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Abstract—Amultiplicative regularizedGauss–Newton inversion
algorithm is proposed for shape and location reconstruction of ho-
mogeneous targets with known permittivities. The data misfit cost
functional is regularized with two different multiplicative regular-
izers. The first regularizer is the weighted -norm total varia-
tion which provides an edge-preserving regularization. The second
one imposes a priori information about the permittivities of the ob-
jects being imaged. Using both synthetically and experimentally
collected data sets, we show that the proposed algorithm is robust
in reconstructing the shape and location of homogeneous targets.

Index Terms—Gauss–Newton inversion, microwave tomog-
raphy, regularization.

I. INTRODUCTION

I N some applications of microwave tomography, there may
exist a priori information about the objects being imaged.

Proper incorporation of such information into the utilized inver-
sion algorithm can improve reconstruction results as compared
to the results obtained from blind inversion algorithms. There
are different ways of incorporating such information into the in-
version algorithm; e.g., by introducing a dummy variable over
which to perform minimization [1], [2] or by utilizing an appro-
priate regularization term [3], [4].
In this paper, we consider one type of a priori information and

attempt to incorporate it within the Gauss–Newton inversion al-
gorithm via an appropriate regularization term. The a priori in-
formation considered herein is that the object of interest (OI)
consists of some homogeneous scatterers with known permit-
tivity values. The goal is then to find the shape and location
of these scatterers. This problem is sometimes referred to as
shape and location reconstruction. This approach can be very
useful for nondestructive testing applications such as detection
of voids in concrete [5], [6]. For the so-called binary shape and
location reconstruction, where all the homogeneous scatterers
have the same known permittivity value, Crocco and Isernia [4]
introduced an additive regularizer for the contrast source inver-
sion (CSI) algorithm which pushes each pixel in the discretized
imaging domain to have either a contrast corresponding to the
known permittivity value of the scatterers or a contrast of zero.
Allowing the inversion algorithm to converge to a zero contrast
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is important as part of the imaging domain which is not occupied
by the OI has the contrast of zero. Thus, the binary inversion
algorithm attempts to find the spatial distribution of these two
different contrasts within the imaging domain. The weight of
this additive regularizer was chosen using an ad hoc algorithm
[4]. Based on this algorithm, Abubakar and van den Berg [3]
introduced a multiplicative regularizer (MR) which can provide
an adaptive regularization [7] in the framework of the CSI al-
gorithm. They also extended their algorithm for the case when
there are several homogeneous targets inside the imaging do-
main. That is, it is more than a binary inversion algorithm which
is only capable of reconstructing the shape and location of some
homogeneous targets with the same known permittivity value.
Inspired by the work of Abubakar and van den Berg [3], we

introduce a Gauss–Newton inversion (GNI) algorithm for shape
and location reconstruction. As will be seen, the proposed algo-
rithm is capable of incorporating a priori information about sev-
eral homogeneous targets inside the imaging domain. The pro-
posed inversion algorithm utilizes two different MRs. The first
one is the weighted -norm total variation which provides an
edge-preserving regularization. The second regularizer, which
is similar to the one used in the CSI algorithm for shape and
location reconstruction, attempts to push the GNI algorithm to
select one of the known permittivity values in any particular re-
gion of the imaging domain. Using both synthetically and exper-
imentally collected data, we show that the proposed algorithm is
robust in reconstructing the shape and location of homogeneous
targets. Within the framework of this paper, we consider the 2-D
transverse magnetic (TM) formulation and assume a time factor
of .
The paper is organized as follows. The mathematical for-

mulation of the microwave tomography problem within the
framework of the GNI algorithm is presented in Section II. The
multiplicative regularized Gauss–Newton inversion algorithm,
a blind inversion algorithm, is briefly explained in Section III. In
Section IV, we present the proposed Gauss–Newton inversion
algorithm for shape and location reconstruction. Sections V and
VI provide the reconstruction results. Conclusions are provided
in Section VII.

II. PROBLEM FORMULATION

Consider a bounded imaging domain which contains a non-
magnetic OI. Denoting the relative complex permittivity of the
homogeneous background medium by , the complex contrast
function is defined as

(1)

where is the position vector.
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The goal is to find the unknown contrast function
from the measured scattered field on the measurement domain
which is located outside the OI. To collect the scattered

field data, the OI is successively interrogated by some known
incident fields where denotes the number of the active
transmitter. Interaction of the incident field with the OI
results in the total field . Measuring incident and total electric
fields on the measurement domain , the scattered electric field
on is found as . The microwave tomog-
raphy problem may then be formulated as the minimization
over of the least squares data misfit cost functional

(2)

where is the simulated scattered field on the measure-
ment domain corresponding to the contrast and the th trans-
mitter, is the total number of transmitters, and denotes
the -norm on . The weighting is chosen to be

(3)

The data misfit cost functional is nonlinear and ill-posed.
The ill-posedness of the cost functional can be treated by dif-
ferent regularization techniques [7]. The nonlinearity of the
problem is handled by utilizing iterative techniques such
as the Gauss–Newton inversion (GNI) method. In the GNI
algorithm, which is based on the Newton optimization but
ignores the second derivative of the scattered electric field
with respect to , the contrast at the th iteration is updated as

where is the predicted contrast at the
th iteration, is an appropriate step-length, and is the
correction.
In the discrete setup, we discretize the imaging domain

into cells using 2-D pulse basis functions. Thus, the con-
trast function is represented by the complex vector .
Assuming the number of measured data to be , the measured
scattered data on the discrete measurement domain are de-
noted by the complex vector which is the stacked
version of the measured scattered fields for each transmitter.
The vector is formed by stacking the discrete
forms of . The data misfit cost functional maps
spaces of complex functions defined on into a real number

. The discrete form of this cost functional, which
maps the complex vector into a real number , is de-
noted by the same symbol used in the continuous domain. That
is, represents the discrete form of .

III. MULTIPLICATIVE REGULARIZED GAUSS–NEWTON
INVERSION (MR-GNI)

We may regularize the data misfit cost functional by the
weighted -norm total variation MR. This regularizer, which
was first developed for the CSI algorithm [8], was recently
adapted to the GNI algorithm [1], [7], [9], [10]. Utilizing this
regularizer with the GNI method, we construct the following
cost functional at the th iteration of the algorithm:

(4)

The weighted -norm total variation MR , which changes
at each iteration of the algorithm, is given as [1], [7], [9]

(5)

where is the area of the imaging domain and the gradient
is taken with respect to the position vector . The steering

parameter is chosen to be [1], [9]

(6)

where is the area of a single cell in the uniformly discretized
domain .
In the discrete domain, we minimize over the complex

vector . The complex correction vector may be found
from [1], [7], [9]

(7)

where is the Jacobian matrix. This matrix is
formed by stacking matrices where

represents the discrete form of the derivative of the
scattered field with respect to the contrast and evaluated at

. That is, the matrix represents the discrete form of
. The discrepancy vector is given as

(8)

and . The regularization operator represents the
discrete form of the operator “ ” where “ ” is the
divergence operator and

(9)

We note that the weighted Laplacian operator “ ”
provides edge-preserving characteristics for the inversion al-
gorithm [9], [11]. Also, it should be noted that the null space
of the operator does not intersect with that of [see
(7)], thus ensuring a unique solution at each iteration of the
algorithm. (For more explanation, see [12, pp. 53–54].)
Having found the correction , the contrast is updated

in the form of where is the step
length determined via an appropriate line search algorithm. This
completes the brief explanation of the multiplicative regular-
ized Gauss–Newton inversion which we refer to as theMR-GNI
method in this paper.

IV. GAUSS–NEWTON INVERSION FOR SHAPE AND LOCATION
RECONSTRUCTION (SL-GNI)

Assume that the imaging domain consists of homoge-
neous targets, each of which has a known contrast of
where . The goal is to reconstruct the shape and
location of these objects using the measured scattered field on
. In the framework of the CSI algorithm, Abubakar and van
den Berg proposed a multiplicative regularization term which
pushes each pixel of the imaging domain to be one of these
known contrast values [3]. This MR can be written as

(10)
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In their work, the steering parameter was chosen so that the
regularization factor is more dominant as the number of CSI
iterations increases [3].
In our work, we use the regularization term in the

framework of the GNI algorithm. To make the inversion al-
gorithm more stable, we add one more level of regularization
using the weighted -norm total variation multiplicative
regularization term . That is, we construct the regularized
cost functional at the th iteration of the inversion
algorithm as

(11)

Thus, the data misfit cost functional is regularized with two
different multiplicative regularization terms: and .
The latter imposes the a priori information about the OI. The
former is mainly used to impose the weighted Laplacian oper-
ator at different iterations of the GNI algorithm so as to make
the inversion algorithm more stable. To the best of our knowl-
edge, it is the first time that two different MRs have been used
to regularize the microwave tomography problem.
In our work, we choose the steering parameter to be

(12)

This choice for is similar to the choice of , both of which
decrease as the predicted contrast converges to the true solution.
The only difference between and is that the former is de-
pendent on whereas the latter is not. This can be justified
by noting that is added to [see (5)], which depends
on the area of each pixel within the imaging domain. Thus, this
choice of minimizes the discretization dependency in the per-
formance of . However, it is not the case for which is
added to ; see (10).
Minimizing over the complex vector , the com-

plex correction vector may be found from (see Appendix I
for the derivation)

(13)

where is a vector of all ones. The matrix
is a diagonal matrix given as

(14)

where is the discretized form of

(15)

As in the standardMR-GNImethod, the contrast is updated as
where is an appropriate step length.

For both the MR-GNI method and the GNI method for shape

and location reconstruction, we use the line search algorithm
explained in [13] to find an appropriate step length. It should be
noted that the computational complexity of the proposed GNI
algorithm for shape and location reconstruction is similar to that
of the MR-GNI method as matrices are all diagonal. (The
computational complexity analysis of the MR-GNI method can
be found in [7, App. B].) This completes the brief explanation
of the Gauss–Newton inversion for shape and location recon-
struction. In this paper, we refer to this algorithm as the SL-GNI
algorithm.
It is worth noting that this algorithm uses two different reg-

ularizers to improve the reconstruction results. In comparison,
the CSI algorithm for shape and location reconstruction, herein
referred to as the SL-CSI method, utilizes only the reg-
ularizer [3]. From our experience with the GNI method, uti-
lizing both and results in a more robust reconstruc-
tion than utilizing only the regularizer. This will be shown
in Sections V-B and VI-B. Moreover, although the shape and
location regularizer used in the SL-GNI method is sim-
ilar to the one used in the SL-CSI algorithm, its incorporation
into the GNI algorithm requires that the steering parameter
be chosen in a different way. This is due to the fact that the
steering parameter used in the SL-CSI algorithm is chosen to
be the normalized error in the so-called domain equation [3, eq.
16]. However, in the SL-GNI algorithm, there is no explicit do-
main equation in the cost functional to be minimized. Thus, we
choose the steering parameter to be so that this pa-
rameter decreases as the algorithm gets closer to the solution.
We would also like to add that the main disadvantage of the
SL-CSI method is that there is no closed-form formula to find
the step length [3, p. 6] as opposed to the multiplicative regu-
larized contrast source inversion (MR-CSI) method where the
step length is found using a closed-form formula (see [8, eq.
(33) and (41)]), thus, in the SL-CSI algorithm, a numerical line
search algorithm needs to be used. This can increase the com-
putational complexity of the SL-CSI significantly as this algo-
rithm usually requires a few hundred iterations (the number of
iterations is usually set to 1024 in the contrast source inversion
algorithm). On the other hand, although both the SL-GNI and
MR-GNI algorithms require numerical line searches to calculate
the step length, the number of iterations for these two algorithms
is much lower than that required for the SL-CSI and MR-CSI
methods (the number of iterations is usually lower than 20 in
both SL-GNI and MR-GNI methods). Thus, utilizing a numer-
ical line search algorithm does not add a large computational
burden to the SL-GNI and MR-GNI algorithms. Specially, if
adaptive regularization, like the one used in our paper, is incor-
porated with an appropriate line search algorithm, the number
of calls to the numerical line search algorithm is minimal in the
GNI algorithm (for more discussion, see [14, Sec. V.D]).

V. SYNTHETIC DATA RESULTS

In this section, we test the performance of the proposed al-
gorithm against two different synthetically collected data sets.
To avoid any inverse crime, the synthetic data sets are generated
on a different grid than the ones used in the inversion algorithm.
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We also add 3% root mean square (RMS) additive white noise
to the synthetic data set using [15]

(16)

where is the scattered field on the measurement do-
main due to the th transmitter obtained by the forward solver,
and are two real vectors whose elements are uniformly

distributed zero-mean random numbers between and ,
and . The vector , constructed by stacking the
vectors , is then used to test the inversion algorithm
against synthetic data sets. Finally, it should be mentioned that
the starting guess for the contrast to be found is set to be zero
in both MR-GNI and SL-GNI algorithms for these synthetic
data sets.
In all examples, including the experimental data results, we

ensure that we have at least ten cells per wavelength. We note
that the proposed algorithm is robust with respect to oversam-
pling of the unknown contrast. This is discussed in Appendix II.

A. Concentric Squares

We consider a similar scatterer which has been used in [14]
and [16]–[18]. The scatterer consists of two concentric squares
located in free space, the inner square having dimension of 0.3
m 0.3 m with a relative complex permittivity of ,
which corresponds to a contrast of . The inner square
is surrounded by an exterior square having dimension of 0.6
m 0.6 m with a relative complex permittivity of ,
which corresponds to a contrast of . The exact rela-
tive complex permittivity profile is shown in Fig. 1. We consider
this target in two different scenarios distinguished by their fre-
quency of operation. In both scenarios, the synthetic data, which
include 16 transmitters (line sources) and 16 receivers per trans-
mitter evenly placed on the measurement circle of radius 0.7
m, are generated using a grid of 80 80 square pulses in a 0.9
m 0.9 m square. The imaging domain is chosen to be a
0.94 m 0.94 m and is discretized into 61 61 square pulses. It
should also be noted that the contrast of the object being imaged
is assumed to be the same in both frequencies of operation.
In the first scenario, the frequency of operation is chosen

to be 100 MHz. The inversion of this data set using the
MR-GNI method is shown in Fig. 2(a) and (b). As can be
seen, the MR-GNI method is not capable of resolving the
concentric squares. We also utilize the SL-GNI algorithm
with three different values for which correspond to the
true contrast values within the imaging domain; i.e.,

, and . Utilizing these three
values for , the shape and location reconstruction of this
target are shown in Fig. 2(c) and (d). Although the SL-GNI al-
gorithm is not capable of reconstructing the square shape of the
two scatterers, it does resolve two regions and provides a good
location reconstruction. It is worth noting that the number of
MR-GNI and SL-GNI iterations required for the convergence
is 8 and 11, respectively. (The inversion algorithms are termi-
nated when the difference between two successive data misfit
values becomes less than .) The inversion algorithms
were implemented in object-oriented MATLAB® and were

Fig. 1. Exact relative complex permittivity profile for the first synthetic test
case (concentric squares): (a) and (b) .

running on a PC workstation with two Intel® Xeon® quad-core
2.8-GHz processors. With this machine, the first iterations of
the MR-GNI and SL-GNI algorithms took about 7 and 3 s,
respectively. In the second scenario, we choose the frequency
of operation to be 1 GHz. The MR-GNI reconstruction of this
target as well as its SL-GNI reconstruction using the three true
values for are shown in Fig. 3. As can be seen, both of
these algorithms can reconstruct the scatterer very well at this
frequency of operation.
To test the robustness of the SL-GNI algorithm to the chosen

values for , we run this algorithm with 20% error in the uti-
lized values for . Specifically, we assume 20% error in
and 20% error in . That is, we consider and to be

and , respectively. Of course, the
value of , which corresponds to the contrast of the back-
groundmedium, is kept to be 0. Utilizing these values for , the
inversion results for the two frequencies of operation are shown
in Fig. 4. As can be seen, the inversion results (shape and loca-
tion) are very similar to the case where the true values of are
incorporated to the SL-GNI algorithm.
In order to test the performance of the SL-GNI algorithm

when the a priori information about the number of contrast
values is wrong, we consider two different cases. In the first
case, an extra contrast value is given to the SL-GNI algorithm:
in addition to , and ,
one extra contrast value is also given to the algorithm. That
is, we utilize a quaternary inversion algorithm instead of a tri-
nary inversion algorithm. In Fig. 5(a)–(d), we have shown the
performance of the SL-GNI algorithm for this situation for two
different values of at 100 MHz. For ,
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Fig. 2. Reconstruction of and of the concentric squares when
the frequency of operation is 100 MHz: (a)–(b) the MR-GNI reconstruc-
tion, and (c)–(d) the SL-GNI reconstruction.

the algorithm resolves the two scatterers but converges to
instead of . Also, the overall dimension of the reconstructed
inner scatterer is wrong. For , the inversion re-

Fig. 3. Reconstruction of and of the concentric squares when
the frequency of operation is 1 GHz: (a)–(b) the MR-GNI reconstruction,
and (c)–(d) the SL-GNI reconstruction.

sult is very similar to the one obtained using only the three true
contrast values [see Fig. 2(c)–(d)].
In the second case, we give only two contrast values to the

SL-GNI algorithm, as opposed to the three contrast values cor-
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Fig. 4. The SL-GNI reconstruction of and of the concentric
squares with 20% error in the utilized values for : (a)–(b) when the frequency
of operation is 100 MHz, and (c)–(d) when the frequency of operation is 1 GHz.

responding to the target; i.e., utilizing a binary inversion algo-
rithm instead of a trinary inversion algorithm. In Fig. 5(e)–(h),
we have shown the performance of the SL-GNI algorithm for
this situation for two sets of binary values at 100 MHz.

Fig. 5. The SL-GNI reconstruction of the concentric squares at 100 MHz
when the a priori information about the number of contrast values is wrong
[left: and right: ]. Case I: In addition to the three true contrast
values , and , one extra contrast
value is also given to the SL-GNI algorithm: (a)–(b) ,
and (c)–(d) . Case II: Only two contrast values are given to
the SL-GNI algorithm: (e)–(f) and , and (g)-(h) and .

Giving and to the SL-GNI algorithm, the reconstruction
result does not resolve the two scatterers. This inversion result
is, in fact, similar to the blind inversion of this data set [see
Fig. 2(a)–(b)]. Giving and to the SL-GNI algorithm,
the algorithm does resolve the two scatterers and provides a
reconstruction result which is very similar to the one obtained
using the three true contrast values [see Fig. 2(c)–(d)]. These
two different cases show that the SL-GNI algorithm can be
very sensitive to the utilized values for if is chosen to
be a wrong number. As the focus of this paper is for the case
where the correct value of is known, we will not consider
this case anymore. The usefulness of this algorithm when is
not known requires further study and is not within the scope
of this paper.
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Fig. 6. Reconstruction of and of the concentric squares when
illuminated by 32 transceivers at 100 MHz: (a)–(b) MR-GNI reconstruc-
tion, and (c)–(d) SL-GNI reconstruction.

To see if any changes can be observed in the reconstruc-
tion result of the first scenario ( 100 MHz) using denser
near-field sampling, the concentric squares are illuminated with
32 transmitters and the resulting scattered field is collected at
32 receivers per transmitter, thus, providing 32 32 data points

TABLE I
NUMBER OF SL-GNI AND MR-GNI ITERATIONS REQUIRED FOR THE
CONVERGENCE OF THE FIRST SYNTHETIC DATA SET IN SOME

REPRESENTATIVE SCENARIOS

(as opposed to 16 16 data points considered earlier). The re-
construction results using this new data set are shown in Fig. 6
for MR-GNI and SL-GNI. Comparing Fig. 6 with Fig. 2, it can
be seen that only slight changes can be observed in the recon-
struction results of this target by increasing the number of data
points on the measurement circle. Thus, we speculate that we
have reached the maximum amount of information that these
two algorithms can extract from the given target at this specific
frequency when the measured data, contaminated by 3% noise,
is collected on the given measurement circle. That is, we spec-
ulate that increasing the number of transceivers from 16 to 32
has added redundant scattering information about this target for
the given configurations. It should also be noted that although
it is, in general, advantageous to increase the number of data
points by having more coresident transmitters and receivers, it
is in direct conflict with another design criteria which is the min-
imization of the mutual coupling between the coresident an-
tenna elements [19, Ch. 7], [20]. That is also one of the rea-
sons why the state-of-the-art microwave breast cancer imaging
system at Dartmouth College utilizes only 16 monopole an-
tennas [21]. Our microwave tomography system utilizes 24 Vi-
valdi antennas. Even with 24 Vivaldi antennas, we were not
able to image at some frequencies due to the high mutual cou-
pling between the coresident antenna elements at those frequen-
cies [20].
Finally, the number of iterations for this synthetic example

in some representative scenarios is given in Table I. The main
criterion governing the number of iterations is the difference
between two successive data misfit values: if the difference be-
tween two successive datamisfit values becomes less than ,
the inversion algorithm is terminated.

B. 6-Ary Target

We consider the target shown in Fig. 7(a) and (b). The scat-
terer consists of a square having dimension of 0.03 m 0.03 m
with a relative complex permittivity of which is lo-
cated inside a cylinder of diameter 0.07 m with a relative com-
plex permittivity of . Three smaller cylinders of
diameter 0.031 m with three different relative complex permit-
tivities, namely, , and , are located
external to the larger cylinder. The background medium has a
relative permittivity of 3 at the frequency of operation which is
chosen to be 3 GHz. The target is interrogated using 32 trans-
mitters (line sources) and 32 receivers which are evenly placed
on the measurement circle of radius 0.12 m. The synthetic
data are then generated using a grid of 100 100 square pulses
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Fig. 7. The 6-ary target [left: and right: ]: (a)–(b) the true rel-
ative complex permittivity profile, (c)–(d) the MR-GNI reconstruction, (e)–(f)
the SL-GNI reconstruction, and (g)–(h) the shape and location reconstruction
method without the use of .

in a 0.15 m 0.15 m square. The imaging domain is chosen
to be a 0.154 m 0.154 m and is discretized into 71 71 square
pulses.
The MR-GNI reconstruction of this target is shown in

Fig. 7(c) and (d). As can be seen, the square has not been
resolved in the MR-GNI real-part reconstruction. The MR-GNI
imaginary-part reconstruction shows the presence of the square
scatterer within the large cylinder; however, its dimension is
very different than the true size of the square scatterer (i.e., 0.03
m 0.03 m). The SL-GNI reconstruction of this target utilizing
the contrast of zero as well as the five true contrast values of the
scatterer is shown in Fig. 7(e) and (f). As can be seen, both real-
and imaginary-part reconstructions resolve the square scatterer.
Although the shape of the square scatterer is not reconstructed,
its location and its approximate size have been reconstructed
well. It is worth noting that if we remove the regularization term

from (11) and minimize over the contrast

(as opposed to minimizing over the
contrast), the reconstruction result, shown in Fig. 7(g) and (h),
is not satisfactory.

VI. EXPERIMENTAL DATA RESULTS

We consider two different experimental data sets. The first
one is the FoamDielIntTM data set from the second Fresnel ex-
perimental data set [22] collected by the Institut Fresnel, France.
The second data set is collected from the University ofManitoba
air-filled microwave tomography system [20]. In both cases, the
measured data are calibrated for the TM polarization so that the
antennas can be represented by 2-D line sources. The calibra-
tion procedure adopted to calibrate the Fresnel data set is that
explained in [23]. The calibration method utilized to calibrate
the University of Manitoba data set is outlined in [20]. Similar
to the inversion of synthetic data sets, the starting guess for the
contrast to be found is set be zero in both MR-GNI and SL-GNI
algorithms.

A. The Second Fresnel Data Set: FoamDielIntTM

For this data set, the transmitting and receiving antennas are
both wide-band ridged horn antennas and are located on a circle
with radius 1.67 m. The target [see Fig. 8(a)] consists of a loss-
less cylinder of diameter 0.031 m with the relative permittivity
of which is located inside another lossless cylinder of
diameter 0.08 m with the relative permittivity of .
This target is illuminated from eight different transmitter loca-
tions and the scattered data are collected at 241 locations per
transmitter. The background medium is free space and the fre-
quency of operation is chosen to be 3 GHz. The imaging domain
is a 0.15 m 0.15 m square and is discretized into 60 60

square pulses.
The MR-GNI reconstruction of this single-frequency data set

is shown in Fig. 8(b) and (c). Although the MR-GNI algorithm
resolves the two different cylinders, the periphery of the outer
cylinder is blurred, thus, it is difficult to deduce its radius from
the reconstructed image. The SL-GNI reconstruction of this
target using three values for , namely, ,
and , is shown in Fig. 8(d) and (e). As can be
seen, the periphery of both circles is very clear. Also, the
reconstructed radii for both cylinders are very accurate: the
radius of the reconstructed outer cylinder is 0.078 m and
that of the reconstructed inner cylinder is 0.03 m. We also
run the SL-GNI algorithm with 20% error in the utilized
values for . That is, the corresponding values of for the
two cylinders utilized in the SL-GNI algorithm are chosen to
be 2.4 and 0.54. The contrast of zero, which is the contrast
of the background medium, is kept to be zero. The SL-GNI
reconstruction results using these values for are shown in
Fig. 8(f) and (g). As can be seen, the two cylinders are resolved.
However, the radii of the inner cylinder and outer cylinders are
underestimated: 0.024 m and 0.073 m. Finally, we note that
all of these reconstructions show artifacts in the reconstructed
imaginary parts. These artifacts are emphasized in the SL-GNI
reconstructions at the boundary of the two cylinders. However,
in the MR-GNI reconstruction, this artifact contains the whole
inner cylinder but with a smaller magnitude compared to the
magnitude of the artifact in the SL-GNI reconstruction. Finally,
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Fig. 8. (a) The FoamDielIntTM target from the second Fresnel experimental
data set (frequency of operation is 3 GHz). Reconstruction [left:
and right: ] using (b)–(c) the MR-GNI method, (d)–(e) the SL-GNI
method, and (f)–(g) the SL-GNI method with 20% error in the utilized values
for .

TABLE II
NUMBER OF SL-GNI AND MR-GNI ITERATIONS REQUIRED FOR THE

CONVERGENCE OF THE FIRST EXPERIMENTAL DATA SET

the number of iterations for this experimental example is given
in Table II.

B. Two Nylon Rods

This data set is collected using 24 co-resident Vivaldi an-
tennas. The measured data are calibrated assuming that the ra-

Fig. 9. University of Manitoba’s microwave tomography system with two
nylon cylinders with a separation of 8 mm (frequency of operation is
5 GHz).

dius of the measurement domain is 13.5 cm. Similar to [24],
the two canonical targets are nylon-66 cylinders, 0.038 m in di-
ameter and 0.44 m in height. The two cylinders were placed
in the imaging system with the separation of the two targets
being 8 mm as shown in Fig. 9. The background medium is free
space and the frequency of operation is 5 GHz. Thus, this sep-
aration corresponds to where is the wavelength in
the background medium. For each active transmitter, the scat-
tered data are collected using the remaining antennas. That is,
the measured data consist of 24 23 data points. At 5 GHz,
the nylon has a measured relative complex permittivity of

. The imaging domain is chosen to be 0.104
m 0.104 m and is discretized into 60 60 square pulses.
The MR-GNI reconstruction of this target is shown in

Fig. 10(a) and (b). As can be seen, these two cylinders are re-
solved and their reconstructed real-part permittivity value is very
close to its expected value. However, the imaginary part of the
permittivity profile has not been reconstructed due to its very
small value and the limited signal-to-noise ratio of the measured
data. The SL-GNI reconstruction of this target with two values
for , namely, 0 and 2, is shown in Fig. 10(c) and (d). Similar
to the MR-GNI reconstruction, the nylon rods are resolved. It is
worth noting that the number ofMR-GNI and SL-GNI iterations
required for the convergence is 10 and 21; the first iterations of
the MR-GNI and SL-GNI algorithms took about 17 and 13 s,
respectively. To check whether the SL-GNI reconstruction is
capable of reconstructing the very small imaginary part of the
permittivity profile, we have run the SL-GNI algorithm with

and . However, it was still not able
to reconstruct the imaginary part (not shown here). It should
be noted that the SL-GNI algorithm used for this target may be
referred to as a binary inversion algorithm as it deals with two
different contrast values: the contrast of the backgroundmedium
(which is zero) and that of the nylon rods. It is worth noting that if
we remove the regularization term from (11) and optimize

over , the reconstruction result, which is
shown in Fig. 10(e) and (f), is not satisfactory.
To show the performance of the SL-GNI algorithm when the

utilized for nylon rods contains a high error, we run the
SL-GNI algorithm with 50% error in the utilized for the two
nylon rods. That is, we assume that the contrast of the nylon
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Fig. 10. The reconstructed relative complex permittivity of the two nylon
cylinders [left: and right: ] using (a)–(b) the MR-GNI method,
(c)–(d) the SL-GNI method, (e)–(f) the shape and location reconstruction
method without the use of , (g)–(h) the SL-GNI method with 50% error in
the utilized value for .

rods is 1 (instead of 2). Using this wrong value, the SL-GNI
reconstruction of the target is shown in Fig. 10(g) and (h). Al-
though the SL-GNI algorithm was not capable of reconstructing
the target with this utilized for the nylon rods, it shows that
this value of is wrong. This can be deduced by noting that
the reconstructed image shows three totally different contrast
values: 1) contrast of zero (background medium), 2) contrast
of 1, and 3) contrast of 2.5. This is in contradiction with the a
priori information which assumes only one contrast value for
the scatterers.

VII. CONCLUSION

We have presented a multiplicative regularized Gauss–
Newton inversion algorithm for shape and location reconstruc-
tion which utilizes a priori information about the permittivity

values of the objects being imaged. Using synthetically and ex-
perimentally collected data, we have shown that this algorithm
is robust and can outperform the standard multiplicative reg-
ularized Gauss–Newton inversion algorithm in reconstruction
the shape and location of the object of interest.

APPENDIX I
DERIVATIVE OPERATORS

Herein, we derive the derivatives for given in (10). The
derivatives for and can be found in [12, App. D]. The
derivatives for the regularized cost functional can then
be obtained using the product rule. We denote the spaces of
complex functions defined on by with the norms and
inner products defined as

and (17)

where the superscript denotes the complex conjugate operator.
At the th iteration of the GNI algorithm, we start with

finding the limit

(18)

The above limit can be written as

(19)

The above limit can be simplified to (the argument has been
dropped for simplicity)

(20)

After mathematical simplifications, this can be written as

(21)

Noting that

(22)

expression (21) may be written as

(23)
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Writing the above limit as

(24)

the derivative operators may then be written as

(25)

and

(26)

where . We note that is an aux-
iliary cost functional which treats and as two independent
functions. The cost functional is complex differentiable
with respect to for a fixed and vice versa. This method,
sometimes referred to asWirtinger calculus [25]–[28], [12, App.
C], is one way of handling the fact that is not complex dif-
ferentiable with respect to the complex function .
To find the derivatives

and

we start with finding the limit

(27)

Utilizing (25), the above limit may be written as

(28)

which can be simplified as

(29)

Writing the above expression as

(30)

it can be concluded that

(31)

and

(32)

Using a similar procedure, we can derive

(33)

and

(34)

Having found the derivative operators in the continuous do-
main, the discretized forms of these operators can easily be
found. For example, the discretized form of (25) can be written
as

(35)

where the superscript “ ” denotes the transposition operator.
The SL-GNI method also requires the derivatives of and
with respect to and . Using the same procedure as

explained above, these derivatives can be derived. The closed-
form expressions of these derivative operators are given in [12,
App. D]. Using the first-order derivative operators in the dis-
crete domain, we can form the gradient of the cost functional

which is the negative of the vector given in the right-hand
side of (13). To form the Hessian matrix, i.e., the matrix in the
left-hand side of (13), we use the product rule. However, only
the second derivative operators which make the Hessian matrix
nonnegative definite are kept.

APPENDIX II
OVERSAMPLING OF THE CONTRAST

The proposed algorithm is robust with respect to oversam-
pling of the unknown contrast. This can be explained as follows.
Assume that we have a discrete ill-posed problem as
where , and the unknown vector is in
. (In our problem, is the number of measured data and

is the number of discretized elements in the imaging domain.)
To solve this ill-posed problem, we use multiplicative regular-
ization. It can be shown that multiplicative regularization when
applied to the discrete ill-posed problem is equivalent to the fol-
lowing minimization [7, Sec. V]:

(36)
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where is the regularization operator, is the regu-
larization weight, and is some form of the initial guess
(which is equal to the reconstructed contrast at the previous it-
eration of the GNI algorithm [7]). The above minimization is
then equivalent to solving the following damped least squares
problem:

(37)

As can be seen in (37), the unknown vector belongs to

whereas the matrix belongs to . Thus,

whatever we choose the number of discretized elements in the
imaging domain (i.e., ), the number of rows of the matrix

will be more than the number of elements in the

vector . This makes the algorithm robust to oversampling of
the unknown contrast.
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