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Abstract

With respect to the microwave imaging of the dielectric properties in an
imaging region, the full derivation of a new inversion algorithm based on
the contrast source inversion (CSI) algorithm and a finite-element method
(FEM) discretization of the Helmholtz differential operator formulation for the
scattered electromagnetic field is presented. The unknown dielectric properties
are represented as nodal values on a two-dimensional (2D) arbitrary triangular
mesh using linear basis functions. The use of FEM to represent the Helmholtz
operator allows for the flexibility of having an inhomogeneous background
medium, as well as the ability to accurately model any boundary shape or type:
both conducting and absorbing. The resulting sparse and symmetric FEM
matrix equation can be solved efficiently, and it is shown how its solution can be
used to calculate the gradient operators required in the conjugate-gradient CSI
update without storing the inverse of the FEM matrix. The inversion algorithm
is applied to conductive-enclosures of various shapes and unbounded-region
microwave tomography configurations where the 2D transverse magnetic (TM)
approximation can be applied.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microwave imaging (MWI) is of interest for various applications such as geophysical surveying
and medical imaging [1–3]. In the form of MWI considered herein, one attempts to
quantitatively reconstruct the, mostly unknown, electrical properties (i.e. permittivity and/or
conductivity) of an object of interest (OI) which is immersed in a background medium of
known electrical properties. The OI is illuminated by various sources of microwave radiation

0266-5611/10/115010+21$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0266-5611/26/11/115010
mailto:azakaria@ee.umanitoba.ca
mailto:colin.gilmore@cancercare.mb.ca
mailto:Joe_LoVetri@umanitoba.ca
http://stacks.iop.org/IP/26/115010


Inverse Problems 26 (2010) 115010 A Zakaria et al

and the resulting field is measured at several locations within accessible regions surrounding
the OI. The field produced by the same sources identically located within the background
medium but in the absence of the OI, referred to as the incident field, is approximated through
direct measurement and theoretical modeling. This general inverse scattering problem can be
cast as an optimization problem over variables representing the unknown electrical properties
which are to be reconstructed. The nonlinearity and ill-posedness of the problem can be
treated by utilizing various optimization and regularization techniques [4–9].

The spatial domain for the mathematical problem can be assumed to be of infinite or
finite extent with appropriate boundary conditions being imposed to approximate the physical
demands of the experimental setup being considered. For example, in experimental setups
used for biomedical imaging (BMI) applications where a lossy matching fluid is used, it is
typical to assume a mathematical formulation which incorporates a spatial region of infinite
extent and to impose appropriate radiative boundary conditions at infinity. Experimental
setups using arbitrarily shaped conductive enclosures have also been investigated where the
appropriate mathematical formulation assumes regions of finite extent with perfect electric
conductor (PEC) boundary conditions being imposed on the appropriately shaped boundary
[10–13]. In either case, the background medium can be assumed to be homogeneous or
inhomogeneous.

When the inverse scattering problem formulation makes use of an integral equation (IE)
for the electromagnetic field a Green’s function corresponding to the background medium
and the problem’s boundaries is required. If the background medium is inhomogeneous
or if the problem’s boundary is complicated (e.g. arbitrary and/or conducting) deriving and
calculating the Green’s function can be a complex, computationally expensive process. With
the knowledge of the Green’s function, the IE is typically solved using the method-of-moments
(MoM), which produces a dense system of equations that can be a computational burden
[10, 14, 15].

Partial differential equation (PDE) formulations can be discretized directly using
numerical techniques such as finite-difference (FD) or finite-element (FE) methods [16–18].
Using PDE operators, there is no need to determine the problem’s Green function and, thus, the
presence of an inhomogeneous background or a complicated boundary can be easily taken into
account without affecting the computational complexity of the numerical solution. In addition,
unlike IE formulations, PDE formulations readily produce sparse systems of equations which
can be solved efficiently.

Most inversion algorithms are iterative techniques where estimates of the OI’s electrical
properties are updated starting from some initial guess. Some of such inversion algorithms
require that a forward solver be called several times at each iteration to calculate the scattered
fields associated with each transmitter for the current estimate of the OI’s electrical properties;
this can be a computational burden because the system of equations used to compute these
scattered fields (whether using an IE or PDE formulation) must be assembled at each iteration.
Examples of such algorithms are the distorted Born iteration method (DBIM), the Gauss–
Newton inversion (GNI) and conjugate gradient using FEM [14–16]. A state-of-the art
algorithm that has had much success in solving inverse scattering problems without the
need to call a forward solver is the contrast source inversion (CSI) technique [19]. In each
iteration of CSI, two variables—the contrast source and the contrast—are updated successively
using a conjugate gradient method. The variables are updated to minimize a given cost
functional. To enhance the quality of the reconstructions, and to increase its robustness to
noisy data, regularization is introduced to the cost functional in the form of a weighted L2-norm
multiplicative constraint [20, 21]. The resulting method is called the multiplicative regularized
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CSI (MR-CSI) method. The method has been applied successfully using the IE formulation
in several applications [10, 22, 23].

The IE-CSI and IE-MRCSI methods are efficient if the Green’s function is available
analytically and is such as to produce integral equation operators which can be efficiently
discretized and evaluated. This is indeed the case if the background medium is homogeneous
and if the boundary is such as to allow a closed-form Green’s function with the convolutional
property (e.g. unbounded problem domains). To overcome these deficiencies in IE
formulations, recently a finite-difference CSI (FD-CSI) method has been introduced in
conjunction with a PDE formulation for the electromagnetic field [17, 24]. The FD-CSI
algorithm uses an effective uniform structured grid discretization of the Helmholtz PDE and is
thus a frequency-domain method. Using this technique one can incorporate an inhomogeneous
background medium as well as various boundaries as long as these can be well approximated
using the FD grid. Since the resulting FD matrix operator is independent of the OI, it does
not change throughout the inversion process and the LU decomposition of its inverse can be
calculated once and stored. The FD-CSI and its regularized counterpart FD-MRCSI have
been used, successfully, for through-wall imaging, geophysical surveying and biomedical
applications.

Despite its success, there are two major drawbacks inherent in FD-CSI. First, FD
discretizations make it difficult to accurately model arbitrarily shaped boundaries, whether
of the enclosure or of the unknown object, because of the use of structured rectangular grids
requiring stair-stepping at curved boundaries. Although resolving the boundary is not an
issue for unbounded-region configurations where absorbing boundary conditions are applied,
it does become an issue for imaging configurations with conductive enclosures of arbitrary
shape. Second, the use of structured rectangular grids becomes problematic when including
prior information about the target because this usually requires the specification of electrical
parameters on irregularly shaped regions [12, 24]. FEM discretizations of the governing
PDE that use unstructured nonuniform meshes easily overcome these drawbacks as well as
allowing the possibility of increasing the resolution of the reconstruction where it is needed in
an adaptive way. That is, a higher density mesh can be imposed, either adaptively or initially
if prior information is available, in regions where the spatial distribution of the electrical
parameters varies highly. Adapting the mesh locally in regions of such high variation can
increase the quality of the reconstruction while keeping the computational complexity of the
inversion problem minimal.

In this paper, with the goal of capitalizing on these advantages of FEM discretizations,
a novel inversion algorithm based on FEM combined with the contrast source inversion is
presented. Preliminary results on this new algorithm were presented in [25], but full derivation
of the algorithm with extensive testing were not. The algorithm is applied to two-dimensional
(2D) transverse magnetic (TM) problems, but the method is extendable to 2D transverse electric
problems and full three-dimensional (3D) vector formulations. The spatial domain is meshed
using unstructured nonuniform triangular elements, with the electromagnetic field variables,
as well as the electrical properties, specified at the nodes of the triangles and represented via
the basis functions. The boundary of the problem can have any arbitrary shape and can be of
any type. Similarly, the background medium can be taken to be inhomogeneous and is easily
represented on such meshes. To demonstrate the advantages of this algorithm, it is used to
invert synthetically generated datasets, as well as experimental data obtained using our own
MWI prototype [26].

Inversion algorithms based on the finite-element method (FEM) have been introduced in
the past. In [16], Rekanos et al use FEM for the field solution but the unknown electrical
properties for the problem are located on a uniform grid of square cells. Each cell in the grid is
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discretized into several triangles for the field solution. Such a dual-grid technique does not take
advantage of the full flexibility of using an FEM discretization: the inversion is not actually
performed on an arbitrary mesh. Furthermore, the method in [16] is only applied to synthetic
datasets for unbounded-region problems and so the advantages of the FEM formulation for
conductive enclosure setups are not investigated. In [18], Paulsen et al use a hybrid method
that combines FEM and a boundary-element method (BEM). A dual mesh scheme is also
used in their work, where the contrast variables are located on nodes of a coarse triangular
mesh and the electric fields are calculated on a finer triangular mesh. At each iteration, the
contrast variables are updated using a Gauss–Newton method and then the updates are utilized
to calculate the scattered fields. This method has been applied successfully to experimental
data [27]. A disadvantage of both of these FEM-based inversion algorithms is that the system
of FEM equations has to be re-assembled at every iteration in order to solve for the scattered
field. This disadvantage is not applicable to the this method wherein FEM is coupled with
CSI.

2. Problem formulation

We consider the 2D TM problem with z-polarized electric field and an exp(jωt) time
dependence3. The unknown isotropic OI is located within a bounded imaging domain D,
and the electric properties of the background medium, which can be inhomogeneous, are
known. The permeability of the OI and background are taken to be that of free-space, μ0. The
enclosing boundary for the problem, �, can be of any shape, size or type depending on the
imaging setup being modeled. The complex relative permittivity of the OI is denoted by εr(r),
where r = (x, y) is the 2D position vector. The corresponding electric contrast is defined as

χ(r) = εr(r) − εb(r)

εb(r)
, (1)

where εb(r) is the complex relative permittivity of the background (χ(r) = 0 for r /∈ D).
The imaging domain D is successively illuminated by one of T transmitters. The

transmitters are assumed to be 2D point sources with the incident field, Einc
t , produced by

transmitter t, modeled by the scalar Helmholtz equation

∇2Einc
t (r) + k2

b(r)Einc
t (r) = jωμ0Jt (r), (2)

where ω = 2πf is the angular frequency, and kb(r) = ω
√

μ0ε0εb(r) is the background
wavenumber which is allowed to be inhomogeneous. The source term, corresponding to
transmitter t located at position rt , is given by

Jt (r) = −1

jωμ0
δ(r − rt ). (3)

With the OI present in the imaging domain, D, the total field, Et, satisfies the scalar
Helmholtz equation

∇2Et(r) + k2(r)Et (r) = jωμ0Jt (r), (4)

where k(r) = ω
√

μ0ε0εr(r). Thus, the Helmholtz equation satisfied by the scattered field,
defined as Esct

t (r) � Et(r) − Einc
t (r), can be written as

∇2Esct
t (r) + k2

b(r)Esct
t (r) = −k2

b(r)wt (r), (5)

where the contrast-source variables wt(r) � χ(r)Et (r) represent source terms which
themselves depend on the total field.

3 Note that with this assumption a time variable is no longer needed and that the index ‘t’ will be used in the remainder
of the paper to indicate the number corresponding to the active transmitter.
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Solving for the incident field Einc
t and the scattered field Esct

t requires that boundary
conditions (BCs) on � be defined. For a conductive-enclosure system perfect electrical
conductor (PEC) boundary conditions are used resulting in homogeneous Dirichlet BCs, i.e.

Einc(r ∈ �) = 0 and Esct(r ∈ �) = 0. (6)

For enclosed MWI systems incorporating sufficient loss in the matching medium such
that little energy is reflected back from the boundaries of the enclosure, or for other imaging
applications where such reflections can be ignored, a homogeneous lossy medium which
extends to infinity can be assumed for the mathematical problem. In such cases all fields will
be required to satisfy the 2D Sommerfeld radiation condition:

lim
r→∞

√
r

(
∂

∂r
Et(r) + jkbEt (r)

)
= 0, (7)

where r =
√

x2 + y2. These boundary conditions are approximated at the FEM mesh boundary
� using numerical radiation boundary conditions (RBCs) as summarized below.

3. Finite element method discretization

The problem domain (	) is discretized into a mesh of first-order triangular elements defined
by N nodes. At each node, a linear basis function is specified, the parameters of which depend
solely on the geometry of the mesh. We use the standard Rayleigh–Ritz formulation of FEM
to discretize (5) which, irrespective of the type of BCs used, produces a matrix equation of the
form [28]

[S − Tb]Esct
t,	 = Tbwt,	. (8)

Here S ∈ C
N×N is the stiffness matrix, which depends on the BCs, and Tb ∈ C

N×N is the
mass matrix, which depends on the background medium properties. The vectors Esct

t,	 ∈ C
N

and wt,	 ∈ C
N contain the nodal values of the scattered field and the contrast source for

transmitter t.
Entries in the ith row and j th column of the stiffness matrix (not arising from the

boundary-integral term) and the mass matrix are given by

Si,j =
∫

	

∇λi · ∇λj ds and Tbi,j
=

N∑
p=1

∫
	

k2
b,pλiλjλp ds, (9)

where λi , λj and λp are the linear basis functions defined at the ith, j th and pth node,
respectively, ∇ is a spatial gradient operator and kb,p is the background wavenumber at
node p.

The Sommerfeld radiation BCs are modeled using second-order absorbing BCs [28]:

∇Esct
t (r) · n̂ + γ1(r)Esct

t (r) = −γ2(r)
∂2Esct

t (r)

∂ξ 2
for r ∈ �, (10)

where n̂ denotes the outward-normal unit vector, ξ is the arc length measured along the
boundary,

γ1(r) = jkb(r) +
κ(ξ)

2
− κ2(ξ)

8(jκ(ξ) − kb(r))
, γ2(r) = − j

2(jκ(ξ) − kb(r))
(11)

and κ(ξ) is the curvature of the boundary at ξ [28, p 128]. The FEM formulation of the BCs
leads to a boundary integral term that contributes to the (i,j )th element of S as

S�
i,j =

∫
�

(
γ1λ

�
i λ�

j − γ2
∂λ�

i

∂ξ

∂λ�
j

∂ξ

)
dl. (12)

Here λ�
i , λ�

j are linear boundary basis functions defined for nodes i and j on �.
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3.1. Matrix operators

The FEM-CSI algorithm we present here was inspired by the FD-CSI formulation presented
in [17]. Clearly, any discretization of the PDE formulation of the problem can be used
in conjunction with the CSI algorithm. The FEM-CSI algorithm can be described more
effectively by introducing several matrix operators.

The first operator MS ∈ C
R×N transforms field values from the N problem domain nodes

to the R receiver locations on the measurement surface S; if the receiver locations are within
the problem’s mesh the operator interpolates to these locations using the FEM basis functions,
while if the receivers are located outside the mesh (for example, in unbounded-region problems
the receivers may be located in the far-field region), Huygens’ principle is used to find the
field at the receiver locations [28]. The second operator MD ∈ R

I×N simply selects the
field values at the I nodes within the imaging domain D. Both matrices operate on vectors
containing values at all mesh nodes.

At each iteration of the inversion algorithm, the contrast source variables wt ∈ C
I are

available at nodes within D; however, the FEM matrix equation requires the contrast source
variables at all mesh nodes. The contrast source variables wt,	 ∈ C

N , for all nodes in 	, are
given by

wt,	 = MT
Dwt, (13)

where the superscript T denotes the transpose. Substituting (13) into the FEM matrix equation,
a new operator L ∈ C

N×I is defined as

Esct
t,	 = L[wt ] = (S − Tb)

−1TbMT
D[wt ]. (14)

3.2. Solving the linear matrix equation

An efficient LU decomposition algorithm can be utilized for calculating the inverse in the
operator L, as matrices S and Tb are sparse and symmetric. Here the Unsymmetric-Pattern
Multifrontal Package (UMFPACK) with column pre-ordering, which is available in MATLAB,
is used [29, 30]. For a given problem, the LU decomposition is performed once and the
resulting matrices are saved and recalled when necessary. Then, for solving the linear matrix
equation, efficient matrix factorization algorithms included with UMFPACK are used.

Another direct solver package that can be used for sparse matrix LU decomposition and
factorization is PARDISO (parallel sparse direct linear solver). Although it is a direct solver,
PARDISO supports a combination of direct and iterative methods to accelerate the linear
solution process [31]. PARDISO often uses less memory than UMFPACK; however, it is not
used or tested in this paper.

A disadvantage of using sparse LU decomposition algorithms is that it requires more
memory, especially for 3D problems, making their use inefficient. An alternative would be
using iterative solvers like GMRES (generalized minimal residual method) and CG (conjugate
gradient). Although they are more memory-efficient, iterative solvers might be less stable and
have slow convergence; therefore, appropriate preconditioning techniques have to be tested
and used.

3.3. Norms and inner products

With the unknown variables located at the nodes of the the triangular mesh, the L2-norm and
the inner product in D are calculated as

‖x‖2
D = xH TDx and 〈x, y〉D = yH TDx, (15)
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where x and y are arbitrary vectors of size I, the superscript H denotes the Hermitian (complex
conjugate transpose) and TD ∈ R

I×I is the mass matrix restricted to nodes lying within the
imaging domain D. The (i,j )th element of TD is given by

TDi,j
=

∫
D

λiλj ds. (16)

Assuming that the receiver locations on the surface S are distributed uniformly, the L2-norm
and the inner product on S are given as

‖x‖2
S = xH x and 〈x, y〉S = yH x, (17)

where x and y are vectors of size R.

4. The inversion algorithm

In the framework of the contrast source inversion (CSI) [19], the objective is to update the
contrast source and the contrast variables sequentially, so as to minimize the following cost
functional:

F(χ,wt) = FS(wt ) + FD(χ,wt)

=
∑

t ‖ft − MSL[wt ]‖2
S∑

t ‖ft‖2
S

+

∑
t ‖χ 
 Einc

t − wt + χ 
 MDL[wt ]‖2
D∑

t

∥∥χ 
 Einc
t

∥∥2
D

. (18)

Here, ft ∈ C
R holds the measured scattered field data at the R receiver locations for each

transmitter, χ ∈ C
I is the vector of contrast nodal values for nodes located inside D, and

Einc
t = MD

[
Einc

t,	

]
is the vector of the incident field corresponding to transmitter t for nodes

inside D. The notation a 
 b denotes the Hadamard (i.e. element-wise) product.
In CSI, the first step is to update contrast source variables wt by a conjugate-gradient

(CG) method with Polak–Ribière search directions, while assuming the contrast variables χ

constant. In the second step, wt is assumed constant, and a modified form of the domain
equation (FD(χ,wt )) is minimized (this second step has a closed-form solution) [19]. The
first update equation in the CSI method is

wt,n = wt,n−1 + αt,ndt,n, (19)

where the subscript n is the iteration number, αt,n is the update step-size and dt,n are Polak–
Ribière search directions. The step-size αt,n is determined as

αt,n = arg minα{F(wt,n−1 + αdt,n, χn−1)}, (20)

for which a closed-form expression can be found by introducing wt,n−1 + αdt,n, χn−1 in (18)
and setting the derivative with respect to α equal to zero. The result is

αt,n = ηS〈ρt,n−1, MSL[dt,n]〉S + ηD
n 〈rt,n−1, dn,t − χn−1 
 MDL[dt,n]〉D

ηS‖MSL[dt,n]‖2
S + ηD

n ‖dn,t − χn−1 
 MDL[dt,n]‖2
D

. (21)

Here the normalization factors ηS and ηD
n are

ηS =
(∑

t

‖ft‖2
S

)−1

,

ηD
n =

(∑
t

∥∥χn−1 
 Einc
t

∥∥2
D

)−1

,

(22)
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and the error terms ρt,n−1 and rt,n−1 are

ρt,n−1 = ft − MSL[wt,n−1],

rt,n−1 = χn−1 
 Einc
t − wt,n−1 + χn−1 
 MDL[wt,n−1].

(23)

The Polak–Ribière search directions dt,n are calculated by the following formula:

dt,n = −gt,n +
〈gt,n, gt,n − gt,n−1〉D

‖gt,n−1‖2
D

dt,n−1, (24)

where gt,n is the gradient of the cost function F(χ,wt) with respect to the contrast sources
wt,n.

Using an approach similar to [17], the gradient gt,n is given by

gt,n = −2ηSTD
−1LH MH

S ρt,n−1 − 2ηD
n T−1

D
(
I − LH MT

DXH
n−1

)
TDrt,n−1 (25)

where I ∈ R
I×I is an identity matrix and Xn−1 = diag(χn−1) is a diagonal matrix. The

derivation of this gradient expression is outlined in appendix A.
After updating the contrast source variables, χ is evaluated by minimizing the modified

domain equation FD
m(χ) given by

FD
m(χ) =

∑
t

∥∥χ 
 Einc
t − wt + χ 
 MDL[wt ]

∥∥2
D. (26)

The contrast source variables wt are assumed constant in this minimization. At the nth
iteration, this requires the solution of the following sparse matrix equation for χn:(∑

t

EH
t,nTDEt,n

)
χn =

∑
t

EH
t,nTDwt,n. (27)

Here, Et,n ∈ C
I×I is the total field diagonal matrix; the diagonal entities are the elements

of vector Et,n = Einc
t + MDL[wt,n]. The derivation of the contrast update is given in

appendix B.

4.1. Initializing FEM-CSI algorithm

The initial guess of the contrast source variables cannot be set to zero since the cost functional
becomes undefined at the first iteration. As in the standard CSI algorithm [19], the initial guess
for the FEM-CSI is evaluated by calculating the contrast source variables that will minimize
the data misfit FS(wt ). This minimizer is taken to be the result of applying the method of
steepest descent to FS(wt ). As outlined in appendix C, this initial guess can be given in the
closed form as

wt,0 = Re〈MSL[GSft ], ft 〉S
‖MSL[GSft ]‖2

S
GSft , (28)

where the operator GS = −2ηST−1
D LH MH

S . After evaluating wt,0, the initial guess for the
contrast variables χ is calculated using (27) and the initial Polak–Ribière search directions
dt,0 are set to zero.

5. Inversion results

In this section, a comparison between the inversion results from FEM-CSI and IE-CSI is
performed first using the same synthetic dataset. Next, FEM-CSI is utilized to invert several
synthetic datasets and one experimental dataset.
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Synthetic dataset inversions are used to show two advantages of the FEM-CSI algorithm:
the capability of incorporating an inhomogeneous background, and the ability to model non-
circular PEC enclosures. All synthetic datasets are created using an FEM forward solver.
The meshes used to generate the synthetic datasets in FEM are different from those used in
the inversion algorithm to invert the scattered field data. All the geometries and meshes are
generated using the third-party freeware GMSH [32]. To ensure accurate calculations of the
electric field, the characteristic mesh length (CL) of different meshes is selected to be less
than λ/15 where λ is the smallest expected wavelength for a given problem. For synthetic
data examples, CL values of the forward mesh and inversion mesh are different. For all the
synthetic measured scattered fields 3% noise is added as follows [34]:

f
noisy
t = ft + max (∀t |ft |) η√

2
(τ1 + jτ2), (29)

where ft is the measured scattered field on the domain S obtained from the forward solver,
τ1 and τ2 are uniformly distributed random numbers between −1 and 1, and η is the desired
fraction of the noise. For the synthetic datasets used herein, η = 0.03.

In the inversion for each dataset, the algorithm is allowed to run for 1024 iterations within
which in all cases considered, the algorithm converged. In addition, the predicted contrast
after each iteration is constrained to remain within physical bounds (i.e. the real part of the
relative permittivity is kept greater than 1, and the conductivity is constrained to be a positive
value).

To assess the quality of the synthetic data reconstructions, for each dataset the relative
error (Err) between the exact OI profile and the reconstructed image is calculated. This error
is defined as

Err = ‖εexact(r) − εreconst(r)‖D
‖εexact(r)‖D . (30)

Since the exact profile and the inversion results are located on different arbitrary triangular
meshes, it is necessary to interpolate them to the same uniform square grid to calculate Err.
This uniform grid is discretized to a finer and finer square cells until the calculated Err
converges.

Finally, a summary of inversions is provided in table 2 where the frequency (f ), the
number of transmitters (T), the number of nodes in 	 (N), the number of nodes in D (I) and
the average time per iteration (t̃iter) are specified for each example. The inversion algorithm
is implemented in MATLAB R© and is running on a PC workstation with two Intel R© Xeon R©

quad-core 2.8 GHz processors.

5.1. Comparison between FEM-CSI and IE-CSI

For comparing FEM-CSI and IE-CSI, we consider the U-umlaut (Ü) profile depicted in
figures 1(a) and (d). In this profile, the OI consists of scatterers arranged in the ‘Ü’ shape
having the same relative permittivity of εr = 2 − j1. The OI is located in an unbounded
homogeneous background medium with relative permittivity εb = 1. The OI is illuminated
by 16 transmitters at a frequency of f = 2 GHz and the data are collected using 16 receivers
per transmitter. The transmitting and receiving points are evenly spaced on a circle of radius
0.225 m. In both FEM-CSI and IE-CSI, the inversion domain D is a square centered in the
middle of the problem domain with side length equal to 0.15 m. In FEM-CSI, the inversion
mesh consists of unstructured arbitrarily oriented triangles with 3139 nodes within D. The
IE-CSI inversion grid consists of 100 × 100 cells confined within the boundaries of D.

The reconstruction results of FEM-CSI are shown in figures 1(b) and (e) and for IE-CSI
in figures 1(c) and (f). Further, the progress of the cost functionals of FEM-CSI and IE-CSI
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(a) Exact Re( r) (b) FEM-CSI Reconst. Re( r) (c) IE-CSI Reconst. Re( r)

(d) Exact −Im( r) (e) FEM-CSI Reconst. −Im( r) (f) IE-CSI Reconst. −Im( r)

Figure 1. Ü exact profile (a), (d) and reconstructions at f = 2 GHz using FEM-CSI (b), (e) and
IE-CSI (c), (f).

(a) Exact Re( r) (b) Exact −Im( r)

Figure 2. Exact profile of circular targets with a lossy background at a frequency of f = 1 GHz.

are shown in figure 8(a). Comparing the reconstructions, the results of both FEM-CSI and
IE-CSI are similar. For FEM-CSI Err = 18.06% while for IE-CSI Err = 17.73%. Both
algorithms were able to resolve the different features of the OI; however, both reconstructions
of the real and imaginary relative permittivity values are higher than expected.

Differences between FEM-CSI and IE-CSI reconstructions arise because FEM-CSI is
performed on an irregular mesh of arbitrary triangular elements while in IE-CSI the inversion
domain is a regular uniform grid of square cells. These differences can be reduced by using
a uniform mesh of equilateral triangles in FEM-CSI, applying a spatial filtering technique on
FEM-CSI result at each iteration [33], or using multiplicative regularization. Furthermore, the
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(a) Circular Enclosure (b) Reconst. Re( r) (c) Reconst. −Im( r)

(d) Square Enclosure (e) Reconst. Re( r) (f) Reconst. −Im( r)

(g) Triangular Enclosure (h) Reconst. Re( r) (i) Reconst. −Im( r)

Figure 3. PEC enclosure configurations and FEM-CSI reconstructions at f = 2 GHz for a circular
domain (a)–(c), square domain (d)–(f) and triangular domain (g)–(i).

cost functionals of FEM-CSI and IE-CSI converge to different values because the synthetic
dataset is generated using FEM, the numerical noise floor of both algorithms is different
(FEM-CSI implemented in MATLAB while IE-CSI in C++) and again the inversion domain
properties are not the same.

5.2. Microwave tomography in PEC enclosures of various shapes

As previously mentioned, one advantage of FEM-CSI is the ability to perform imaging in
different PEC enclosure shapes without any modification to the algorithm. The concept of
imaging inside enclosures of arbitrary shapes was introduced before using a Gauss–Newton
inversion (GNI) algorithm in [12]. To illustrate this feature, we consider an OI which consists

11
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(a) Exact Re( r) (b) Exact −Im( r)

(c) prior Re( r) (d) prior −Im( r)

Figure 4. Brain exact profile (a), (b) and given prior information (c), (d) at f = 1 GHz.

of three circular regions. One of the circular regions has a radius of 0.06 m with a relative
permittivity of εr = 12. In this region, the other two circular regions are embedded. The two
regions have the same radius of 0.015 m with relative permittivities of εr = 40 − j10 and
εr = 30 − j15 at a frequency of f = 1 GHz. This OI has been used in other publications such
as [13, 25]. The target configuration is shown in figures 2(a) and (b).

The OI is centered within three different PEC enclosures of different shapes: a circle
of radius 0.12 m, a square with side of 0.24 m and an equilateral triangle of side length
equal to 0.42 m. The dimensions of each enclosure are depicted in figures 3(a), (d) and
(g). In all enclosures, the OI is surrounded by a background medium of relative permittivity
εb = 23.4 − j1.13 at a frequency of f = 1 GHz. The OI is interrogated by 32 transmitters at
a frequency of f = 1 GHz and the scattered data are collected at 32 receivers per transmitter.
For all enclosures, the transmitting and receiving points are evenly spaced and located on a
circle of radius 0.1 m.

The inversion domain D is a square centered in the middle of the enclosures with the
square’s side length equal to 0.15 m. The number of unknowns in D are approximately
6000 for all cases. For any enclosure, the unknowns are positioned on the vertices of triangles
in an unstructured arbitrary mesh. The reconstructions after 1024 iterations are shown in
figures 3(b) and (c) for circular enclosure, (e), (f) for square and (h), (i) for triangular, and the
cost functional progress is given in figure 8(b). The relative errors in the reconstructions for the
three different enclosures are relatively similar with Errcircle = 18.25%, Errsquare = 19.22%

12
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(a) Blind Re( r) (b) Initial Guess Re( r) (c) Inhomog Bkg Re( r)

(d) Blind −Im( r) (e) Initial Guess −Im( r) (f) Inhomog Bkg −Im( r)

Figure 5. FEM-CSI reconstructions at f = 1 GHz when no prior information is given (a), (d),
when prior information is utilized as initial guess (b), (e), and when prior information is used as
background (c), (f).

Table 1. Relative dielectric permittivities of the brain model at a frequency of f = 1 GHz.

Skin Skull CSF GM WM Stroke

46 − j15 12.8 − j2.4 69.3 − j42.8 52.8 − j16.9 38.6 − j9.0 61.1 − j28.5

and Errtriangular = 19.28%. The OI features are well resolved using any of the PEC enclosure
shapes.

5.3. Biological imaging with an inhomogeneous background

To demonstrate the capability of FEM-CSI to employ prior information as the inhomogeneous
background, the third OI is selected as a simplified model of a brain exhibiting symptoms of a
stroke. This brain model is based on that published in [35] and similar such models have been
used in [15, 24]. It consists of an outer skin region followed by the skull, the cerebral-spinal
fluid (CSF), the gray matter (GM) and the white matter (WM). A stroke region representing
a blood clot is located on the left side of the white matter region. The relative permittivities
of the different biological regions in the model are summarized in table 1 for a frequency of
f = 1 GHz. The permittivity values of the model are based on the result of a study reported
in [36].

The brain model is located in a background medium of permittivity εb = 45 − j13.
The target is irradiated by 32 transmitters evenly spaced on a circle of radius 0.11 m at a
frequency of f = 1 GHz. The data are collected at 32 receivers per transmitter where the
receiver locations are the same as the transmitter locations. The inversion domain D is a
square centered in the problem domain with its side lengths equal to 0.20 m. The number of

13
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(a) Measurement Setup and MWI System

(b) Schematic of Scattering Cylinders (c) Reconst. for d = 0 m

(d) Reconst. for d = 0.005 m (e) Reconst. for d = 0.01 m

Figure 6. Reconstructions at f = 4.5 GHz for experimental datasets of two nylon-66 rods
separated by 0 m (a), 0.005 m (b) and 0.01 m (c).

unknowns (located at the mesh nodes) withinD is 12 131 nodes. The inversion algorithm is run
three successive times. In the first run, blind inversion is performed with no prior information
given to the algorithm. For the second simulation, the prior data depicted in figures 4(c) and
(d) is given to the algorithm as an initial guess. The third simulation was executed using the
prior information as an inhomogeneous background by incorporating this information within
the L[·] operator.

14
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Table 2. Summary of FEM-CSI inversion examples.

Example f (GHz) T N I t̃iter (s)

Ü-profile (figure 1) 2 16 13 539 3139 0.99
PEC enclosures (figure 3) 1 32

Circular 12 352 6027 2.51
Square 15 584 5936 2.79
Triangular 20 382 5951 3.28

Brain model (figure 5) 1 32 21 689 12 131 5.96
Experimental (figure 6) 4.5 24 23 145 10 841 4.35

The reconstruction results after 1024 iterations are shown in figures 5(a) and (d) for blind
inversion, (b), (e) when the prior information is used as an initial guess and (c), (f) when the
prior information is used as the inhomogeneous background. The FEM-CSI cost functional
progress for each case is given in figure 8(c). The features of the brain model with the stroke
are resolved in all three cases; however, the best reconstruction is obtained with the prior
information used as the inhomogeneous background (inhomog bkg). The relative errors for
the different runs are Errblind = 22.49%, Errinitial = 14.54% and Errinhomog = 13.91%. The
relative errors verify that using the prior information as an inhomogeneous background for the
inversion produced the best results.

5.4. Inversion of experimental datasets

The experimental dataset was collected using our air-filled MWI system that has been reported
in [26, 37, 38]. A picture of the system is given in figure 6(a). The system uses a two-port
Agilent vector network analyzer (VNA) as a microwave source and receiver. The VNA is
connected to the antennas via an Agilent 24-port microwave switch. The antennas utilized are
24 Vivaldi antennas arranged in a circular array of radius ≈ 0.22 m. For each transmitting
antenna, 23 measurements are collected; thus, the total number of measurements per dataset
is 23 × 24 = 552. The collected data are then calibrated using the procedure detailed in [26].
The experimental datasets are collected at a frequency of f = 4.5 GHz.

Two canonical nylon-66 cylinders are selected as targets. Each cylinder has a radius
of 0.0381 m and a height of 0.44 m with a relative permittivity εr ≈ 3 at a frequency of
f = 4.5 GHz. The two cylinders are centered in the middle of the system’s chamber, with the
separation between them varied to d = 0 m, d = 0.005 m and d = 0.01 m. The configuration
of the two targets and the separation between them is shown in figure 6(b). For inverting the
experimental datasets, the domain D is selected to be a square centered in the middle of the
problem domain with its side length equal to 0.15 m. The number of nodes within the D is
10 841.

The reconstructions for the different separations are shown in figures 6(c)–(e), while the
progress of the cost functional for each separation is given in figure 8(d). As the imaginary part
of the surrounding medium (air) and the nylon-66 rods is negligible, only the reconstructions
of the real part are shown. From the reconstructions, the two cylinders are clearly visible with
their estimated relative permittivity values reaching a maximum ≈3.5. For all separations, a
‘hole’ artifact appears in the middle of each cylinder; this is not a deficiency in FEM-CSI as
compared to IE-CSI but rather due to the quality of the data collected, and is demonstrated by
running the same data with the IE-CSI algorithm. The IE-CSI result using the experimental
dataset with d = 0.01 m separation is shown in figure 7.
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Figure 7. IE-CSI reconstructions at f = 4.5 GHz for experimental datasets of two nylon-66 rods
separated by 0.01 m.
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Figure 8. The FEM-CSI cost functional, F(χ, wt ), versus the iteration number for (a) Ü-profile,
(b) MWT in PEC enclosures, (c) BMI of the brain model and (d) experimental datasets
reconstruction.
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6. Conclusion

The full derivation of a new CSI algorithm incorporating the flexibility of the finite-element
method to discretize the Helmholtz partial differential equation operator in the formulation
of the electromagnetic inverse problem has been given. Results of applying this FEM-CSI
algorithm to synthetic and experimental datasets have been presented and the advantages of
the algorithm have been demonstrated by applying it to MWI setups using PEC enclosures of
various shapes as well as using prior information in the form of an inhomogeneous background
for the inverse problem. The ability to use adaptive non-uniform meshes with finer resolution
in regions exhibiting large gradients in the dielectric contrast is also a possibility using this
algorithm and is a topic for future study. The addition of multiplicative regularization is also
a relatively straightforward improvement which will be dealt with in a future publication.
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Appendix A. Derivation of the gradient used in the FEM-CSI algorithm

In the first step of the FEM-CSI algorithm, the gradient, gt, of the cost functional with respect
to the contrast source variables, wt , is required to calculate the updates. At a given point wt ,
gt is a vector pointing in the direction in which the Gâteaux differential has the largest value.

The Gâteaux differential is evaluated first for the data misfit function FS(wt ) and then for
the domain equation FD(χ,wt ). For a small variation in wt taken along the search direction
ht, the Gâteaux differential of the data misfit function FS(wt ) is given by

dht
FS(wt ) = lim

ε→0

FS(wt + εht ) − FS(wt )

ε

= lim
ε→0

ηS ‖ft − MSL[wt + εht ]‖2
S − ‖ρt‖2

S
ε

= lim
ε→0

ηS ‖ρt − εMSL[ht ]‖2
S − ‖ρt‖2

S
ε

= lim
ε→0

ηS ‖ρt‖2
S − 2εRe 〈MSL[ht ], ρt 〉S + ε2 ‖MSL[ht ]‖2

S − ‖ρt‖2
S

ε

= lim
ε→0

ηS −2εRe 〈MSL[ht ], ρt 〉S + ε2 ‖MSL[ht ]‖2
S

ε

= Re〈−2ηSMSL[ht ], ρt 〉S . (A.1)

Here ρt is a function of wt , given as

ρt = ft − MSL[wt ]. (A.2)

Next, to obtain the direction ht that will maximize the differential, the direction ht can be
isolated in the inner product using the adjoint operator GS which satisfies

〈−2ηSMSL[ht ], ρt 〉S = 〈ht , GS [ρt ]〉D. (A.3)

Using the inner product definitions given in (15) and (17), both sides of (A.3) are expanded as
follows:

−2ηSρH
t MSL[ht ] = ρH

t (GS)H TDht . (A.4)
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It can be easily shown that GS = −2ηST−1
D LH MH

S , and the Gâteaux differential can thus be
written as

dht
FS(wt ) = Re

〈
ht ,−2ηST−1

D LH MH
S ρt

〉
D. (A.5)

To maximize the value of the differential, the search direction ht is chosen as

ht = −2ηST−1
D LH MH

S ρt . (A.6)

This search direction ht is the gradient of the data misfit FS(wt ) with respect to the contrast
source variables wt .

Next the Gâteaux differential of the domain equation FD(χ,wt) is evaluated, with the
contrast, χ , held constant. For a small variation in wt taken along the search direction ht, the
Gâteaux differential of FD(χ,wt) is given by

dht
FD(χ,wt ) = lim

ε→0

FD(χ,wt + εht ) − FD(χ,wt )

ε

= lim
ε→0

ηD ‖rt − ε(ht − χ 
 MDL[ht ])‖2
D − ‖rt‖2

D
ε

= lim
ε→0

ηD −2εRe 〈(ht − χ 
 MDL[ht ]), rt 〉D + ε2 ‖ht − χ 
 MDL[ht ]‖2
D

ε

= Re〈−2ηD(ht − χ 
 MDL[ht ]), rt 〉D. (A.7)

Here rt is taken to be a residual in the domain equation, which is a function of wt and is given
by

rt = χ 
 Einc
t − wt + χ 
 MDL[wt ]. (A.8)

To evaluate the direction ht that maximizes the differential, the differential is rewritten so as
to isolate the direction ht using an adjoint operator GD which satisfies

〈−2ηD(ht − χ 
 MDL[ht ]), rt 〉D = 〈ht , GD[rt ]〉D. (A.9)

Utilizing (15), the expansion of the inner products results in

−2ηDrH
t TD(I − XMDL)ht = rH

t (GD)H TDht , (A.10)

where I ∈ R
I×I is an identity matrix and X = diag(χ) is a diagonal matrix. Solving for GD

we obtain

GD = −2ηDT−1
D

(
I − LH MT

DXH
)
TD. (A.11)

The Gâteaux differential of the domain equation FD(χ,wt ) becomes

dht
FD(χ,wt) = Re

〈
ht ,−2ηDT−1

D
(
I − LH MT

DXH
)
TDrt

〉
D. (A.12)

Thus, to maximize the Gâteaux differential, the search direction ht is chosen as

ht = −2ηDT−1
D

(
I − LH MT

DXH
)
TDrt . (A.13)

This is the gradient of the domain equation FD(χ,wt ) with respect to the contrast source
variables wt .

Furthermore at the nth iteration of the algorithm, the gradient of the cost functional for
contrast source variables wt,n−1 and contrast variables χn−1 is

gt,n = −2ηSTD
−1LH MH

S ρt,n−1 − 2ηD
n T−1

D
(
I − LH MT

DXH
n−1

)
TDrt,n−1. (A.14)
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Appendix B. Derivation of the contrast variables update

In the second step of the FEM-CSI method, a new contrast χ is chosen which minimizes the
modified domain equation

FD
m(χ) =

∑
t

‖Etχ − wt‖2
D , (B.1)

where Et ∈ C
I×I is the total field diagonal matrix with diagonal entities equal to the elements

of vector Et = Einc
t + MDL[wt ]. In this step the contrast source wt is kept constant.

The minimizer of FD
m(χ) is obtained by first evaluating the Gâteaux differential. For a

small variation with respect to χ along a search direction h, the differential is calculated as

dhFD
m(χ) = lim

ε→0

1

ε

[∑
t

‖Et (χ + εh) − wt‖2
D −

∑
t

‖Etχ − wt‖2
D

]

= lim
ε→0

1

ε

[∑
t

‖(Etχ − wt) + εEth)‖2
D −

∑
t

‖Etχ − wt‖2
D

]

= lim
ε→0

1

ε

[∑
t

‖rt + εEt h‖2
D −

∑
t

‖rt‖2
D

]

= lim
ε→0

1

ε

[∑
t

‖rt‖2
D + 2ε

∑
t

Re 〈rt , Et h〉D + ε2
∑

t

‖Et h‖2
D −

∑
t

‖rt‖2
D

]

= 2
∑

t

Re 〈rt , Et h〉D

= 2
∑

t

Re
(
hH EH

t TDrt

)

= 2 Re

〈∑
t

EH
t TDrt , h

〉
. (B.2)

Here rt = Etχ − wt , and for any arbitrary vectors a and b the inner product 〈a, b〉 = bH a.
Next, the search direction that will maximize the Gâteaux differential is h = ∑

t EH
t TDrt .

Thus, at the nth iteration the gradient of the modified domain equation with respect to the
contrast variable χn is

∇FD
m(χ)

∣∣
χ=χn

=
∑

t

EH
t,nTD(Et,nχn − wt,n). (B.3)

The χn that minimizes FD
m(χn) is found by setting (B.3) to zero, requiring the solution of(∑

t

EH
t,nTDEt,n

)
χn =

∑
t

EH
t,nTDwt,n. (B.4)

Since Et,n is a diagonal matrix and TD is sparse, the minimizer χn can be calculated efficiently.

Appendix C. Derivation of the initial guess for FEM-CSI

An initial guess to begin the FEM-CSI updating procedure is found by calculating the contrast
sources which minimize FS(wt ) in the steepest-descent direction, starting with a zero initial
guess. Note that this is the standard starting technique when applying most variations of the
conjugate-gradient technique. For a single transmitter, the data misfit FS

t (wt ) is

FS
t (wt ) = ‖ft − MSL[wt ]‖2

S . (C.1)
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As derived in appendix A, at the nth iteration, the gradient of FS
t (wt ) with respect to the

contrast source variable wt,n−1 is given by

∇FS
t (wt )

∣∣
wt=wt,n−1

= −2ηST−1
D LH MH

S ρt,n−1 = GSρt,n−1, (C.2)

where ρt,n−1 = ft − MSL[wt,n−1].
The update equation for the first iteration of the method of steepest descent is

wt,0 = wt,−1 − β0 GSρt,−1, (C.3)

where wt,−1 is the initial guess for the method of steepest descent which will be set to zero,
and β0 is a real update coefficient selected to minimize FS

t (wt,−1 − β0 GSρt,−1).
Once β0 is found, wt,0 becomes the initial guess for the FEM-CSI updating procedure.

Thus, we have

wt,0 = −β0 GSft . (C.4)

To find β0, (C.4) is substituted into FS
t (wt ) giving

FS
t (wt,0) = ‖ft + β0MSL[GSft ]‖2

S

= (ft + β0MSL[GSft ])
H (ft + β0MSL[GSft ])

= ‖ft‖2
S + 2β0Re〈MSL[GSft ], ft 〉S + β2

0‖MSL[GSft ]‖2
S . (C.5)

Differentiating with respect to the real scalar variable β0 gives

∂FS
t

∂β0
= 2 Re〈MSL[GSft ], ft 〉S + 2β0‖MSL[GSft ]‖2

S , (C.6)

which is set equal to zero to give the following formula for β0:

β0 = −Re〈MSL[GSft ], ft 〉S
‖MSL[GSft ]‖2

S
. (C.7)

Substituting (C.7) into (C.4), the initial guess for the FEM-CSI updating procedure becomes

wt,0 = Re〈MSL[GSft ], ft 〉S
‖MSL[GSft ]‖2

S
GSft . (C.8)
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