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Abstract—A prescaled multiplicative regularized Gauss-Newton
inversion (GNI) algorithm is proposed which utilizes a priori infor-
mation about the expected ratio between the average magnitude
of the real and imaginary parts of the true contrast as well as the
expected ratio between the average magnitude of the gradient of
the real and imaginary parts of the true contrast. Using both syn-
thetically and experimentally collected data sets, we show that this
prescaled inversion algorithm is successful in reconstructing both
real and imaginary parts of the contrast when there is a large im-
balance between the average magnitude of these two parts where
the standard multiplicative regularized Gauss-Newton inversion
algorithm fails. We further show that the proposed prescaled in-
version algorithm is robust and does not require the a priori infor-
mation to be exact.

Index Terms—Gauss-Newton inversion, microwave tomography
(MWT), regularization.

I. INTRODUCTION

N microwave tomography (MWT), the goal is to recon-
I struct the complex permittivity of the object of interest (OI)
using scattered field data collected outside the OI. Different
iterative algorithms such as contrast source inversion [1]-[6],
Gauss-Newton inversion (GNI) [7]-[11], and stochastic opti-
mization methods [12]-[14] have been utilized to handle the
nonlinearity of the problem. In conjunction with these itera-
tive techniques, different regularization techniques such as ad-
ditive [15], [16], multiplicative [3], [9], [10], and projection-
based regularization techniques [17], [18] have been used to
treat the ill-posedness of the problem. Microwave tomography
is of interest for various applications such as oil and gas-mul-
tiphase-flow imaging [19] and biomedical imaging [20]-[22].
In some applications of MWT, the magnitude of the real and
imaginary parts of the OI’s permittivity can considerably be out
of balance [23]. For example, in biomedical imaging, the real
part of the permittivity can be much larger than the imaginary
part. As a result of this imbalance, blind inversion algorithms
inadvertently favor the reconstruction of the real part over the
imaginary part. This imbalance usually results in an oscillatory
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reconstruction of the imaginary part of the permittivity. To en-
hance the imaginary-part reconstruction for these cases, Meaney
et al. developed a prescaled GNI algorithm based on Tikhonov
regularization which optimizes over the imaginary part and an
scaled version of the real part [23].

In this paper, we present a prescaled multiplicative regular-
ized GNI algorithm which adjusts the average magnitude of the
real and imaginary parts of the OI’s electric contrast throughout
the inversion algorithm. In this method, the MWT problem is
regularized with a weighted Ls-norm total variation multiplica-
tive regularizer which enforces a larger regularization weight
on the imaginary-part reconstruction than the real-part recon-
struction. As will be shown using synthetically and experimen-
tally collected data sets, the standard multiplicative regularized
Gauss-Newton inversion algorithm fails in reconstructing the
imaginary part of the contrasts when a large imbalance exists
between the average magnitude of the real and imaginary parts.
We show that the proposed prescaled inversion algorithm is ca-
pable of reconstructing both real and imaginary parts of such
targets. We further show that the algorithm does not require the
a priori information to be exact. In general, the proposed al-
gorithm can improve reconstruction results for the applications
wherein the real and imaginary parts of the contrast are out of
balance such as biomedical imaging applications. Within the
framework of this paper, we consider the two-dimensional trans-
verse magnetic (TM) illumination and assume a time factor of

exp(—juwt).

II. PROBLEM FORMULATION

Consider a bounded imaging domain D C R? containing a
nonmagnetic OI and a measurement domain S C R? outside
of the object of interest. The imaging domain D is immersed in
a known nonmagnetic homogeneous background medium with
the relative complex permittivity of €. Denoting the unknown
relative complex permittivity of the OI at the position ¢ € D by
€-(q), the complex electric contrast function is defined as
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In MWT, the OI is successively interrogated with a number
of known incident fields Ei*¢, where t = 1,---,T,. Interac-
tion of the incident field Ei*¢ with the OI results in the total
field E;. The scattered electric field E;°** is then defined as the
difference between the total and incident electric fields corre-
sponding to the tth transmitter; i.e., F5cat 2 E, — Ei"°. The
total and incident electric fields are then measured by some re-
ceiver antennas located on S. Thus, the scattered electric field
corresponding to the ¢th transmitter is known on S and denoted
by Escat .. The MWT problem may then be formulated as the

meas,t*
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minimization over x of the least-squares data misfit cost-func-

tional
T,
2
CLS Z ||Escat Ersrfgats t“s )

=1

where E5t() is the simulated scattered field at the observa-
tion points corresponding to the contrast x and the ¢th trans-
mitter, and ||.||s denotes the 2-norm on S. The weighting 75 is

-1
chosen to be ns = (372, |52t 11%)

mea.

III. MULTIPLICATIVE REGULARIZED GNI (MR-GNI)

The GNI method is based on the Newton optimization, but
ignores the second derivative of the scattered electric field with
respect to the contrast function. That is, the scattered field due
to the contrast x + Ay is approximated as

8E§cat

B (x + AX) o

~ B (x) + (Ax).- B
This approximation, which we refer to as the GNI approxima-
tion, utilizes only the first two terms of the Taylor’s expan-
sion. As far as the updating scheme is concerned, the contrast
at the nth iteration of the GNI method is updated as x,+1 =
Xn + VnAxn Where x,, is the predicted contrast at the nth itera-
tion, v, is an appropriate step-length, and Ay, is the correction.

To treat the ill-posedness of the problem, the data misfit
cost-functional may be regularized using different regulariza-
tion techniques [24]. Herein, we regularize C"S by the weighted
Lo-norm total variation multiplicative regularizer. That is, at
the nth iteration of the inversion algorithm, we minimize [9],
(101, [24]

Cul(x) = C()C ™ (x). )

The multiplicative regularization term is given as

e = [ @) (IVx@P

D

al)dg )

where the gradient V is taken with respect to the position vector
q. Denoting the area of the imaging domain by A, the weighting
function b,, is given as

1
2

bu(@) = A% (|Vxa(@) +02) ©
The choice of the steering parameter o2 is described below. It
is worth noting that this multiplicative regularizer provides an
edge-preserving regularization where the regularization weight
is chosen by the algorithm itself [24].

In the discrete setup, we discretize the imaging domain D into
N cells using 2D pulse basis functions. Thus, the contrast func-
tion is represented by the complex vector y € CV. Assuming
the number of measured data to be M, the measured scattered
data on the discrete measurement domain S is denoted by the
complex vector E52t € CM . The vector E3°2¢_is the stacked
version of the measured scattered fields for each transmitter.
The vector E5°** € CM is then formed by stacking the dis-
crete forms of E;°*(x,,). The matrix J, , represents the dis-
crete form of the derivative of the scattered field with respect
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to the contrast and evaluated at Y = x,. That is, it repre-
sents the discrete form of (OE;°*/9dx)|,,, . The Jacobian ma-
rix J, € CM*N is then formed by stackjng J, ,, matrices
where t = 1, - -, T},. The positive parameter o2 is chosen to be
ChS(x )/AA where AA is the area of a smgle cell in the uni-
formly discretized domain D [9], [10], [24]. Minimizing C,, (x)
over the complex vector y, the complex correction vector Ax
may be found from [9], [10], and [24]

JAx, =did, +B.L,x, (D
where the discrepancy vector d,, is givenas d,, = E5* — 5
and 3, = ||d,,||*. The regularization operator L, represents the
discrete form of the operator V - b2V where V- is the diver-
gence operator. We note that the weighted Laplacian operator,
V - b2V, provides edge-preserving characteristics for the inver-
sion algorithm [10]. This completes the brief explanation of the
MR-GNI method.

IV. PRESCALED MR-GNI (PSMR-GNI)

Assume that there exist two pieces of a priori information
about the OI: i) the expected ratio between the average magni-
tude of the real and imaginary parts of the OI’s contrast, and
ii) the expected ratio between the average magnitude of the
gradient of the real and imaginary parts of the OI’s contrast.
Denoting the real and imaginary parts of the OI’s contrast by
xr = Re(x) and x1 = Im(), respectively, we suppose that the
average magnitude of xr is approximately ( € R times larger
than the average magnitude of 1. We further assume that the
average magnitude of Vg is approximately Qrv € R times
larger than the average magnitude of V1.

To incorporate these two pieces of a priori information into
the inversion algorithm, we take three main steps. First, we for-
mulate the problem in the real-domain as opposed to the com-
plex-domain formulation presented in Section III. Second, we
utilize a prescaled weighted L2-norm total variation multiplica-
tive regularizer which enforces a similar weight on the average
magnitude of Vxgr and V1. Third, we balance the real and
imaginary parts of the correction vector at the updating stage of
the algorithm.

Formulating the optimization problem in terms of the real
and imaginary parts of the contrast; i.e., xr and xi, at the nth
iteration, we minimize the cost-functional

én(XRv XI) _ CN»LS )C};SMR(

(XR, X1 XR» XI)- (8)

where C~LS(7],7) is equal to C™S(n) + j7) assuming that 7 and
v belong to the Ly space of real functions defined on D. The
prescaled multiplicative regularizer CTSMR(yg, x1) is chosen
as

/ 2
CPSMR(y 0 yr)= / (bES) (IVxr|® + Q3v|Vxi|* + a2) dg

D
9
where

W)=

b5(a) = A4 (IVxnan (@) + Qv IVx1n(@) + 02)

(10)
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and xRr,» and xr, are the real and imaginary parts of the pre-
dicted contrast at the nth iteration of the GNI algorithm. As can
be seen, the weight of |V 1| is chosen to be Qv times more
than that of | Vxr| so as to balance the contribution of these two
quantities in the multiplicative regularizer. We note that when
Qv is chosen to be 1, CPSMR will be the same as CM® given
in (5).

Usually, there is no a priori information about the ratio be-
tween the average magnitude of the gradient of the real and
imaginary parts of the contrast. However, from our numerical
experiments, we have found when there is a large imbalance be-
tween the average magnitude of xr and xi, there is a similar im-
balance between the average magnitude of Vxg and V x1. Thus,
for realistic targets, we can set Qv equal to ). Although we
formulate the problem in terms of ) and Q v, we set Qv = @
in all the numerical results, unless otherwise stated. It is useful
to keep them separate in the derivation of the algorithm so that
their individual effect on the final algorithm can be clearly iden-
tified.

In the discrete domain, the real-valued correction vectors

Ax, € RYand Ax € R" may be found by solving
Ax
EGN.n[ =R n} =-yg (11)
) AKLTL n

where g is the gradient vector at the nth iteration of the inver-
sion algorlthm The matrix Hy ,, represents the approximate
form of the Hessian matrix H , calculated using the GNI ap-
proximation (3). The conjugate gradient (CG) algorithm is used
to solve (11). However, due to the imbalance between AXR

and AXI ,,» we first equilibrate this linear system of equations
utilizing the scheme used by Meaney et al. [23]: we introduce
a dummy variable Yk = xr/Q; thus, balancing the average

magnitude of x5 and 1. We then optimize over 5> and xi.
Thus, instead of solving (11), we solve
AXPS
Hex || = —gh® (12)
n AX In
2In
where the prescaled gradient vector is given as
Q 2
PS _ RIX=X,
9,” = ot (13)
X ly=x
and the matrix H G?\I », 18 the prescaled Hessian matrix
2 _0o? 2°C
Q Ix .. Ox 9x, 0x
HPS _ —R X —R 1 _:X (14)
=" ¢ _9°C
8XIaXR K: axlazl K:K

calculated under the GNI approximation (3).
As shown in the Appendix, the prescaled gradient vector g©™>
can be conveniently written as

QRe (17d, ) + QB.L X, ,

s (20, ) + Qivinli®x,

15)
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. P
and the matrix H G?\I’n as

2ns
Q*Re (L1, ) = QL)
Qim (J111,)

—QIm (JHJ)
Re (J11d,) - Q3 BuLh®
(16)

The operator QE S5 is the discrete form of the operator
V - (bF%)’V. Once AXR and Ay, —are found, the
real and imaginary parts of the contrast are updated as
XRn41 = Xpn T V"QAX and Xing1 = Xpn T V"AXI

As far as the regularlzatlon is concerned, the edge-preserving
characteristics of the regularlzatlon operators, £, in the com-
plex- domaln and [, in the real-domain, are governed by b2
and (bps) , respectively, [24]. When there is a large imbal-
ance between the average magnitudes of Vxgr,, and Vi .,
the average magnitude of Vy,, is dominated by that of Vixgr .
Thus, if the complex-domain formulation is used for such cases,
the edge-preserving characteristic of the algorithm is effectively
governed only by the magnitude of Vg . However, in the
prescaled real-domain approach, the magnitude of V1, can
also play a role as long as VxR, and Qv Vx1,, have similar
magnitudes, see (10). This explains why we need such a weight

n (b55)2. To justify the presence of Qv in the other factor of

the integrand of (9), we note that we want the value of C¥ SMR
evaluated at xR, and X1, to be 1 at each iteration of the algo-
rithm as the main goal of the optimization is to minimize crs
not CPSMR,

We remark that when Q@ = Qv = 1, solving (11) is equiv-
alent to solving (7). This can be checked by multiplying the
second row of (11) by 5 and adding that to the first row of (11),
and is a verification that optimizing in the real-domain is equiv-
alent to that in the complex-domain. This completes the descrip-
tion of the prescaled MR-GNI method to which we refer as the
PSMR-GNI method.

Finally, we note that in practical applications, there is usually
some a priori information about the dielectric properties of the
object being imaged. For examples, in biomedical applications,
we usually know the average dielectric properties of the biolog-
ical tissues being imaged. Noting that the dielectric properties
of the background medium are also known, the average contrast
of the tissues being imaged is available which can be used in set-
ting the value of (). However, it is usually not straightforward
to have a priori information which can be used in setting the
value of QTv. As explained earlier in this section, we can set
the value of Qv equal to ) in the practical cases where there
is a large imbalance between the real and imaginary parts of the
contrast.

V. SYNTHETIC DATA RESULTS

We first consider the target shown in Fig. 1(a) and (b) which
has the same geometry as the target used in [25] and [26] for
a resolution test study. This target has features of various di-
mensions ranging from 8 mm to 20 mm. The relative complex
permittivity of the target is 33+ 71.2 and that of the background
medium is 23 + j at the frequency of operation which is chosen
to be 2 GHz. The corresponding contrast is about 0.43 — 50.01
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Fig. 1. First synthetic target (left: Re(e,.) and right: Im(e,.)) (a), (b) its true
relative complex permittivity, (c), (d) its reconstruction using MR-GNI, and (e),
(f) its reconstruction using PSMR-GNI with ) = Qrv = 10.

at f = 2 GHy; thus, the true ratio between the real and imagi-
nary parts of the OI's contrast is about 40. Noting that the Ol is a
homogeneous target, the required Qv is very close to the true
value of @, based on the numerical evaluation of the gradient
on the grid. The synthetic scattering data, which includes 16
transmitters and 16 receivers per transmitter, is generated using
a grid of 150 x 150 square pulses in a 0.126 x 0.126 m? square.
We have also added 3% RMS additive white noise to the syn-
thetic data set using the formula given in [27]. The imaging do-
main is chosen to be a 0.14 x 0.14 m? and is discretized into
71 x 71 square pulses. The inversion of this data set using the
MR-GNI method is shown in Fig. 1(c) and (d). As can be seen,
the imaginary-part reconstruction is not satisfactory. Moreover,
one of the three upper left details of the target is very blurred in
the real-part reconstruction. Using the PSMR-GNI method with
@ = Qv = 10, both real- and imaginary-part reconstructions,
see Fig. 1(e) and (f), are sucessful. The inversion results using
the PSMR-GNI method for three more values of Q and Qv
are shown in Fig. 2. As can be seen, the prescaled inversions
corresponding to @ = Qv = 20 and Q@ = Qry = 40 are
successful in reconstructing the real and imaginary parts of the
contrast. However, the prescaled inversion begins to deteriorate
at Q = Qv = 60. We note that setting Qv = 1 and having
@ = 40 (and, vice versa) failed to reconstruct the imaginary part
of this target (not shown here). Finally, it should be noted that
the sensitivity of the quantitative accuracy of the reconstructed
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Fig. 2. The reconstructed relative complex permittivity (left: Re(e,.) and right:
Im(e,.)) of the first synthetic target using (a), (b) PSMR-GNI with ) = Qrv =
20, (c), (d) PSMR-GNI with = Qrv = 40, and (e), (f) PSMR-GNI with
Q = Qrv = 60.

image is low with respect to Q and Qv = @ when they change
from 10 to 40.

The final data misfit value C-5 for the MR-GNI algorithm is
~0.2%, for the PSMR-GNI with @ and Qv both equal to 10,
20, 40, and 60, it is ~0.1%. It should be noted that a smaller
data misfit cost-functional does not necessarily mean a better
reconstruction due to the ill-posedness of the MWT problem.

We next consider the target shown in Fig. 3(a) and (b). The
right-most detail of this target has a relative complex permit-
tivity of 33 + 75 and the rest of the target has a relative com-
plex permittivity of 33+ j1.2. The relative complex permittivity
of the background medium is 23 + j. That is, the target con-
sists of two different contrasts: 0.44 4+ 70.15 and 0.43 — 50.01.
As opposed to the first synthetic case where there was only
one ratio between the real and imaginary parts of the contrast,
this target consists of two different contrasts with two com-
pletely different ratios between the real and imaginary parts:
the ratio between the real and imaginary parts of the contrast
is about 3 in the right-most detail of the target and is about 40
in the rest of the target. For this target, the true () is about 13
whereas the true numerical Qv is about 10. The noisy syn-
thetic data at f = 2 GHz is collected using the same proce-
dure used for the first synthetic data set as is the discretized
imaging domain. The MR-GNI reconstruction of this target is
shown in Fig. 3(c) and (d). As can be seen, the imaginary part
of the contrast is very oscillatory. Using the PSMR-GNI method
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Fig. 3. Second synthetic target (left: Re(e,.) and right: Im(e..)) (a), (b) its true
relative complex permittivity, (c), (d) its reconstruction using MR-GNI, and (e),
f) its reconstruction using PSMR-GNI with Q) = Qrv = 5.

with Q@ = Qrv = 5, both real- and imaginary-part recon-
structions of the target are shown in Fig. 3(e) and (f). Except
for undershooting the imaginary-part of the right-most detail,
the reconstruction is satisfactory. The inversion results using the
PSMR-GNI method with Q = Qv = 10 and ) = Qv = 13
are shown in Fig. 4(a)—(d). As can be seen, the inversion results
using @ = Qry = 10 and Q = QTv = 13 are very sim-
ilar to the inversion results using @ = Qv = 5. However, the
prescaled inversion begins to deteriorate at ) = Qrv = 20.
We have also utilized the true values for () and Qv in the in-
version algorithm which resulted in a very similar reconstruc-
tion as the case where () = Qv = 10. That the reconstructed
imaginary part of the rightmost detail of the target undershoots
its true value and that the separation between the two rightmost
details of the target has not been resolved in the reconstructed
imaginary part is probably due to the fact the prescaled inver-
sion algorithm provides an over-regularized reconstruction for
that region of the target. However, it provides a reasonable reg-
ularization weight for the rest of the target. We note that the
standard MR-GNI method provides an underregularized recon-
struction for the whole imaginary part of the target.

Finally, we remark that we have also inverted these two
synthetic data sets using the multiplicative-regularized contrast
source inversion (MR-CSI) algorithm as outlined in [3]. The
inversion results using the MR-CSI method were very similar
to the inversion results using the standard MR-GNI method.
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Fig. 4. The reconstructed relative complex permittivity (left: Re(e,.) and right:
Im(e,.)) of the second synthetic target using (a), (b) PSMR-GNI with @ =
Qrv = 10, (c), (d) PSMR-GNI with @ = Qv = 13, and (e), (f) PSMR-GNI
with Q = QTV = 20.

VI. EXPERIMENTAL DATA RESULTS

We consider two different MWT systems. The first system is
the University of Manitoba air-filled MWT system [28] which
utilizes 24 coresident Vivaldi antennas capable of collecting
data from 3 to 6 GHz. The single-frequency measured data,
which consists of 24 x 23 measurements, is calibrated for
the TM polarization as explained in [28]. In this paper, we
choose the frequency of operation to be 3 GHz for this system.
The second system is the Universitat Politecnica de Catalunya
(UPC) MWT system. This system is a near-field 2.33-GHz mi-
crowave scanner system which consists of 64 water-immersed
antennas equi-spaced on a 12.5-cm-radius circular array [29].
In this system, for each case of using one of the 64 antennas
as a sole transmitter, field data is collected using only the 33
antennas positioned in front of the transmitting antenna. The
measured data is then calibrated for the TM polarization.

1) Wood-Nylon Data Set: We utilize a circular nylon-66
cylinder with a diameter of 3.8 cm and an (approximately)
square cross-section wooden block with the side of 0.087 m.
The complex relative permittivities of wood and nylon are
evood ~ 2.0 + 50.2 and eM°" ~ 3.0 + 5j0.03 at 3 GHz,
respectively [28]. Thus, the ratio between the real and imag-
inary parts of the contrast is about 5 in wood and 67 in the
nylon rod. In addition, noting the structure of the target, it is
expected that the true numerical Qv be close to the true Q.
The target was placed in the University of Manitoba MWT
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Fig. 5. (a) Dielectric phantom consisting of nylon and wooden cylinders, its
reconstruction (left: Re(e,.) and right: Tru(e,.)) using (b), (¢) MR-GNI, and (d),
() PS-MRGNI with Q = Qrv = 10.

system as shown in Fig. 5(a). The inversion result using the
MR-GNI method is shown in Fig. 5(b) and (c). As can be seen,
the imaginary-part reconstruction is not satisfactory. Using the
PSMR-GNI method with @ = Qv = 10, see Fig. 5(d) and (e),
both real- and imaginary-part reconstructions are satisfactory:
the reconstructed imaginary part is not oscillatory and the
reconstructed value for the real part of the nylon rod is more
accurate compared to its reconstructed value using the MR-GNI
method. The reconstructed imaginary part of wood using the
PSMR-GNI method is about 0.12 which undershoots its true
value. We note that the nylon rod is almost lossless; thus, it
is very difficult to reconstruct its imaginary part considering
the limited signal-to-noise ratio and dynamic range of the
system. The inversion results using the PSMR-GNI method for
three more values of @ and Qrv; namely Q@ = Qrv = 20,
Q = Qrv =40, and @ = Qv = 70 are shown in Fig. 6. It is
worth mentioning that the MR-CSI reconstruction of this target,
which has been shown in [28], also results in a nonsatisfactory
imaginary-part reconstruction.

2) FANTCENT Data Set: We next consider the FANTCENT
phantom from the UPC Barcelona experimental data set which
is shown in Fig. 7(a). The phantom consists of two thin plexi-
glass cylinders filled with two different concentrations of ethyl
alcohol. The inversion results are constrained to lie within the
region defined by 1 < Re(e,.) < 80 and 0 < Imf(e,.) < 20,
as in [3]. The MR-GNI inversion of this data set is shown in
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Fig. 6. The reconstructed relative complex permittivity (left: Re(e,.) and
right: Im(e,.)) of the nylon-wood phantom using (a), (b) PSMR-GNI with
Q = Qvv = 20, (c), (d) PSMR-GNI with @ = Qrv = 40, and (e), (f)
PSMR-GNI with Q = Qrv = 70.

Fig. 7(b) and (c). Although the real-part reconstruction is sat-
isfactory, the imaginary-part reconstruction is very oscillatory.
The PSMR-GNI reconstructions with four different values for
Q@ and Qv are shown in Fig. 7(d) and (e) and Fig. 8. As can
be seen, having ) equal to 5 and 10 and choosing Qv to be
the same as () improves the imaginary-part reconstruction com-
pared to the MR-GNI reconstruction. However, increasing )
and Qv to 20 starts deteriorating the reconstruction. This is
probably due to the fact that Q = Qv = 20 provides an over-
regularized solution. We note that the ratio between the real and
imaginary parts of the contrast is about 9.5 in 96% ethyl alcohol
and 1.7 in 4% ethyl alcohol. The thickness of the two plexi-
glass cylinders are too small to be reconstructed (2 mm thick-
ness for the outer cylinder and 1.5 mm for the inner cylinder);
thus, we have not used the ratio between the real and imaginary
parts of the plexiglass contrast in the PSMR-GNI algorithm.
Having created a numerical phantom similar to the FANTCENT
phantom, but excluding the plexiglass containers, we have found
the true value of @ to be 3 and the true value of Qv to be 5.
The PSMR-GNI reconstruction for these two values of () and
Qv are shown in Fig. 8(e) and (f). Finally, we note that the
MR-CSI reconstruction of this target, shown in [3], provides a
good overall reconstruction for both real and imaginary parts
of the phantom. However, the PSMR-GNI algorithm provides
a slightly more accurate quantitative reconstruction for the 4%
ethyl alcohol. It should also be noted that in all the examples we
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Fig. 7. (a) FANTCENT phantom, its reconstruction (left: Re(e,.) and right:
Im(e,.)) using (c), (d) MR-GNI, (e), (f) PSMR-GNI with Q = Qrv = 5.

have tried, the quantitative accuracy of the reconstructed image
was not very sensitive to the values of @ and Qv .

VII. CONCLUSION

We have shown that the PSMR-GNI can provide a good re-
construction for both real and imaginary parts of the relative
complex permittivity when there is a large imbalance between
the real and imaginary parts of the OI’s electric contrast. It has
also been demonstrated that the PSMR-GNI is not very sensi-
tive to the choice of the prescaling parameters.

APPENDIX

The required derivative operators in the continuous domain
are derived and then presented in their discretized forms. We
denote the L, spaces of complex functions defined on D and S
by La(D) and L (S) with the norms and inner products defined
as

[bllp = (¥, )> and (b, 0)p = /w q)dg (17)

and

IVlis = (V.Y)Y? and (¥i,Ya)g = / Y (p)Y; (p)dp

(18)
where the superscript * denotes the complex conjugate operator.
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Fig. 8. The reconstructed relative complex permittivity (left: Re(e,. ) and right:
Imn(e,.)) of the FANTCENT phantom using (a), (b) PSMR-GNI with @ =
Qrv = 10, (c), (d) PSMR-GNI with Q = Qv = 20, and (e), (f) PSMR-GNI
with @ = 3 and Qv = 5.

To find the derivative operators of the data misfit cost-func-
tional ™S (xr, x1) With respect to xr and x7 at the nth iteration,
we start by finding the Gateaux differential of C™*S in the 1 di-
rection [30, p. 468]

—-cts (Xn)

dCLS(Xn7 w) — hm CLS(XH + 6¢)

lim . (19)

where ¢ € R and ¢ is an arbitrary complex function
which belongs to Lo(D). Utilizing the little-o notation,
limy ., —o(o([¥llp)/|[¥|lp) = 0, (19) can be written as

T,
z aEscat
scat t
}1—{% € g E. )te ox xn(w)
2
o(llevllp) = Efsaas s
S
- Z B2t () — 522 @0)
and simplified to
T
z 8Escat
2ns ) Re{ By (xn) = Biilier —5—|  (¥)) - @D
t=1 X Xn S
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Denoting the adjoint operator by the superscript a, (21) may be
written as

aEfcat

(Efcat(

n) = Eene i) z/)> (22)
D

Xn

where now the inner product is on D. For two complex func-
tions, ¢ and 1), we have
Re{p,¥)p = (¢r, ¥r)D + (01, ¥1)D (23)

Thus, (22) may be written as

aEscat @ eat cent
2773 Z Re (Et ( ) Emeas t) 71/}R +
Xn D
z aEscat @
<277$ > Im{ atx (B3 (x) - B, f)} , ¢I> . (24)
t=1 Xn D

The first term of (24) represents (9C"S/dxr)|y. (¥r) and the
second term represents (9C™S /x1)|y.. (11). We note that these
derivative operators are linear mappings from Ly (D) to R.

To find the second derivatives
[(92C3 /xR OXT) | (wD)](R) and  [(9*CH/Ox10x1)] .,
(¢1)](¢1) at the nth iteration of the inversion algorithm, we
start with finding the limit

5L
X1

e’
X1

. (1)

lim Xntew e -
e—0 €

(25)

Utilizing the operators just calculated, and the definition of the
adjoint operator, the above limit may be written as

T.
. 27]8 < sca sca
11_)1% T ; Im<Et t(Xn + 61/}) Emc;s t
aEscat
at (‘PI)>
X Axnter D
— Im<E‘:mt( n) — E:r::;s ts

8Escat
5 (w)> ] .9
Xy, >
This can be simplified to
aEq(‘at 8Escat
2?782 [ Im< 5 ] (sol)ﬂ/1> +
Ix Xn X lyn .
82Escat ’ sca sca
Im< 8Xt2 (QOI) (Et t(XTl) Eme;s t)
Xn

71//> ] 27)
D

Noting that for two complex functions ¢ and v, we have

Im(p, ¥)p = (@1, Yr)p — (¥R V1) p (28)
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(27) may be written as

aEscat aEscat
2 g )
. Z |< {[ aX Xn 8X Xn] (<pI) } wR>D !
aEscat aEscat
(o 2] ][ o) <
X Xn aX Xn

D
82Escat : sca’ sca’
<Im{[ 8Xt2 ((‘DI) (Et ' t(Xn> Eme;s t)} Il/}R> -
Xn D
82Escat @
<Re{ ath (901) (E;(‘at(xn) E:r:eaz;s t)}vwl> ‘| .
Xn D
(29)
Therefore
82C~LS
Oxndxt ) (¢1)(¥r)
T.
z 8Escat 8Escat
=(2ns Im{— - - ] (¢1)
< ; aX Xn 8X Xn
82Escat ’ sca sca
+ TX]‘Q ((pI) (Ef t(X’n) Eme:s t) }71/}R>
Xn D
(30)
and
a2éLS
3X10X1 (1) (¢1)
aEq(‘at @ 8Escat
2ns Re{ ‘ ] ! ] (1)
< Z Xn aX Xn
82Escat ' sca’ sca’
ath (QDI) (Et ’ t(X‘ﬂ) Emez;s t) }7¢I> .
Xn D

€19

To find the derivatives [(82C™S /Ox10xR)
[(9°CH°/0xrOXR)
limit

xn (#R)] (1) and
v (¢R)](¥R), We start with finding the

BéLS
OXR

lim X=Xn t€p
e—0 €

(32)

After mathematical simplifications similar to the ones presented
above, the limit (32) will be

aEscat aEscat
2 t
ns Z < N ax xn,] (<.0R)71/1>D
82Escat ’ sca sca
+ Re< Txtz (QDR) (Et t( ) Eme;q t) 1/)> ] .
Xn D

(33)
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Noting (33) and utilizing (23), it can be concluded that

aZéLS
Oxn (¢r)(¢1)
i aE?cat aEfcat
={2ns ) _Im (¢r)
t=1 aX Xn 8X Xn
82Escat @ e wen
a—tz (QDR) (Ef t(X“) - Eme;s,t) 7¢I
X Xn >
(34
and
82C~LS
Oxnoxn (er)(¥r)
Xn
T.
z aEscat 8Escat
= (215 )_Re ) 3 (¢r)
t=1 aX Xn 8X Xn
aZEscat @ wen wen
8;2 (‘PR) (Et t(Xn)_Eﬁle;s,t) 71/}R
X D
(35)

The second-order derivative operators in (30), (31), (34), and
(35), are linear mappings from Ly(D) x L2(D) to R. It should
also be noted that in the Gauss-Newton inversion method, the
operator 92 E5°2* /9% is neglected and thus (30), (31), (34), and
(35) are simplified.

The PSMR-GNI method also requires the derivatives of
CPSMR with respect to xgr and x1. Using the same proce-
dure explained above, these derivatives can be derived. The
closed-form expressions of these derivative operators are given
in [31, Appendix D].

Having found the derivative operators in the contin-
uous domain, the discretized forms of these operators
can easily be found. For example, the discretized form of
(9C™3 /OxR)|x.. (¥r) can be written as

T
aéLS

8XR

Vo = [nsRe {200, )] v, GO

X

=n

where the superscript 1" denotes the transposition operator. As
another example, the discretized form of (35), calculated under
the GNI approximation, can be expressed as

T

onl Y= [2773Re {lfln} fR]T Y-
X

=n

a?éLS
BXRaxR
(37
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