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Enhancement of the Krylov Subspace Regularization
for Microwave Biomedical Imaging
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Abstract—Although Krylov subspace methods provide fast reg-
ularization techniques for the microwave imaging problem, they
cannot preserve the edges of the object being imaged and may re-
sult in an oscillatory reconstruction. To suppress these spurious os-
cillations and to provide an edge-preserving regularization, we use
a multiplicative regularizer which improves the reconstruction re-
sults significantly while adding little computational complexity to
the inversion algorithm. We show the inversion results for a real
human forearm assuming the 2-D transverse magnetic illumina-
tion and a cylindrical object assuming the 2-D transverse electric
illumination.

Index Terms—Image reconstruction, microwave imaging.

I. INTRODUCTION

M ICROWAVE imaging (MWI), as a biomedical imaging
modality, uses microwave scattering measurements to

quantitatively reconstruct the complex permittivity of the object
of interest (OI), which is biological tissue in situ. Some cur-
rent indications are that MWI can be useful for breast cancer
imaging [1], [2], bone imaging [3], and the detection of is-
chemia in different parts of the body [4]. It is well known that
the MWI problem is nonlinear and ill-posed. The nonlinearity
of the problem may be addressed by employing appropriate op-
timization techniques such as the Gauss–Newton method [1],
[5]–[8]. The ill-posedness is treated via regularization which
may be achieved by enforcing the solution to lie in an appro-
priate subspace. The Krylov subspace techniques, e.g., conju-
gate gradient least squares (CGLS) method, iteratively project
the solution onto Krylov subspaces of increasing dimension [9].
These iterative algorithms, when applied to an ill-posed system
of equations, exhibit a semi-convergence behavior [10]. That is,
they improve the solution at their early iterations, where the so-
lution space is restricted to a Krylov subspace of small dimen-
sion. However, they start deteriorating the solution by inverting
the noise in later iterations. An appropriately regularized solu-
tion can therefore be obtained by early termination of the uti-
lized Krylov subspace algorithm when the dimension of the sub-
space is large enough to produce a good regularized solution and
small enough to suppress the effect of noise. Therefore, the iter-
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ation at which the algorithm is stopped plays the role of the regu-
larization parameter for this type of regularization: the fewer the
iterations, the stronger the regularization. Krylov subspace reg-
ularization methods provide very fast regularization techniques
as 1) they are only based on a few matrix-vector multiplications
and 2) they do not require the full storage of the ill-posed ma-
trix. However, Krylov subspace regularization methods do not
have the edge-preserving characteristic as defined in [11]. In ad-
dition, they may result in an oscillatory reconstruction when the
signal to noise ratio of the measured data is not high enough.

Recently, the CGLS regularization technique, has been suc-
cessfully used with the Gauss–Newton inversion (GNI) method
for the microwave breast imaging application where a two-step
procedure was used to determine the stopping iteration [1], [12].
Herein, we employ the CGLS regularization technique in the
framework of the GNI method. We then use a multiplicative reg-
ularizer (MR) [13], in a post-regularization procedure, to sup-
press possible spurious oscillations associated with this Krylov
subspace regularization and also to provide an edge-preserving
regularization. While improving the results significantly, the uti-
lized MR adds little computational complexity to the inversion
algorithm. The regularization weight for the MR enhancement
is determined automatically by the algorithm itself. We show
the inversion results using this enhanced Krylov subspace regu-
larization for transverse magnetic (TM) and transverse electric
(TE) experimental data.

II. PROBLEM STATEMENT

Consider an imaging domain , immersed in a known
homogeneous background with relative permittivity , which
contains a nonmagnetic OI with an unknown complex relative
permittivity . We assume that the Green’s func-
tion for the background medium, , is known. The elec-
tric contrast, defined as , is to be found
using the measured electric field data on a discrete measurement
space outside . Denoting as the measured scat-
tered field on and as the simulated scattered field due
to a predicted contrast , the MWI problem may then be for-
mulated as the minimization over of the following nonlinear
cost-functional:

(1)

where denotes the -norm on and . Denoting
the wavenumber of the background medium as , and for sim-
plicity of notation, assuming the 2-D TM formulation, the simu-
lated scattered field on due to the contrast can be written as

(2)
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where represents the total field inside which is a function
of . To cope with the nonlinearity of the problem, we use the
Gauss–Newton method to minimize (1); thus, the contrast at
the th stage of the algorithm is updated as

where and are the Gauss–Newton correction
and an appropriate step-length, respectively. The step-length
is a real positive number which is determined using a line search
algorithm based on that described in [14] and [15]. The Gauss-
Newton correction is found by solving

(3)

where denotes the Jacobian matrix containing the Fréchet
derivative of with respect to evaluated at . The
field represents the simulated scattered field at the observa-
tion points, , corresponding to the predicted contrast .
Due to the ill-posedness of the cost-functional, the matrix
is severely ill-conditioned; thus, (3) needs to be regularized to
give an acceptable . Herein, we regularize (3) by iteratively
projecting onto CGLS Krylov subspaces of increasing di-
mension and use the same two-step procedure as in [1] to deter-
mine the stopping iteration of the CGLS scheme. We will refer
to this inversion algorithm as GNI-CGLS in this paper.

III. ENHANCEMENT OF THE RECONSTRUCTION

Inspired by the work of Abubakar et al. on an edge-preserving
regularization technique [13], we enhance the final reconstruc-
tion of the GNI-CGLS method by the weighted -norm total
variation MR. Denoting the final reconstruction of the GNI-
CGLS method as , we accomplish that by first approximating
the nonlinear operator , (2), with the linear operator

defined as

(4)

where is the known total field inside due to the known
contrast . We then construct a multiplicatively regularized
cost-functional as

(5)

This multiplicatively regularized cost-functional is minimized
using the CG method over the contrast where the initial guess
to the CG algorithm is . Thus, the contrast is iteratively en-
hanced as where is the CG direction
at the th iterate of the enhancement procedure and is a
real constant number. At the th iteration of the CG method,
the multiplicative regularizer is given by

(6)

where represents the area of and denotes the spatial
gradient operator with respect to the position vector . To ensure
the convexity of the cost-functional (5), the positive parameter

is chosen to be [13]

(7)

where and de-
notes the -norm on . As this MR can be represented as an

-norm functional, the CG direction and the real parameter

are available in closed form [13]. Therefore, the computa-
tional cost of this enhancement is almost negligible compared
to that of the inversion algorithm. It should also be noted that if
the GNI-CGLS method is partially converged, the MR enhance-
ment will enhance the partially-converged reconstruction. This
has been demonstrated in Section IV-A.

The gradient operator of , which is , has the
same form as the gradient of the well-known edge-preserving

-norm total variation additive regularizer; thus, the MR can
provide an edge-preserving regularization through its gradient
[13]. The operator provides a weighted Lapla-
cian operator where the weight controls the edge-preserving
properties of this operator [11]. That is, if one specific region
of is homogeneous, the weight will be almost con-
stant for that part and the operator , when applied to
that region, will be approximately which favors smooth
solution (due to the presence of the Laplacian operator ).
Thus, the smoothness will be preserved in that region. On the
other hand, if there is a large gradient in (e.g., an edge
in the image) in some part of , the corresponding for that
region will be small. Therefore, the steep gradient will not be
smoothed out but will be preserved [11]. As opposed to edge-
preserving regularization techniques presented in [16] and [17],
the weighting function and the regularization weight are de-
termined automatically by the algorithm itself [13].

The enhancement procedure terminates when the normalized
difference between two successive enhanced contrasts becomes
less than a prescribed tolerance [13], i.e.,

(8)

In our implementation, the prescribed tolerance is set to be
.

It should be mentioned that can also be included
as the multiplicative regularization term to the nonlinear data
misfit cost-functional [14], [18]. The Gauss-Newton
optimization can then be applied to this multiplicatively regu-
larized nonlinear cost-functional [14], [18].
The GNI-CGLS method in conjunction with the MR enhance-
ment, utilized in this paper, is computationally more efficient
than this technique. This is discussed in the Appendix.

IV. INVERSION RESULTS

We consider two targets from two different experimental
data sets. The first target is a real human forearm assuming the
2-D TM illumination and the other one is a combination of two
cylinders assuming the 2-D TE illumination. In both cases, we
start the inversion algorithm with . The GNI-CGLS and
the MR enhancement were run as Matlab scripts on quad-core
2.66-GHz machine. The utilized forward solver in the GNI
method is a method of moments (MoM) solver which utilizes
the CG method accelerated by the fast Fourier transform (FFT)
[19] and the marching-on-in-source-position technique [20].

A. Real Human Forearm

The BRAGREG data set (data file: BRAGREG.ASC) is col-
lected from a real human forearm by a near-field single-fre-
quency (2.33 GHz) scanner by the Universitat Politècnica de
Catalunya (UPC), Barcelona [21]. The background medium is
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Fig. 1. Reconstruction of the real human forearm (a), (b) using the GNI-CGLS
method and (c), (d) using the MR-enhanced GNI-CGLS method. (a) ������ �,
(b) ���	�� �, (c) ������ �, and (d) ���	�� �.

water, with the relative permittivity of at
2.33 GHz. There are 64 transmitting antenna and 33 active re-
ceivers for each transmitter. The measured data is then cali-
brated using an electric line source assuming the 2-D TM il-
lumination [22]. In this case, we consider the imaging domain

to be a 9.36 cm 9.36 cm square discretized into 64 64
pulse basis functions. The inversion results were restricted to
lie within and as
in [22]. The expected relative permittivities at 2.33 GHz are ap-
proximately for muscle, for skin,
for bone marrow, and for bones.

The GNI-CGLS algorithm converged after 24 iterations
and the data misfit at the last iteration was 4.7%. The
inversion result using the GNI-CGLS algorithm is shown in
Fig. 1(a) and (b), where the reconstruction results are very
oscillatory. The MR enhancement procedure was then applied
to this reconstruction which took 312 CG iterations applied to
(5). The computation times were 31 min for the GNI-CGLS
method and 4 min for the MR enhancement.

The enhanced reconstruction, shown in Fig. 1(c) and (d),
shows the overall structure of the arm as well as the positions
of the two bones clearly. It can easily be seen that the uti-
lized MR suppresses the spurious oscillations in the original
reconstruction and also preserve the edges of the two bones.
The reconstructed permittivity for the muscle tissue is close to
the expected value; however, the reconstructed permittivity of
the bones is higher than the expected value. The difficulty in
the reconstruction of the bone permittivity in this data set has
also been reported in the multiplicative regularized contrast
source inversion (MR-CSI) reconstruction of this target [22].
The MR-enhanced GNI-CGLS algorithm provides very similar
results to the MR-CSI reconstruction for this data set [22].

The data misfit for the enhanced reconstructed con-
trast is 5.2% which is slightly larger than the data misfit cor-
responding to the GNI-CGLS reconstructed contrast. This may

Fig. 2. (a), (b) Reconstruction of the human forearm at the 5th iteration of
the GNI-CGLS and (c), (d) its corresponding MR-enhanced reconstruction. (a)
������ �, (b) ���	�� �, (c) ������ �, and (d) ���	�� �.

seem surprising at first, but it is well known that if inversion al-
gorithms converge to where the data misfit is below the noise
level, then the convergence is probably to the wrong local min-
imum. That is, a smaller data misfit cost-functional does
not necessarily mean a better reconstruction as the data misfit
should not become smaller than the noise level of the calibrated
measured data (Morozov discrepancy principle [23]). Due to
several sources of error in the calibrated measured data such
as modeling the horn antennas by line sources, possible temper-
ature shifts and the actual measurement noise, it is not easy, if
not impossible, to find the noise level of the calibrated measured
data.

To show the performance of the MR enhancement when the
GNI-CGLS algorithm is not completely converged, we consider
the reconstructed contrast at the fifth iteration of the GNI-CGLS
algorithm whose corresponding is 20%. The reconstructed
contrast at this iteration has been shown in Fig. 2(a) and (b). We
now consider this contrast to be in (4) and construct its corre-
sponding linear operator . The MR enhancement was then
performed which took 105 CG iterations. The enhanced contrast
corresponding to this choice of is shown in Fig. 2(c) and (d).
It can be seen that the MR enhancement is also successful in
enhancement of this contrast which is not the final converged
solution of the GNI-CGLS method.

B. Institut Fresnel TE Data Set: FoamDielExtTE Target

This data set (data file: FoamDielExtTE.exp) is collected
from a cylindrical target in free space for nine frequencies
from 2 to 10 GHz, in 1 GHz step, by the Institut Fresnel,
France in the TE mode [24]. The target is illuminated from
eight views and the data is collected at 241 points per view.
The measured TE data is then calibrated by a magnetic line
source as in [25]. The target consists of a cylinder of diameter
31 mm with the relative permittivity which is
butted against another cylinder of diameter 80 mm with relative
permittivity as pictured in [24]. For this target,
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Fig. 3. Reconstruction of the FoamDielExtTE target (real part) (a) using the
GNI-CGLS method and (b) using the MR-enhanced GNI-CGLS method. (a)
������ � and (b) ������ �.

we consider the imaging domain to be a 15 cm 15 cm
square discretized into 60 60 pulse basis functions. The
GNI-CGLS inversion algorithm converged after 24 iterations
where the real part of the reconstructed permittivity is shown in
Fig. 3(a). The imaginary part of the reconstructed permittivity
(not shown here) is very small indicating a lossless object.
The data misfit for the final reconstruction at 10 GHz
is 4.3%. The MR enhancement of this reconstruction, which
took 74 CG iterations applied to (5), is shown in Fig. 3(b). The
computation times were 2 h and 57 min for the GNI-CGLS
algorithm and 4 min for the MR enhancement. The data misfit
for the enhanced reconstruction at 10 GHz is 4.1%. For this
target, both reconstructions are very good due to having a high
signal to noise ratio in the measured data as well as utilizing
multiple-frequency data in the inversion. It should be noted that
the MR-enhanced GNI-CGLS reconstruction is very similar
the MR-CSI reconstruction of this target [25].

V. CONCLUSION

While adding little computational complexity to the inversion
algorithm, the weighted -norm total variation MR was suc-
cessfully used to enhance the GNI-CGLS reconstruction results.
The MR enhancement was useful in removing the oscillatory
artifacts in the reconstructions considered herein. Whether such
a post regularization procedure can be viewed as a general en-
hancement tool and for what type of artifacts or noise it will be
an enhancement for, is left for future studies. Considering the
fact that Krylov subspace schemes can provide a fast regular-
ization method, this MR-enhanced GNI-CGLS method can be
very appropriate for large-scale MWI problems.

APPENDIX

MULTIPLICATIVE REGULARIZED GAUSS–NEWTON INVERSION

The Gauss–Newton algorithm can also be applied to
the multiplicatively regularized nonlinear cost-functional

[14], [18]. The Gauss-Newton correction at
the th stage of the GNI algorithm can then be found by solving

(9)

where the operator represents the discrete form of
and the superscript denotes the Hermitian operator.

We refer to this inversion algorithm as the multiplicative regu-
larized Gauss–Newton inversion (MR-GNI) method.

Neglecting the computational complexity of applying to
an arbitrary vector of the correct size, finding from (9) re-
quires about [26] where denotes the number
of transmitters, the number of measurements per transmitter,

number of discretization in the imaging domain and is the
number of iterations required for the convergence of the CG al-
gorithm applied to (9). Note that each iteration of the CG algo-
rithm requires two matrix-vector multiplications. On the other
hand, the GNI-CGLS scheme requires about op-
erations to find when applied to (3) ( is the dimension of
the projection). Assuming that the same forward solver and line
search algorithm utilized in both the MR-GNI and GNI-CGLS
methods, the ratio of the MR-GNI to GNI-CGLS computational
cost is . As is usually chosen to be a very small in-
teger [1], the GNI-CGLS method is computationally more effi-
cient than the MR-GNI method. Noting that the computational
complexity of the MR enhancement procedure, as explained in
Section III, is negligible compared to that of GNI-CGLS al-
gorithm, the GNI-CGLS method with the MR enhancement is
computationally more efficient than the MR-GNI method.
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