)

Having found the GN correction, the contrast at the iteration
of the GNI algorithm is updated as

(9)

where is an appropriate step-length chosen to enforce the
error reduction of the cost-functional. Depending on the choice

of the cost-functional , (8) may become ill-posed or well-
posed. Treating the ill-posedness via regularization is discussed
in the next section.

If is taken as the cost-functional to be minimized, the
derivatives in (8) can be written as

(10)

(11)

where the superscript ‘ ’ denotes the Hermitian operator. The
vector is the discrepancy between the measured
data and the simulated data corresponding to ; i.e.,

. The Jacobian matrix contains
the derivative of with respect to evaluated at . The
analytic expression for , or an approximation thereof, which
may be derived using an adjoint formulation [29], can be found
in different publications such as [3], [16], [19].

IV. REGULARIZATION

Two general strategies for regularizing the electromagnetic
inverse scattering problem have been reported in the frame-
work of the GNI method. These two strategies may be distin-
guished by the type of the cost-functional to be minimized.
In the first strategy, the cost functional to be minimized is the
data misfit functional which is ill-posed [6], [9]–[14]. Due
to this ill-posedness, we need to regularize (8) at each itera-
tion of the GNI method. In the second strategy, the ill-posed
nonlinear cost-functional is first regularized and the GNI
method is then applied to the regularized nonlinear cost-func-
tional [3], [15]–[18]. Therefore, (8) does not need to be regular-
ized throughout different GNI iterations. For every regulariza-
tion method the regularization weight is either explicitly chosen
or is implicit to the method. The basic idea behind the appro-
priate regularization weight for the GNI method is that the reg-
ularization weight should be high in early GNI iterations where
the predicted solution is far from the true solution and should
gradually decrease when the algorithm gets closer to the true
solution. We refer to this idea as adaptive regularization [30],
[31]. Throughout the paper, we denote the positive parameter

as the regularization parameter which (partially) governs the
regularization weight. We now explain these two regularization
strategies in more details.

A. The First Strategy

This strategy chooses the cost-functional to be minimized as
the data misfit . Substituting (10) and (11) into (8), the GN
correction at the iteration is obtained by solving

(12)

It is well-known that the matrix is an ill-conditioned ma-
trix, making (12) a discrete ill-posed system of equations which
needs to be regularized. There are two published general ap-
proaches for regularizing (12) in the electromagnetic inverse
scattering case: penalty and projection methods.
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1) Penalty Methods: Tikhonov regularization [32] is prob-
ably the most popular penalty method where the regularized so-
lution of (12) is found from the minimization [9]–[13]

(13)

The regularization term is usually chosen to be in the
form of an -norm, making (13) a least squares minimization.
Herein, we assume where is an appro-
priate linear operator (matrix) whose nullspace intersects triv-
ially with that of ; thus, ensuring a unique solution for (13).
In this case, (13) can be written as a damped least squares min-
imization

(14)

where is the zero vector of appropriate size. The minimization
(14) is equivalent to

(15)

In this case, the weight of the regularization is determined by the
positive parameter which needs to be chosen in each GNI it-
eration. This weight is usually determined using either the stan-
dard regularization parameter-choice methods [33] or some ad
hoc techniques [10]–[13]. The standard regularization param-
eter-choice methods, such as the -curve [34], [35] or the Gen-
eralized Cross-Validation (GCV) [12], [13], [36] methods, can
be very computationally expensive and may also fail in choosing
an appropriate regularization weight. For example, the GCV
function may become very flat so that locating its minimum,
which corresponds to an appropriate regularization parameter,
will be numerically difficult [34].

The ad hoc techniques are usually faster but are dependent
on the noise level of the measured data. Therefore, they may
need to be modified for different microwave imaging systems.
However, it is easier to incorporate the adaptive regularization
to the ad hoc techniques as compared to the standard regulariza-
tion parameter-choice methods. For example, in [11], the regu-
larization parameter is chosen to be proportional to .
That is, the regularization weight decreases during the GNI it-
erations; thus providing the adaptive regularization. It should
also be mentioned that the penalty term can have other
forms such as the -norm total variation or maximum entropy
[18].

It should be mentioned that this type of regularization, when
is chosen to be the identity matrix , may be viewed as the

Levenberg-Marquardt approach [13], [26], [37] where the ma-
trix is augmented by .

2) Projection Methods: Projection methods attempt to regu-
larize (12) by projecting it onto a subspace having a basis that
can be used to represent the solution with sufficient ac-
curacy while maintaining the stability. The projection may be
achieved by Krylov subspace methods such as the conjugate

gradient least squares (CGLS) or least squares with QR factor-
ization (LSQR) methods [6], [38]–[40]: at the iteration of
the Krylov subspace methods, the solution is restricted to lie in

(16)

where is the -dimensional Krylov subspace defined by
and . The Krylov subspace algorithms, when applied to an
ill-posed system of equations, exhibit a semi-convergence be-
havior [39], [41]. That is, they improve the solution at their
early iterations, where the solution space is restricted to a Krylov
subspace of small dimension, however, they start deteriorating
the solution by inverting the noise in later iterations. Therefore,
the stopping iteration plays the role of the regularization pa-
rameter: the fewer the iterations, the stronger the regularization.
The stopping iteration can be determined using either standard
regularization parameter-choice methods such as the -curve
method [42] or by some ad hoc techniques [6], [40].

As in penalty methods, adaptive regularization is difficult
to incorporate in the standard regularization parameter-choice
methods whereas they can be easily incorporated into the ad
hoc techniques. For example in [6], an ad hoc technique has
been used to determine the regularization weight in the CGLS
scheme: the stopping iteration of the CGLS regularization
method was chosen to be 2 in early GNI iterations and then
increased to 16 in later GNI iterations. Considering that the
smaller the stopping iteration, the stronger the regularization,
this ad hoc technique is an attempt at adaptive regularization
for the GNI method.

The projection can also be achieved by the Truncated Sin-
gular Value Decomposition (TSVD) where the unknown
is projected onto the subspace spanned by first few right singular
vectors of the matrix [39], [43], [44]. Writing the Singular
Value Decomposition (SVD) of the matrix as ,
the regularized solution of (12) using the TSVD method can be
written as

(17)

where the left singular vector and the right singular vector
are the column of the orthonormal matrices and respec-
tively. The singular value is the diagonal element of the
matrix . In (17), the integer , which determines the dimen-
sion of the subspace spanned by the right singular vectors , is
the regularization parameter: the smaller the , the stronger the
regularization. It should be mentioned that in (17), we have as-
sumed that the singular values are ordered in a non-increasing
sequence; i.e., . Similar to Krylov subspace regu-
larization methods, the regularization parameter may be deter-
mined from standard regularization parameter-choice methods
or ad hoc techniques.

Regarding the use of standard regularization param-
eter-choice methods such as the -curve and GCV methods
with the first regularization strategy, it should be noted that
these methods are developed for linear inverse problems where
the discrete Picard condition [45] is satisfied for the underlying
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unperturbed problem [33], [46]. However, they may not be ap-
propriate for nonlinear inverse scattering problems, especially
when the initial guess to the GNI algorithm is very far from the
true solution [13].

B. The Second Strategy

In the second strategy, the nonlinear ill-posed cost-functional
is first regularized and then the GNI method is applied to

the regularized cost-functional. Therefore, (8) does not need to
be regularized throughout the GNI iterations. At least, three dif-
ferent methods for regularizing the cost-functional for the
GNI method have been reported in the literature. These are ad-
ditive, multiplicative and additive-multiplicative regularization.

1) Additive Regularization: In this case, is regularized
by an additive term (see for example, [15], [17]):

(18)

where is an appropriate additive regularizer. The regular-
izer is usually chosen to be the -norm total variation of
the contrast which may be written as

(19)

where is the volume (or area, in the case of tomographic con-
figurations) of and denotes the spatial gradient operator.
For this regularizer, it is straightforward to show

(20)

(21)

where denotes the Laplacian operator. Using this specific
regularizer, the GN correction at the iteration is found by
solving

(22)

where the matrix is the discrete representation of the
operator. The positive parameter is equal to

. In this case, the regularization weight is constant
throughout different GNI iterations, as both the matrix and
its coefficient remain constant throughout different GNI
iterations. Therefore, this regularization type will not provide
adaptive regularization unless the user changes the regulariza-
tion weight manually. In this case, the parameter is usually
chosen via ad hoc techniques [15], [17]. It should also be men-
tioned that this regularization method favors smooth solutions
due to the presence of the matrix in (22) which provides
Laplacian regularization.

2) Multiplicative Regularization: In this case, the cost-func-
tional is regularized with a multiplicative term ([3], [18])

(23)

Herein, we consider the multiplicative regularizer as the
weighted -norm total variation of the unknown contrast, de-
fined as [3]

(24)

where

(25)

The positive parameter is chosen to be where
is the volume (or area for the case of 2D inversion) of a

single cell in the discretized domain . For the regularizer (24),
it can be shown that

(26)

(27)

where represents the divergence operator. Using this multi-
plicative regularizer, the Gauss-Newton correction can then be
found by solving

(28)

where represents the discrete form of the operator
and . The operator , which changes throughout
the GNI iterations, provides an edge-preserving regularization.
That is, if one specific region of the reconstructed is homo-
geneous, the weight will be almost constant for that region.
Therefore, the operator will be approximately equal to
which favors smooth solutions. On the other hand, if there is a
discontinuity (edge) at some region of , the corresponding

for that region will be small. Thus the discontinuity will not
be smoothed out and will be preserved. A detailed explanation
about the weighted Laplacian regularizer can be found in [47].

This multiplicative regularization automatically determines
the regularization weight which is governed by the discrepancy
between the measured data and the simulated data corre-
sponding to . As can be seen from (28), the weight of the
operator depends on which provides adaptive regu-
larization. That is, if the predicted solution is far from the true
solution, the regularization weight is high. When the predicted
solution gets closer to the true solution, the -norm of the
discrepancy decreases; thus decreasing the regularization
weight. Note that the multiplicative regularizer, , can
also be used with either the -norm [18] or the -norm total
variation form [3]. As opposed to the weighted -norm total
variation multiplicative regularizer, see (24), these two forms of
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the multiplicative regularizer do not have the edge-preserving
characteristic and will not be discussed in this paper.

3) Additive-Multiplicative Regularization: In this case, we
regularize (2) as [16]

(29)

Choosing as in (19), the GN correction can be found by
solving

(30)

where . This regularization fa-
vors smooth solution due to the presence of the matrix in (30).
Unlike the additive regularization, see (22), the weight of the
regularization is not constant but changes throughout the GNI
iterations. As can be seen from (30), the regularization weight
governed by the positive parameter decreases when the algo-
rithm gets closer to the true solution. However, the user is still
required to set the positive parameter at the beginning of the
GNI algorithm. The algorithm then provides adaptive regular-
ization based on the given . It should be pointed out that this
regularization can be viewed as a multiplicative regularization
when the regularizer is or as an additive regular-
ization when the regularizer is .

V. CONSISTENT FRAMEWORK AND DISCUSSION

Considering that the contrast is zero on the boundary of
, it can be shown that the operators and are self-adjoint

and negative definite (see Appendix A for the proof). There-
fore, the operators and can be represented by and

respectively (for example, using Cholesky decompo-
sition [48, Section 4.2]). Using this notation, the GN correction
in (22), (28) and (30) can be written respectively as

(31)

(32)

(33)

Now, if we consider in (13) as , the GN
correction corresponding to (13) can be written as

(34)

which is equivalent to solving

(35)

It can be easily seen that by choosing equal to , and equal
to either or , the penalty method applied to (12) is equivalent
to the additive or additive-multiplicative regularization applied

to the data misfit . Also, by varying throughout the GNI
iterations and choosing it to be at the GNI iteration
and setting equal to , the penalty method applied to (12)
will be equivalent to the multiplicative regularization applied to

.
It can be shown that Krylov subspace regularization provides

similar results to TSVD regularization [49, p. 50], [39, p. 146]
due to the similarity between the Krylov subspace basis and the
SVD basis. It can also be shown that the effect of TSVD regular-
ization is very similar to that of Tikhonov regularization when

[49, p. 13], [33], [46]. Therefore, assuming
appropriate regularization weight, Krylov subspace regulariza-
tion and the TSVD regularization methods applied to (12) pro-
duce results which closely follow the Tikhonov solution

(36)

Now, assuming in (13) to be and sub-
stituting , the Tikhonov functional in (13) can
be written as

(37)

where and . Note that, here,
we have implicitly assumed that the inverse of the regularization
matrix exists, which is not always true. Having found from
(37), the GN correction can be found by solving the well-
posed system of equations

(38)

Using the aforementioned similarity between the Tikhonov reg-
ularization and Krylov subspace regularization as well as the
TSVD regularization, the regularized solution obtained from
(37) will be similar to the regularized solution obtained by ap-
plying Krylov subspace regularization or the TSVD method to

(39)

Therefore, if we apply Krylov subspace regularization or the
TSVD method to (39) to obtain , and then find from
(38), the resulting will be similar to the Tikhonov solution
when is chosen to be which satisfies
(35). Therefore, the TSVD and Krylov subspace regularization
methods can be viewed in the same form as (31), (32), (33) and
(35) by applying them to (39) rather than (12).

It should be noted that these regularization methods can all
be applied from this framework and they will result in the same

for the appropriate choice of the regularization operator
and its weight. However, their application will differ in some
important aspects such as the computational complexity. For
example, although Krylov subspace regularization and TSVD
methods, applied to (12), will result in similar solutions, the
computational complexity of Krylov subspace regularization
is significantly less than that of the TSVD method. A more
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detailed computational complexity analysis of the regularization
techniques considered herein can be found in Appendix B.

Among the regularization methods considered herein,
the multiplicative and additive-multiplicative regularization
methods automatically adjust the regularization weight and
provide adaptive regularization throughout the GNI iterations.
As opposed to other regularization methods considered herein,
the multiplicative regularization automatically changes the
regularization operator, , during the GNI iterations. This will
result in an edge-preserving regularization if the multiplicative
regularizer is chosen as the weighted -norm total variation
of the unknown contrast.

VI. CONCLUSION

Different regularization methods in conjunction with the
Gauss-Newton inversion method for electromagnetic inverse
scattering problems were studied and classified into two cate-
gories. It was shown that all of these regularization methods
can be viewed from within a single consistent framework after
applying some modifications. This framework helps to clarify
the function of these regularization and may lead to future
advances.

APPENDIX A
SELF-ADJOINTNESS AND NEGATIVE DEFINITENESS

We here prove that the operators and are self-adjoint
and negative definite using a procedure similar to the standard
approach for proving Green’s first and second identities [50, p.
36]. Assume and are in a Hilbert space of complex
functions defined over the bounded domain of interest with
an inner product defined as

(40)

Letting be a positive function in this space, we may write,

(41)

where the argument has been dropped for simplicity. Using
the divergence theorem and definition of the inner product, we
obtain

(42)

where denotes the boundary of the domain of interest and
represents the differential area of . The derivative
represents the outward directed normal derivative on the

surface . Interchanging and and subtracting, we have

(43)

Considering (43) and assuming and vanish on , it can be
concluded that

(44)

The equality (44) implies that the operator is
self-adjoint.

Letting in (42) and assuming that vanishes on ,
we have

(45)

Noting that the right hand side of (45) is negative, it can be con-
cluded that the operator is negative definite. As the operator

is a special form of , when , it is also self-adjoint and
negative definite.

The assumption of vanishing and on which was uti-
lized to prove the self-adjointness and negative definiteness of
the operators and can be justified by noting that is out-
side the object being imaged. Thus, it is located in the back-
ground medium; meaning that the electric contrast is zero on

. Therefore, without loss of generality, we may redefine
and to be in a Hilbert space of complex functions defined over

which vanish on .
APPENDIX B

COMPUTATIONAL COMPLEXITY ANALYSIS

To compare the computational complexity of the regulariza-
tion techniques considered in this paper, we utilize the following
conventions: the number of transmitters is denoted by and
the number of receivers per transmitter by . We further as-
sume that the contrast function is discretized into an com-
plex vector. Thus and the calculation of both

and requires opera-
tions. The computational complexity of the CGLS and LSQR
methods, as two Krylov subspace regularization schemes, is

when applied to (12) ( is the dimension of
the projection). Note that the CGLS and LSQR methods require
two matrix-vector multiplications in each iteration. As is usu-
ally chosen to be a very small integer, this regularization tech-
nique can be computationally attractive. The TSVD approach
is computationally expensive as finding the SVD of the matrix

in (12) requires operations if or
when [42]. This can make the TSVD

algorithm impractical for large-scale problems. It should also be
noted that the TSVD method requires the explicit form of the
matrix for performing the SVD. However, the other regular-
ization methods discussed herein only require the definition of
the matrix as a ‘black-box’ operator which implements two
matrix vector multiplications: (i) and (ii) . This can be
very important in large-scale problems when the calculation of
the explicit form of the Jacobian matrix is not feasible.

Comparing (15), (22), (28) and (30), it can be concluded
that the computational complexity of the penalty methods and
the methods which belong to the second strategy is very close.
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The main difference between these methods lies in the compu-
tational cost of multiplying , and by an arbitrary
vector of the proper size. Specifically, the matrix is a sym-
metric Block Toeplitz with Toeplitz Blocks [49, p. 100] and
its matrix-vector multiplication can be accelerated by the Fast
Fourier Transform (FFT). Therefore, the computational com-
plexity of can be ignored compared to that of .
Using this approximation, the computational cost for finding
the Gauss-Newton correction from (22) and (30) is about

operations where is the number of conjugate gra-
dient (CG) iterations required for convergence [assuming that
the CG method is used for solving (22) and (30)]. Note that each
iteration of the CG algorithm requires two matrix-vector multi-
plications and we have assumed that is only available as a
‘black-box’ operator. Therefore, it can be easily seen that the
computational complexity of the Krylov subspace regulariza-
tion applied to (12) is much less than that of the penalty methods
as well as the methods of the second strategy due to the fact that
usually . However, it should be noted that the compu-
tational complexity of the Krylov subspace regularization tech-
niques will increase drastically when applied to (39) as the oper-

ation of the matrices and on arbitrary vectors of correct
size is expensive due to the presence of in the definition
of the matrix . If the methods of the first strategy utilize a
standard regularization parameter-choice method, such as the

-curve algorithm or the GCV method, the computational cost
of these algorithms needs to be considered in the overall com-
putational cost of the regularization technique.
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