
IOP PUBLISHING INVERSE PROBLEMS

Inverse Problems 26 (2010) 025010 (23pp) doi:10.1088/0266-5611/26/2/025010

Eigenfunction contrast source inversion for circular
metallic enclosures

Puyan Mojabi and Joe LoVetri

Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg,
Manitoba, R3T 5V6, Canada

E-mail: Joe LoVetri@umanitoba.ca

Received 29 June 2009, in final form 20 November 2009
Published 12 January 2010
Online at stacks.iop.org/IP/26/025010

Abstract
The microwave imaging problem is considered where an object of interest is
surrounded by a circular metallic enclosure. A new contrast source inversion
(CSI) algorithm which uses eigenfunction expansions of the unknowns is
presented for the reconstruction of the complex dielectric profile. Orthonormal
eigenfunction expansions associated with the Helmholtz operator for a
homogeneous medium and Dirichlet boundary conditions are used for the
unknown contrast source and the contrast functions in the CSI functional.
These are also used to express the incident field, which is assumed known, as
well as for expanding the inverse Helmholtz operator in the CSI functional. The
imaging domain is taken to be the whole interior of the metallic enclosure. No
prior information, other than keeping the permittivity profile physical, is used.
Results are provided for synthetic as well as experimental data. Based on the
number of eigenfunctions used, a theoretical limit to the reconstruction quality
is defined. Normalized errors relative to this theoretical limit are provided for
each of the synthetic data sets.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In microwave imaging (MWI), one attempts to infer the shape, location and dielectric
properties of an object of interest (OI) using microwave measurements collected outside
the OI. The inverse problem associated with MWI is nonlinear and ill-posed. Although the
new algorithm described herein is applicable to any inverse problem that can be formulated as
a boundary value problem for the Helmholtz operator, we are currently developing algorithms
and experimental prototypes for electromagnetic-based imaging at microwave frequencies
for biomedical applications such as the ones reported in [1–4]. In most microwave imaging
systems that have been developed for such applications [3, 5–8] the OI and the antennas
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(i.e. field probes) are contained within an enclosed chamber made from a dielectric material
such as Plexiglas. The chamber is used to contain a matching fluid to improve the coupling of
the microwave energy into the OI. Most of the MWI algorithms used to invert data from these
systems assume that the matching fluid extends to infinity, not to the boundary of the casing.
This approximation is adequate when the losses of the matching medium are sufficiently large
that little or no energy that reaches the boundary of the chamber makes it back to the antennas.
To make such an approximation work, the antennas need to be placed close to the OI and away
from the boundary, or they need to be directive antennas that direct the main energy towards
the OI (e.g. an open-ended waveguide approach).

Recently, researchers have considered the MWI problem when the chamber surrounding
the antennas and the OI is made of metallic material (e.g. we use a stainless steel chamber).
Various potential advantages of using a conductive chamber with a lossless matching medium
include advantages related to the inversion algorithms which must be used for these systems
as well as to practical data collection advantages such as better signal-to-noise ratios (SNR)
[9–11]. The latter is particularly important as it has been suggested in [12, 13] that the
true resolution limit for MWI is governed by the achievable SNR of the measurements
and not the wavelength. To invert the microwave measurements collected inside a metallic
enclosure, researchers have implemented different algorithms which take the metallic casing
into account. In [14], a calibration technique was proposed which when applied to the
measured data collected inside a circular metallic enclosure allows it to be used by standard
inversion algorithms that assume an unbounded matching medium. The proposed calibration
technique is based on the reciprocity of the fields inside a circular metallic enclosure and those
in an open-space system. It is currently unclear whether such a calibration procedure removes
information from the data. In [15], a quasi-Newton inversion algorithm in conjunction with
an embedding technique has been used to take into account the circular metallic enclosure.
An integral equation formulation of the multiplicative regularized contrast source inversion
(MR-CSI) method was used in [10] that uses the Green’s function of the metallic cavity. An
inversion algorithm, based on conjugate gradient (CG) minimization in conjunction with the
finite element method (FEM) forward solver was used in [16]. A Gauss–Newton inversion
algorithm with a FEM forward solver to calculate the Jacobian matrix was used in [11] to invert
the data collected in conducting cylinders of arbitrary shapes. To the best of our knowledge,
all of these inversion algorithms have been applied only to synthetically collected data.

More recently, an inversion algorithm, based on the CG algorithm and a Zernike
polynomial representation of the unknown dielectric properties of the OI, was tested against
experimentally collected data from the MWI system currently under development at the Institut
Fresnel [17]. This system operates at 434 MHz and is enclosed by a circular metallic casing
of radius 27.6 cm. In addition, the role of different design parameters in MWI systems with
electrically conducting enclosures has been studied in [9] through the singular value expansion
of the integral operator mapping the contrast sources inside the OI to the measurement domain
outside the OI.

In this paper, we introduce a new method of solving the contrast source inversion (CSI)
formulation of the electromagnetic inverse problem using the spectral decomposition of the
appropriate boundary value problem applicable to the conductive enclosure MWI setup. From
a mathematical perspective, one immediate advantage of using a conductive enclosure setup
is that the associated boundary value problem for the electric field is well approximated by
the Helmholtz operator in a finite domain which is terminated by perfect electric conductor
(PEC) boundary conditions (i.e. homogeneous Dirichlet boundary conditions). This boundary
value problem has a discrete set of eigenvalues, i.e. a discrete spectrum, with a complete set
of eigenfunctions that is usually used to expand the electromagnetic field within the domain.
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Thus, the Helmholtz operator applied to the field represented as an eigenfunction expansion can
be replaced by a corresponding eigenfunction expansion where the corresponding eigenvalue
replaces the operator operating on each eigenfunction in the expansion. Similarly, the inverse
Helmholtz operator for such a boundary value problem has the same eigenfunctions but with
eigenvalues that are the reciprocal of those for the forward operator. In the CSI functional
defined for the electromagnetic inverse problem the inverse Helmholtz operator is applied to
the so-called contrast sources, defined to be the product of the total field and the contrast
[2, 18–20]. Taking advantage of the well-known spectral decomposition of the Helmholtz
operator within a circular boundary supporting homogeneous Dirichlet boundary conditions,
we herein introduce the appropriate eigenfunction expansions for the unknowns in the CSI
method, the contrast and the contrast sources. This effectively discretizes all the operators in
the CSI functional with the result that the optimization problem becomes one of minimizing
the CSI functional over the coefficients of these eigenfunction expansions. One unique result
of using the eigenfunction expansion for the unknowns is that the imaging domain becomes the
whole interior domain of the conductive enclosure. This is in contrast to the traditional form
of the CSI algorithm where the unknown contrast is discretized into pulse basis functions.
Inversion results are shown for synthetically collected data sets as well as for preliminary
experimental data collected from a conductive enclosure prototype being developed at the
University of Manitoba. The experimental results are preliminary in that no well-established
techniques are currently available for the calibration of data obtained from within conductive
enclosure setups; we simply use the same calibration techniques that have been used by other
researchers for open-region setups.

2. Problem statement and notation

Throughout our analysis, we assume a time-harmonic dependence exp(−jwt) where ω and
t represent the angular frequency and time, respectively, and j 2 = −1. All the materials
considered herein are assumed to be nonmagnetic: the permeability is taken to be that of
free-space, μ0. We consider a PEC enclosure with boundary denoted as � of circular cross-
section having radius a. The interior volume of the enclosure is denoted by D which will
also denote the imaging domain. The formulation is given for 2D fields; thus, we assume that
the domain D is located in the x–y plane. Inside the enclosure, which will contain the OI,
we assume a known homogeneous background medium having a, possibly complex, relative
permittivity εb. The geometrical model of the microwave imaging system is shown in figure 1.
The complex electric contrast function χ : D → C, which represents the OI, is defined as

χ(r) = ε(r) − εb

εb

(1)

where ε(r) is the relative complex permittivity of the OI at the point r ∈ D.
In what follows, we assume a 2D transverse magnetic (TM) model where the electric field

is represented by the single longitudinal component E = Eẑ. Thus, we refer to the electric
field by its scalar component E. The physics of the problem can be modeled using various
forms of the Helmholtz equation for E. To aid in the formulation we define the Helmholtz
differential operator in a homogeneous background medium, Hb : L2(D) → L2(D), as

Hb(ζ ) � ∇2ζ(r) + k2
bζ(r) (2)

where kb = ω
√

μ0ε0εb is the wavenumber of the background medium and ∇2 denotes the
Laplacian operator with respect to the coordinate r.
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Figure 1. Microwave imaging system enclosed by a circular PEC enclosure � (red circle) of
radius a. The cross section of the enclosure, which is the imaging domain, is denoted by D. The
measurement domain (blue dotted circle), which is outside the object of interest, is denoted by S.

In the MWI problem considered herein, the OI is successively illuminated by known
incident fields Einc

t , (t = 1, 2, . . . , T ). Each incident field is produced by a source function
St, and the field itself satisfies the inhomogeneous Helmholtz equation

Hb

(
Einc

t

) = −St (r), (3)

with the Dirichlet boundary condition

Einc
t (r ∈ �) = 0. (4)

When the OI is present, this same source produces what is referred to as the total field Et.
The difference between the total field and the incident field is defined as the scattered field
Escat

t � Et − Einc
t . It is easily shown that the scattered field satisfies the same Helmholtz

differential equation but with the source function replaced by k2
bχ(r)Et (r). That is, the

scattered field satisfies

Hb

(
Escat

t

) = −k2
bχ(r)Et (r), (5)

with the same homogeneous boundary condition:

Escat
t (r ∈ �) = 0. (6)

The inverse problem is defined as that of finding the electric contrast χ(r) from
measurement data, which consists of the scattered field on the measurement domain S,
located outside the OI. The scattered field data are obtained from appropriately calibrated
measurements of the total and incident fields at the same location.

3. The contrast source inversion method

We now give a brief overview of the contrast source inversion (CSI) formulation as applied to
the enclosed region inverse problem. The CSI method [2,18–20] casts the MWI problem as
an optimization problem over the contrast χ and a new variable called the contrast source wt ,
defined as wt(r) � χ(r)Et (r). These variables are solved for iteratively by minimizing the
specially formulated CSI functional using the CG method. The CSI functional is formulated
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via the inverse operator corresponding to the problem formulation previously described. That
is, from (5), the scattered field corresponding to the t th transmitter may be written as

Escat
t (r) = H−1

b

(−k2
bwt

)
, (7)

where H−1
b denotes the inverse of the Helmholtz operator Hb and includes the boundary

condition Escat
t (r ∈ �) = 0.

At the nth iteration of the CSI method, the cost-functional Cn : L2(D) × L2(D)T → R is
given by [21]

Cn(χ,wt) = CS(wt ) + CD,n(χ,wt)

=
∑

t

∥∥Emeas
t − MS,tH−1

b

(−k2
bwt

)∥∥2
S∑

t

∥∥Emeas
t

∥∥2
S

+

∑
t

∥∥χEinc
t − wt + χH−1

b

(−k2
bwt

)∥∥2
D∑

t

∥∥χn−1E
inc
t

∥∥2
D

(8)

where Emeas
t denotes the measured scattered field and MS,t represents the characteristic

operator which selects the measurement points on S; both corresponding to the t th transmitter.
Note that information gathered from different transmitters is incorporated into the functional
by summing over the transmitters. The second term of the cost-functional Cn, i.e. CD,n, may
be regarded as the Maxwell regularizer [22] which is introduced to handle the ill-posedness
of the problem.

The cost-functional Cn(χ,wt ) is iteratively minimized via the formation of two interlaced
sequences: a sequence of contrast estimates {χn} computed in an interlaced fashion with a
sequence of contrast source estimates {wt,n}. That is, at each iteration, each unknown is
updated using a single step of the CG algorithm while assuming that the other unknown is
constant. Note that the CSI functional is quite general, but a form of the inverse operator H−1

b

which is amenable to mathematical manipulation (e.g. the derivative of functional is required
for the implementation of the CG optimization), and which lends itself to efficient and accurate
computation is required. There are many ways to formulate this operator which meets these
requirements. Integral equation methods and the inverse of finite-difference discretization
have been used (see, for example, [18–20] for integral equation formulations in unbounded
domains, [21] for a novel use of the inverse of a finite-difference discretization, and [10] for
an integral equation formulation applicable to the PEC-enclosed problem).

4. Eigenfunction contrast source inversion

The inverse operator H−1
b for the PEC-enclosed-region problem can be expressed using the

eigenfunction expansion of the boundary-value problem that has been defined. Using polar
coordinates r(ρ, θ), the orthonormal eigenfunctions of Hb which satisfy the homogeneous
Dirichlet boundary condition on � (ρ = a) may be written as

ψmp(r) = 1√
Nmp

Jm

(xmpρ

a

)
cos(mθ), (9)

ϕmp(r) = 1√
Nmp

Jm

(xmpρ

a

)
sin(mθ), (10)

where xmp represents the pth zero (p ∈ N) of the mth-order Bessel function of the first kind,
Jm where m ∈ N ∪ {0}. The normalization constants Nmp can be easily calculated as

Nmp =
⎧⎨
⎩

πa2J 2
m+1(xmp) m = 0

πa2

2
J 2

m+1(xmp) otherwise.
(11)
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The eigenvalues, each of multiplicity 2, corresponding to ψmp and ϕmp are

λmp = k2
b −

(xmp

a

)2
. (12)

The completeness of the eigenfunctions allows us to express both the contrast, χ(r),
and the contrast source functions, wt(r), inside the bounded domain D as eigenfunction
expansions:

χ(r) =
∑
m,p

γmpψmp(r) + μmpϕmp(r) (13)

and

wt(r) =
∑
m,p

αmp,tψmp(r) + βmp,tϕm,p(r) (14)

where γmp, μmp, αmp,t and βmp,t are the unknown coefficients to be determined. Note that a
double summation is required for these eigenfunction expansions, as compared to the single
summation used in the singular value expansion given by [9] and the Zernike expansion used
by [17].

A useful property of the eigenfunctions ψmp and ϕmp for the operator Hb is that they are
also the eigenfunctions of the inverse operator H−1

b , but the corresponding eigenvalues for the
eigenfunctions of H−1

b are λ−1
mp. Using this property, along with (14), allows us to express (7)

as

Escat
t (r) = H−1

b

(−k2
bwt

) = −k2
b

∑
m,p

λ−1
mp[αmp,tψmp(r) + βmp,tϕmp(r)], (15)

and the scattered field on the measurement domain as

Escat
t (r ∈ S) = MS,tH−1

b

(−k2
bwt

)
= −k2

b

∑
m,p

λ−1
mp[αmp,tMS,tψmp(r) + βmp,tMS,tϕmp(r)]. (16)

The incident field at r is now assumed to be that of a line source located at rt and can
therefore be written as

Einc
t (r) = Einc(r; rt ) = H−1

b

[
− 1

ρ
δ(ρ − ρt )δ(θ − θt )

]
(17)

where δ represents the Dirac delta function. Using an eigenfunction expansion for the Dirac
delta function, the incident field may be written as an eigenfunction expansion with known
coefficients:

Einc
t (r) = −

∑
m,p

λ−1
mp[ψmp(r)ψmp(rt ) + ϕmp(r)ϕmp(rt )]. (18)

It should be noted that (18) is not a convergent series when r = rt [23], which reflects the
singularity at the source point.

In the above analysis, we have implicitly assumed that λmp �= 0. This assumption is always
valid when the background medium is lossy. However, λmp may become zero for lossless
backgrounds. This case has been discussed in [9] and a procedure to treat this problem has
been proposed.
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4.1. Discretizing the CSI functional using the eigenfunction expansions

We now introduce truncated eigenfunction expansions for the contrast, contrast sources and
incident fields into the CSI functional by assuming m = 0, . . . ,M − 1 and p = 1, . . . , P for
each of the expansions. The measured data corresponding to the t th transmitter are denoted
as the vector ft ∈ C

R , where R is the number of receivers, chosen to be constant for each
transmitter. The unknown vector at ∈ C

2MP contains the coefficients αmp,t and βmp,t and the
unknown vector b ∈ C

2MP contains γmp and μmp. In order to evaluate the norms involved
in the Maxwell regularizer term CD,n we choose to discretize the domain D in a uniform
rectangular grid. The number of discretized points within D is denoted by Q. With this
notation, matrices Z t ∈ C

R×2MP and F ∈ C
Q×2MP are introduced in such a way that Z t at

and Fat represent the discrete representation of MS,tH−1
b

(−k2
bwt

)
, (16), and H−1

b

(−k2
bwt

)
,

(15), respectively.
We also consider the matrix B ∈ R

Q×2MP such that Bb represents the discrete form of
the contrast χ , given in (13). The vector uinc

t ∈ C
Q includes the incident field corresponding

to the t th transmitter, Einc
t , at the Q discrete points inside D. To avoid the singularity of the

incident field at the transmitting antenna location, the Q discretization points are chosen so as
to not be collocated with the transmitter locations.

Using these discretized operators and vectors, the cost-functional Cn(χ,wt), (8), can be
rewritten as

Fn(b, at ) = FS(at ) + FD,n(b, at )

= ηS
∑

t

‖ft − Z t at‖2 + ηD,n

∑
t

∥∥uinc
t 	 (Bb)−Bat + (Bb) 	 (F at )

∥∥2
. (19)

The weights ηS and ηD,n are given by

ηS =
(∑

t

‖ft‖2

)−1

, (20)

and

ηD,n =
(∑

t

∥∥uinc
t 	 (Bbn−1

)∥∥2

)−1

, (21)

where 	 denotes the Hadamard, i.e. elementwise, product of two vectors of the same size.
The cost-functional Fn(b, at ) is then minimized iteratively over b and at. Each iteration of the
inversion algorithm consists of two parts: (i) updating at by minimizing Fn(b, at ) assuming
b = bn−1, and (ii) updating b by minimizing Fn(b, at ) assuming at = at,n.

It should be noted that choosing the number of eigenfunctions in the expansion, M × P ,
can be considered a form of projection-based regularization [24] where the unknown functions
are projected into the subspace spanned by the chosen eigenfunctions. But, as compared to
projection-based regularization methods which have been utilized in the framework of the
Gauss–Newton inversion method, e.g. truncated singular value decomposition (TSVD) and
Krylov subspace regularization methods (see [24] and references therein), the stability of
the eigenfunction CSI method is not very sensitive to the choice of M and P which defines
the subspace dimension. This is probably due to the presence of the Maxwell regularizer
in the CSI functional which provides another level of regularization. In fact, the overall
regularization associated with the eigenfunction CSI method can be considered as a hybrid
regularization [25, 26] where a Tikhonov-based regularization (i.e. the Maxwell regularizer)
and a projection-based regularization (i.e. truncating the number of eigenfunctions) are utilized
together.
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4.2. Updating at

Assuming that at and b at the (n − 1)th iteration of the algorithm, i.e. at,n−1 and bn−1, are
known, we update at as

at,n = at,n−1 + ςnvt,n (22)

where ςn ∈ R is the step size. The empirically modified Polak–Ribière CG direction vt,n is
given by [27]

vt,n =
{

0 n = 0

gt,n +
Re{∑t gH

t,n(gt,n−gt,n−1)}∑
t gH

t,n−1gt,n−1
vt,n−1 otherwise

(23)

where gt,n is the direction of the maximum rate of change in Fn(b, at ) with respect to at

evaluated at at,n−1 and the superscript H denotes the Hermitian operator. The cost-functional
Fn(bn−1, at ) is a nonlinear real-valued function of complex-valued vectors at. Therefore, this
functional can be differentiated with respect to at and its complex conjugate at , treated as two
independent vectors [28–30]. As shown in [30], it is the gradient with respect to at which
determines the direction of the maximum rate of change of Fn(b, at ). Therefore,

gt,n = ∂FS(at )

∂at

∣∣∣∣
at,n−1

+
∂FD,n(b, at )

∂at

∣∣∣∣
bn−1,at,n−1

. (24)

The derivative ∂FS(at )/∂at |at,n−1 is given by

∂FS(at )

∂at

∣∣∣∣
at,n−1

= −ηSZH
t (ft − Z t at,n−1). (25)

The derivative ∂FD(b, at )/∂at |bn−1,at,n−1 can be written as

∂FD,n(b, at )

∂at

∣∣∣∣
bn−1,at,n−1

= −ηD,nB
Hdt,n−1 + ηD,nF

H (Bbn−1 	 dt,n−1) (26)

where

dt,n−1 = uinc
t 	 (Bbn−1)−Bat,n−1 + (Bbn−1) 	 (F at,n−1). (27)

The step-length ςn is found by the minimization

ςn = arg min
ς

{FS(at,n−1 + ςvt,n−1) + FD,n(bn−1, at,n−1 + ςvt,n−1)} (28)

which results in

ςn = − Re
{∑

t g
H
t,nvt,n

}
ηS

∑
t ‖Z t vt,n‖2 + ηD,n

∑
t ‖−Bvt,n + (Bbn−1) 	 (F vt,n)‖2

. (29)

4.3. Updating b

Assuming that at,n is known, we minimize Fn(b, at ) with respect to b. Noting that FS(at )

does not depend on b, the vector b at the nth iteration of the CSI algorithm may be found as

Bbn = arg min
Bb

FD,n(b, at,n)

= arg min
Bb

ηD,n

{∥∥(Bb) 	 (
uinc

t + F at,n

)−Bat,n

∥∥2
}

. (30)

The vector Bbn can then be obtained as

Bbn =
[∑

t

ut,n 	 (Bat,n)

]



[∑
t

ut,n 	 ut,n

]
(31)

where ut,n = uinc
t + F at,n and 
 represents the elementwise division (Hadamard division)

between two vectors of the same size. It should be noted that finding bn from Bbn is not
necessary as updating at requires Bb, not b.

8
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4.4. Initial guess for at

The CSI algorithm requires an initial guess for at and b at the beginning of the algorithm.
One method might be to assume a zero initial guess for at as well as b and then update at

using the steepest descent algorithm (which is traditionally the first step of any conjugate
gradient algorithm). If this route is followed then a choice would need to be made on the
normalization term ηD,n which is undefined at the first step for this choice of initial guess. One
approach might be to use prior information on the value of the contrast to provide a non-zero
Bb. Alternatively, one could ignore the Maxwell regularizer, by assuming ηD,n = 0, and
minimize the data-error functional, FS(at ), on its own, using perhaps, a single step in the
steepest descent direction.

The method that we choose allows some flexibility in that this data-error functional
minimization is approached using Krylov subspace regularization. Explicitly, the initial guess
for at may be found by

at,0 = arg min
at

{‖ft − Zat‖2} (32)

subject to a Krylov subspace regularization technique, e.g. the conjugate gradient least squares
(CGLS) method [31]. These iterative algorithms, when applied to an ill-posed system of
equations like (32), exhibit a semi-convergence behavior [26]. That is, they improve the
solution at their early iterations, where the solution space is restricted to a Krylov subspace of
small dimension. However, they start deteriorating the solution by inverting the noise—in our
case, the noise in ft—in later iterations. An appropriately regularized solution can therefore be
obtained by early termination of the utilized Krylov subspace algorithm when the dimension
of the subspace is large enough to produce a good regularized solution and small enough to
suppress the effect of noise. Therefore, the iteration at which the algorithm is stopped plays
the role of the regularization parameter for this type of regularization: the fewer the iterations,
the stronger the regularization.

To find at,0, we utilize the CGLS algorithm as the Krylov subspace regularization and
choose the maximum possible regularization weight of this regularization. That is, only one
iteration of the CGLS algorithm is applied to the least squares problem Z t at = ft . The initial
guess to the CGLS method is considered to be the zero vector of appropriate size. Therefore,
the regularized solution at,0 will be at,0 = ξtht where ht is the CG direction at the first iteration
of the CGLS algorithm (that is, the steepest descent direction) applied to Z t at = ft and ξt is
the CGLS step size. Finding ht and ξt , the regularized solution at,0 can be written as

at,0 =
∥∥ZH

t ft

∥∥2∥∥Z tZ
H
t ft

∥∥2 ZH
t ft . (33)

We note that (33) is equivalent to the backpropagation solution, given in [2, 18]. The
formulation as a Krylov subspace regularized minimization of the data-error functional gives
us the option of performing more than the first steepest descent step. Unfortunately, finding the
optimum stopping iteration in these methods is difficult and, because we rely on the Maxwell
regularizer, we have found that there is no need to use more than the first few steps of the
Krylov-based method to obtain the initial value of at. In fact, in all the results presented herein,
only the first step is used, because no advantage was gained in using more than the first step.
Having found at,0, the vector Bb0 can be found from (31).
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5. Inversion results

In this section, we show inversion results for three synthetic data sets and one preliminary
experimental data set. All synthetic data sets have been created with a frequency-domain finite
element method (FEM) forward solver. To all synthetic data sets, 3% noise was added using
the formula [32]

ft = f FEM
t + max

[∀t f FEM
t

] η√
2
(τ1 + jτ2) (34)

where f FEM
t is the scattered field on the measurement domain obtained by the FEM forward

solver, τ1 and τ2 are two real vectors whose elements are uniformly distributed zero-mean
random numbers between −1 and 1, and η = 0.03. The noisy data ft are then used to test the
inversion algorithm against three synthetic data sets. To show the robustness of the inversion
algorithm with respect to the noise level η, we also show inversion results of the third data set
when η is chosen to be 0.15 and 0.25.

We avoid frequencies associated with the zero eigenvalue since at such frequencies the
inverse operator H−1

b does not exist. That is, no resonant frequencies have been chosen. In
addition, all examples are run with no prior information and the only constraint imposed on the
contrast is that the corresponding relative permittivity should be physical (i.e. the real part of
the relative permittivity is kept greater than 1, and the imaginary part is kept non-negative). In
all inversions considered herein, unless otherwise stated, we assume M = P = 30. Utilizing
M = P = 30, i.e. projecting the unknown contrast into 900 eigenfunctions, provides stable
solutions for the data sets considered herein. Increasing the number of eigenfunctions to
M = P = 40 and M = P = 50 results in very similar reconstructions compared to the
results obtained using M = P = 30. However, the inversion results start to deteriorate when
M and P are chosen to be more than 50. For the first data set, we show the performance of the
eigenfunction CSI method using five different sets of values for M and P.

In all synthetic data sets considered herein, we show the direct eigenfunction expansion
for the exact dielectric profile of the OI (for M = P = 30) which is obtained from expansion
(13) with coefficients computed by taking the inner product of the exact contrast with the
expansion. We call this direct expansion the theoretical limit for the method given the chosen
number of eigenfunction terms. We also define the error between the direct expansion and the
reconstructed expansion as

EE =
∥∥εMP − εd

MP

∥∥∥∥εd
MP

∥∥ (35)

where εMP and εd
MP are the reconstructed and direct eigenfunction expansions of the relative

permittivity respectively. This eigenfunction error, EE, is most easily computed using
Parseval’s theorem.

For the targets considered in the the three synthetic data sets, we also show the inversion
results from the scattering data collected in an open-region background using the integral
equation-based CSI method [18]. We refer to this algorithm as the IE-CSI method. In all of
these open-region reconstructions, we have used the same transmitters and receivers as used
in the eigenfunction CSI method. We have also used η = 0.03 to generate noisy scattering
data for the open-region cases. For the conductive enclosure experimental data set, we also
show the inversion results using the Gauss–Newton inversion method [11].

5.1. Synthetic data set I: concentric squares

For the first numerical example, we consider the OI to be two concentric squares. This target
has been used in other publications such as [10, 18, 33, 34]. The inner square has a dimension
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Figure 2. Exact relative permittivity for the concentric squares data set.

of λb × λb (λb is the wavelength in the background medium) with a relative permittivity of
1.6 + j0.2. The inner square is surrounded by an exterior square having sides of 2λb and
relative permittivity of 1.3 + j0.4. The OI is surrounded by a circular PEC cylinder of radius
3λb. The exact permittivity profile is shown in figure 2. The frequency of operation is chosen
to be 1 GHz and the relative permittivity of the background medium is assumed to be εb = 1;
thus, λb = 0.3 m. The OI is illuminated by 30 transmitters evenly spaced on a circle of radius
2.33λb. The data are then collected using 40 transmitters evenly spaced on a circle of radius
2.17λb.

The inversion algorithm is tested against this data set in five different cases distinguished
by the number of eigenfunctions used: (i) 100 (M = P = 10), (ii) 400 (M = P = 20), (iii)
900 (M = P = 30), (iv) 2500 (M = P = 50) and (v) 4900 (M = P = 70). The inversion
result for the first case is shown in figures 3(a), (b) where it can be seen that the two concentric
squares are not resolved. Increasing the number of eigenfunctions in the second case to 400,
the algorithm does a good job of resolving the two squares and reconstructs their complex
relative permittivities as shown in figures 3(c), (d). In the third case, shown in figures 3(e), (f),
the edges of the squares are sharper compared to the second case. The direct eigenfunction
expansion for the exact dielectric profile of the OI (for M = P = 30) is shown in figures 3(g),
(h) where the corresponding EE is 0.03. Increasing the number of eigenfunctions in the
fourth case to 2500, the reconstruction result, see figures 4(a), (b), remained similar to the
M = P = 30 case. However, the inversion results start to deteriorate when M and P are chosen
to be more than 50. In figures 4(c), (d), we have shown the inversion result for the fifth case
(M = P = 70) where the inversion algorithm cannot produce an acceptable reconstruction
for the OI. The computational time of the eigenfunction CSI method for the M = P = 30
case was 1.36 s per CSI iteration (23 min in total) on a 2.66 GHz machine. The open-region
reconstruction of this target using the IE-CSI method is shown in figure 5.

5.2. Synthetic data set II: resolution test

For this data set, the OI consists of two circular cylinders of radius 0.02 m with a relative
permittivity of ε = 2. The OI is located in a background medium with relative permittivity
ε = 1 and enclosed by a circular PEC enclosure of radius 0.12 m. The OI is illuminated by 16
transmitters at the frequency of f = 1.2 GHz and the data are collected using 16 receivers per
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x [m]

y
 
[
m
]

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
1

1.1

1.2

1.3

1.4

1.5

1.6

(e) Recons. Re( ) (M = P = 30)
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(f) Recons. Im( ) (M = P = 30)
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Figure 3. Concentric squares data set (a), (b) eigenfunction CSI reconstruction when M = P = 10,
(c), (d) eigenfunction CSI reconstruction when M = P = 20, (e), (f) eigenfunction CSI
reconstruction when M = P = 30, and (g), (h) direct eigenfunction expansion of the exact
dielectric profile of the object of interest (M = P = 30).
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Figure 4. Concentric squares data set: (a), (b) eigenfunction CSI reconstruction when
M = P = 50, and (c), (d) eigenfunction CSI reconstruction when M = P = 70.
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Figure 5. Concentric squares data set: open-region IE-CSI reconstruction. The imaging domain
is a 0.9 m × 0.9 m square.

transmitter. Transmitting and receiving antennas are evenly spaced on a circle of radius 0.1 m.
We consider three different scenarios which are distinguished by the distance between the
centers of the two circular targets. The three choices for this distance are (i) 0.4λb = 0.1 m,
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(ii) 0.32λb = 0.08 m and (iii) 0.24λb = 0.06 m. Note that the diameter of each cylinder is
only 0.16λb.

In the first scenario, where the exact relative permittivity profile is shown in figures 6(a),
(b), the inversion algorithm is able to resolve these two scatterers and reconstruct their
permittivities. The reconstructed permittivity in this case is shown in figures 6(c), (d) which
has a very small imaginary part, showing that the targets are lossless. The direct eigenfunction
expansion for the exact dielectric profile of the OI (for M = P = 30) is shown in figures 6(e),
(f) where the corresponding EE is 0.07. The open-region reconstruction of this target using
the IE-CSI method is shown in figures 6(g), (h). Reducing the distance of the two targets’
centers to 0.32λb in the second scenario, figures 7(a), (b), the inversion algorithm is still able
to reconstruct the scatterers which is shown in figures 7(c), (d). The direct eigenfunction
expansion of the true dielectric profile is shown in figures 7(e), (f). The corresponding EE

is 0.08 for this case. The open-region reconstruction for this target is shown in figures 7(g),
(h). In the third scenario, shown in figures 8(a), (b), the inversion algorithm is not able to
resolve the two scatterers (see figures 8(c), (d)). The direct eigenfunction expansion of the true
dielectric profile for this case is shown in figures 8(e), (f) where the corresponding EE = 0.10.
The open-region reconstruction for this target is shown in figures 8(g), (h). The computational
time of the eigenfunction CSI method for each of these scenarios was about 1.25 s per CSI
iteration (21 min in total) on a 2.66 GHz machine.

5.3. Synthetic data set III: circular targets with lossy background

We consider an OI which consists of three circular regions. Two of these circular regions
have the same radius of 0.015 m and their relative complex permittivities are 40 + j10 and
30 + j15. These two circular regions are surrounded by another circular region with radius
of 0.06 m and relative permittivity of 12. The OI is immersed in a lossy background and
enclosed by a circular PEC enclosure of radius 0.12 m. The object of interest is successively
irradiated by 32 transmitters evenly spaced on a circle of radius 0.1 m. The data are collected
using 32 receivers per transmitter where the receiver locations are the same as the transmitter
locations. The frequency of operation is chosen to be 1 GHz at which the complex permittivity
of the background medium is 23.4 + j1.13. The OI is shown in figures 9(a), (b) and the
reconstructed permittivity using the eigenfunction contrast source inversion method is shown
in figures 9(c), (d). The direct eigenfunction expansion for the exact dielectric profile of the
OI (for M = P = 30) is shown in figures 9(e), (f) where the corresponding EE is 0.11. The
computational time for this target was 1.90 s (21 min in total) on a 2.66 GHz machine. The
open-region reconstruction for this target is shown in figures 9(g), (h). To show the robustness
of the eigenfunction CSI algorithm with respect to the noise level, the inversion results of this
target when the noise level is 15% and 25% are shown in figures 10(a), (b) and figures 10(c),
(d) respectively.

5.4. Experimental data set

We also present preliminary results from the University of Manitoba MWI system with circular
metallic casing which is currently under development, see figure 11(a). We have employed
a two-port Agilent 8363B PNA-Series Network Analyzer (NA) as our microwave source and
receiver. The NA is connected to the antennas with a 2 × 24 crossbar mechanical switch
(Agilent 87050A-K24). Twenty-four monopole antennas are arranged at even intervals of 15◦

in a circular array at the midpoint height along the inside of a stainless steel cylinder of radius
0.224 m, and height 0.508 m. The monopole antennas, shown in figure 11(b), are simple
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Figure 6. Resolution Test (1st scenario) (a), (b) exact relative permittivity of the object of interest,
(c), (d) eigenfunction CSI reconstruction, (e), (f) direct eigenfunction expansion of the exact
dielectric profile of the object of interest (M = P = 30), and (g), (h) open-region reconstruction
of the object of interest using the IE-CSI method. For the eigenfunction CSI method, the imaging
domain is the whole interior of the metallic enclosure whereas for the open-region IE-CSI method,
it is a 0.164 m × 0.064 m rectangle.
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Figure 7. Resolution Test (2nd scenario) (a), (b) exact relative permittivity of the object of interest,
(c), (d) eigenfunction CSI reconstruction, (e), (f) direct eigenfunction expansion of the exact
dielectric profile of the object of interest (M = P = 30), and (g), (h) open-region reconstruction
of the object of interest using the IE-CSI method. For the eigenfunction CSI method, the imaging
domain is the whole interior of the metallic enclosure whereas for the open-region IE-CSI method,
it is a 0.164 m × 0.064 m rectangle.
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Figure 8. Resolution Test (3rd scenario) (a), (b) exact relative permittivity of the object of interest,
(c), (d) eigenfunction CSI reconstruction, (e), (f) direct eigenfunction expansion of the exact
dielectric profile of the object of interest (M = P = 30), and (g), (h) open-region reconstruction
of the object of interest using the IE-CSI method. For the eigenfunction CSI method, the imaging
domain is the whole interior of the metallic enclosure whereas for the open-region IE-CSI method,
it is a 0.164 m × 0.064 m rectangle.
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Figure 9. Synthetic data set III (a), (b) exact relative permittivity of the object of interest (c), (d)
eigenfunction CSI reconstruction, (e), (f) direct eigenfunction expansion of the exact dielectric
profile of the object of interest (M = P = 30), and (g), (h) open-region reconstruction of the
object of interest using the IE-CSI method. For the eigenfunction CSI method, the imaging domain
is the whole interior of the metallic enclosure whereas for the open-region IE-CSI method, it is a
0.136 m × 0.136 m square.
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Figure 10. Eigenfunction CSI reconstruction of the synthetic data set III with (a), (b) 15% noise
(η = 0.15), and (c), (d) 25% noise (η = 0.25).

wires with right-angle bends placed into the female end of the bulk-head SMA connectors that
protrude into the wall of the cylinder. These monopoles are oriented in the vertical direction,
parallel to the cylindrical walls. The distance of the antennas from the wall of the chamber
is only 0.01 m. Other resistively loaded antennas have been investigated, but the system
design is not part of the current study. Although the stainless steel enclosure is water-tight,
allowing it to be filled with a matching liquid, the background medium for this data is air.
The OI is an approximately square wooden cylinder with side length ≈ 0.09 m and a height
of ≈ 0.3 m. Using an Agilent 85070E dielectric probe kit, we measured the wood to have a
relative permittivity of ε ≈ 2 + j0.2 at the 1 GHz frequency which was used. The target was
placed at the center of the metallic chamber, shown in figure 11(a), and 23×24 measurements
were taken at this frequency (23 receivers per transmitter).

The vector network analyzer collects scattering parameters between antenna ports. Note
that the 24 antennas are co-resident during all measurements. As the imaging algorithm
requires scattered field measurements, the data are first collected for the MWI system in the
absence of the OI. Assuming that the t th transmitter is active, these data are labeled as the
incident measurement S inc

21,t , and consist of 23 measurements. We then perform the same
experiment in the presence of the OI. This data set is labeled as the total measurement S21,t .
The measured incident data are then subtracted from the measured total data and are denoted
by the measured scattered data, Sscat

21,t = S21,t − S inc
21,t .

19



Inverse Problems 26 (2010) 025010 P Mojabi and J LoVetri

(a) Dielectric phantom target inside the MWI system

(b) Monopole antenna
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Figure 11. Experimental data set (a) the object of interest inside the circular metallic enclosure,
(b) monopole antenna, (c), (d) eigenfunction CSI reconstruction, and (e), (f) Gauss-Newton
reconstruction. For the eigenfunction CSI method, the imaging domain is the whole interior
of the metallic enclosure whereas for the Gauss–Newton inversion, it is a 0.3 m × 0.3 m square.
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Figure 12. Comparison of the simulated incident field and the measured Sinc
21 for the first transmitter

at the 23 receiver locations (a) absolute value, and (b) phase.

Modeling the incident field inside the target, which cannot be obtained via measurement,
by Einc

t given in (18), the calibrated measured scattered fields for the unknown target
corresponding to the t th transmitter are calculated by

Emeas
t (r) = Einc

t (r)

S inc
21,t (r)

Sscat
21,t (r), (36)

where r ∈ S. The field Emeas
t (r ∈ S), denoted by ft in its vectorized form, is then used in the

inversion algorithm. The measured S inc
21,t (r) and the simulated Einc

t (r) corresponding to the
first transmitter, t = 1, are shown in figure 12 at the 23 receiver locations. This frequency was
chosen because of the reasonable match between the raw S inc

21 and the analytic incident field
assumed in the inversion model. Although this calibration technique is the one that has been
successfully used to calibrate the Fresnel 2001 and 2005 data sets [35, 36] (collected in an
anechoic chamber), it is not ideally suited to measurements taken inside conductive enclosures
because the mutual coupling between the co-resident antennas is much greater than that in
open-region systems.

The inversion result using eigenfunction contrast source inversion is shown in
figures 11(c), (d). As can be seen, the shape of the square wooden cylinder is not resolved
and the reconstructed permittivity is over the measured value. The computational time for
this target was 1.30 s (22 min in total) on a 2.66 GHz machine. We also note the artifacts
due to the presence of the antennas. To check whether the poor inversion result is due to
the use of eigenfunction CSI or the calibrated measured data itself, we have also inverted the
calibrated measured data using the state-of-the-art Gauss–Newton Inversion (GNI) algorithm
[11]. The inversion results using the GNI method are shown in figures 11(e), (f). As can
be seen the reconstruction results from the eigenfunction CSI and the GNI method are very
similar. We speculate that the poor performance of these two inversion algorithms against
the measured data are due to the high mutual coupling between the 24 co-resident antennas
which needs to be either modeled in the inversion algorithm (e.g. see [37]) or calibrated
out by an appropriate improved calibration technique. It is expected that by using either of
these methods the eigenfunction CSI method, and also the GNI method, would perform much
better with the experimental data. The investigation of improved calibration techniques for
conductive enclosure MWI systems is the subject of on-going research.
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6. Conclusion

In this paper, we have presented a new eigenfunction CSI method. This method is based on
expressing the unknown contrast and contrast sources as truncated eigenfunction expansions
corresponding to the Helmholtz operator in a homogeneous background medium. The
expansion coefficients become the unknowns in the inverse problem which is formulated
by introducing these eigenfunction expansions into the CSI functional. The traditional CG
technique is used to minimize the functional with respect to these expansion coefficients.
No prior information is used other than constraining the resulting permittivity profile to be
physical. The inversion algorithm was tested against both synthetically and experimentally
collected data. Results for the synthetically generated data are excellent compared to results
on the same data that can be generated using state-of-the-art inversion algorithms such as the
Gauss–Newton inversion [11, 15]. Preliminary results of inverting experimental data produced
poor results, but it is our expectation that there will be much improvement in the experimental
reconstructions once better calibration procedures are implemented which is part of future
work.
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