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Interfacing Thin-Wire and Circuit Subcell Models in
Unstructured Time-Domain Field Solvers

Ian Jeffrey, Member, IEEE, and Joe LoVetri, Member, IEEE

Abstract—A method for driving and terminating Hol-
land–Simpson based thin-wire models by arbitrary lumped-ele-
ment circuits is proposed. The approach uses the fact that these
thin-wire models result in modified Telegrapher’s equations,
and interfacing transmission lines and lumped-element circuits
is straightforward. The thin-wire voltage and current at a cir-
cuit/wire junction can be written in terms of circuit nodal voltages
and branch currents, permitting the circuit solution to act as a
boundary condition for the thin-wire system. In this work, we pro-
vide the circuit/wire interfacing conditions and combine circuits
with Edelvik’s Holland–Simpson model that permits thin-wires
to be arbitrarily oriented within an unstructured mesh. Edelvik’s
work, previously implemented for finite-difference and finite-el-
ement time-domain solvers is formulated for the finite-volume
method. Numerical and experimental results for circuit-driven
thin-wire antennas are provided to validate the method.

Index Terms—Finite volume methods, lumped-circuit models,
thin-wire models.

I. INTRODUCTION

T HIN-wire models are an important part of numerical
methods for solving the time-domain Maxwell’s equa-

tions in regions populated by thin-wire structures. Differentially
formulated thin-wire models can be categorized into two dis-
tinct groups: First are thin-wire models that introduce an
additional system of partial differential equations relating addi-
tional unknowns of current and charge-density (or an equivalent
voltage) along the wire (we refer to these as Holland–Simpson
based models [1]–[4]), and second are thin-wire models that
do not introduce additional unknowns into the solution space.
In these methods, current and voltage relations are enforced
implicitly by constraining field components contributing to
select contour integrals (we refer to this second class as con-
tour-integration based models [5]–[8]). Both types of models
appear to have made their debut within the framework of the
finite-difference time-domain (FDTD) algorithm where the
importance of subcell modeling is paramount. Attempting to
resolve very small structural details such as thin wires within a
standard FDTD framework is computationally prohibitive. In
FDTD, where regularity of the computational grid is required,
both types of thin-wire model are suitable. In fact, efficient im-
plementations of the contour-integration models are dependent
on the regularity of the FDTD grid.
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With increased computer resources and the proliferation of
distributed and GPU-based computing, it has become practical
to numerically solve the differential form of Maxwell’s field
equations using more flexible, yet more expensive algorithms.
These include the finite-volume time-domain (FVTD), dis-
continuous-Galerkin time-domain (DGTD), and finite-element
time-domain (FETD) methods. These algorithms are formu-
lated on unstructured grids and, in principle, can resolve very
small structural detail relative to the range of wavelengths in
a broadband simulation. This is accomplished successfully
for FVTD in [9]. Modeling small structures directly comes
with a price: a localized increase in the mesh density and a
decreased time step in explicit time-stepping schemes. Local
time-stepping available in FVTD and DGTD formulations can
help [9]. Still, these algorithms benefit from thin-wire models
and improving thin-wire capabilities of these solvers is an area
of ongoing research [2], [3], [10], [11].
In the class of unstructured time-domain solvers, existing

thin-wire models are exclusively Holland–Simpson based.
Within the context of unstructured grids, the Holland–Simpson
models fall into two categories: mesh-dependent and mesh-in-
dependent models. In the former, thin-wire segments are
made to conform to the volumetric grid. For example, a Hol-
land–Simpson model for FVTD has been formulated in [12],
requiring wire segments to be aligned with the edges of pris-
matic elements. Mesh-independent Holland–Simpson models
allow the wire to be aligned arbitrarily in the volumetric grid.
For example, Edelvik et al. have formulated mesh-independent
Holland–Simpson models for FDTD and FETD [2], [10], [13].
The benefit of mesh-independent models is clear: A robust
mesh-independent thin-wire model permits rapid iterative
(re)placement of thin-wires without requiring the application
engineer to regenerate the mesh.
In many applications, thin-wires are directly driven by cir-

cuits that are well characterized using lumped-element circuit
models. A standard practice for driving and/or interconnecting
contour-integration thin-wires models with subcell circuits is to
modify the material parameters and/or fields local to the thin-
wire [14], [15]. For example, a simple voltage source can be im-
plemented by constraining the electric fields between its driving
terminals. This is possible when the terminals are identified in,
and associated with, the volumetric mesh. One of the source ter-
minals can then also act as a termination point for a thin wire.
A capacitor joining two thin wires can be modeled by assigning
a permittivity to the volumetric cell(s) between the terminals of
the connected wires [8]. These modifications are locally depen-
dent on the structure of the grid and are permissible for con-
tour-integration models because mesh-dependency is already
required.
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With the exceptions of the so-called “beam-voltage” sources
used by Edelvik et al., interfacing Holland–Simpson thin-wire
models (structured or otherwise) with general lumped-element
circuits is, to our knowledge, an open problem. The goal is to
introduce lumped-element circuits that are independent of the
mesh in order to retain the benefit of mesh-independent Hol-
land–Simpson models.
The contributions of this work are twofold: First, it is

well-known that the Holland–Simpson formulation results in a
generalized form of the Telegrapher’s transmission line equa-
tions. Interfacing circuits with transmission lines is a mature
theory [16], [17] and so we develop the sufficient assumptions
required to use this theory for coupling circuits to thin-wires.
Second, we formulate the circuit-driven FVTD equivalent to
Edelvik’s thin-wire model using a one-dimensional, upwind,
and flux-split FVTD formulation compatible with an FVTD
field solver. Details of the temporal synchronization between
the field model, thin-wire model, and circuit model are pro-
vided, and the resulting algorithm is validated numerically and
experimentally. Sections II-A–II-B and Section III-A discuss
the existing thin-wire model and a standard FVTD formulation
and have been included for completeness. The contributing
work, namely interfacing thin-wires and subcell circuits,
adapting the thin-wire model to FVTD and the FVTD solution
to the thin-wire equations are provided in Sections II-C–II-E
and Sections III-B–III-E. Although implementation details are
provided specifically for FVTD, the general concepts are given
in sufficient detail that the method can be adapted to DGTD
and FETD solvers.

II. A CIRCUIT-TERMINATED THIN-WIRE MODEL

In this section, we develop the general theory for terminating
a mesh-independent thin-wire subcell model with arbitrary
lumped-element circuits. The thin-wire model adopted is the
Holland–Simpson based model of Edelvik et al. [2], [10].
Edelvik’s approach extends the original Holland–Simpson
model [1] by coupling the wire to the surrounding fields using a
so-called tube-distribution. This approach appears to have been
first introduced by Ledfelt [13], [18] and allows the wire to be
arbitrarily oriented within the mesh. It has also been shown to
preserve the stability of the underlying explicit field solver.

A. The Thin-Wire Equations

The Holland–Simpson thin-wire subcell model is formulated
by assuming that the fields in the vicinity of each segment of
wire correspond to those of an infinitely long wire embedded
in a homogeneous and simple medium [1]. We suppose a wire
of radius [m], directed in the direction, around which we
setup the cylindrical coordinates , as shown in Fig. 1(a).
The thin-wire carries a current [A] and a per-unit-length
(PUL) charge [C/m]. If the volumetric discretization is
much finer than the smallest wavelength of interest, the fields
near each segment of wire can be approximated by a static, -di-
rected, electric field and a static, -directed, magnetic field:

(1)

Fig. 1. (a) A portion of an infinite -directed thin wire of radius used to
derive the thin-wire subcell model. Field/wire coupling occurs to the empirical
distance where the medium is assumed homogeneous. (b) Discretization of
the continuous wire domain into first-order wire segments.

where the dependence on is removed by the assumed sym-
metry and is the permittivity. We assume that the medium
surrounding the wire has permittivity , permeability

, and conductivity for locations under
consideration. The component of Faraday’s law

(2)

can be rewritten using the static field approximations (1) as

(3)

In (3), the velocity [m/s]. The derivative is
removed by integrating over any branch transverse to the
direction, resulting in

(4)

where m is a PUL resistance and where the term
accounts for the boundary condition at .
Equation (4) relates the current and PUL charge on the thin

wire to the longitudinal field component at some
distance away from the wire. To remove the dependence on ,
we adopt the distributional tube interpolation of Edelvik et al.
and introduce a weighting function 1/m that couples the
field, within a cylinder of finite radius , to the wires in an
average sense. The function accounts for the finite thick-
ness of the wire, i.e., and has finite support,
i.e., . Specific details of the coupling func-
tion are not required to develop the circuit/wire interface model.
The coupling function and distance are chosen as in [2],
the latter being equal to 1.7 times the average edge length in the
mesh. In the original reference, this distance has been selected
empirically, and it is stated therein that if strongly inhomoge-
neous meshes are present, this distance should be taken as the
average edge length in the vicinity of each wire segment [10].
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Weighting both sides of (4) by and integrating over a disk
of radius transverse to the wire axis gives

(5)

where the average longitudinal electric field is given by

(6)

and where the PUL inductance [H/m], and its approximation
used herein and in [2], is defined as

(7)

Equation (5) provides a single equation relating the wire quan-
tities and to the average longitudinal field out-
side the wire. A second equation is obtained by conservation of
charge along the wire axis:

(8)

Together, (5) and (8) form a system of two coupled partial dif-
ferential equations for the wire quantities and .
These are written in the space (dropping the explicit spatial
and temporal dependencies for notational brevity):

(9)

B. The Thin-Wire Voltage

The thin-wire system of (9) is commonly written in terms
of a voltage by defining a PUL capacitance [F/m] satisfying

[2], [10], [13]. This permits the definition
of a wire voltage [V] such that the system
(9) can be rewritten as

(10)

where [S/m] is a PUL conductance. Clearly, this
system of equations is in the form of modified Telegrapher’s
equations for a lossy transmission line. It is well established
how to drive/terminate transmission lines using circuits by es-
tablishing a relationship between circuit voltages and currents
to transmission line voltages and currents [16]. Interfacing the
thin-wire model with circuit terminations should be straight-
forward, provided we understand how the voltage and current
quantities on the thin wire are defined. Current is a physical
quantity—its definition on a thin wire or a transmission line
cannot be misconstrued. Voltage, on the other hand, is a rela-
tive quantity andmust be defined carefully. Integrating the static
electric field transverse to the wire from to for fixed de-
fines a voltage :

(11)

Fig. 2. (a) A wire/circuit interface. If the wire voltage at the interface is as-
sumed to be the difference between two nodal voltages and , the current
and voltage at the interface results in two distinct problems (b): the circuit for-
mulation with auxiliary current (left) and the thin-wire boundary condition
(right).

Averaging analogous to the computation of such
that

(12)

shows that the voltage along the thin
wire is a function of the coupling cylinder radius and repre-
sents the average voltage on the wire referenced to that distance.

C. Circuits as Thin-Wire Boundary Conditions

Consider a thin wire connected to a node in a circuit as shown
in Fig. 2(a). On the thin wire, the system of partial differential
(10) prevails. Its solution is unique, provided that initial con-
ditions and boundary conditions are prescribed. Therefore, the
solution of the circuit should establish a boundary condition at
the wire/circuit interface. Before discussing this boundary con-
dition, we must first select a circuit solution method and deter-
mine the relationships between circuit quantities and thin-wire
quantities.
Motivated by the multiport-network, transmission-line for-

mulation of LoVetri and Lapohos [16], we formulate the circuit
using modified nodal analysis (MNA) and interface the circuit
and thin-wires through auxiliary equations. MNA is a standard
method for solving electric circuits consisting of nodal
voltages , including a reserved reference node [V]
[19]. MNA seeks to determine the nodal voltages by enforcing
Kirchoff’s current law at each node using branch currents given
in terms of nodal voltages. When a branch current cannot be
written using nodal voltages, an auxiliary current and a corre-
sponding auxiliary equation are required. This is the case, for
example, for the current source in the circuit of Fig. 2(a).
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Assuming that auxiliary equations are required to solve a
circuit with nodes (excluding the reference node), we obtain
the system of ordinary differential equations

(13)

where the constant square matrices and have dimension
. The -length solution vector consists of

unknown nodal voltages and auxiliary currents while the
source vector accounts for forcing functions and initial con-
ditions.
As shown in Fig. 2(b), the MNA system for the circuit can

account for the thin wire by means of an auxiliary current if
a relationship between circuit quantities and thin-wire quantities
is established as follows.
1) The thin-wire voltage at a wire–circuit junction [and a
function of according to (12)] can be represented (or ap-
proximated) by a difference between two nodal voltages in
the circuit. This means relating the circuit reference (white
triangle) of Fig. 2(a) to the thin-wire reference (gray tri-
angle). Given this relationship, the wire can be connected
to one of these two nodes, and the wire voltage at the inter-
face can be converted to circuit nodal voltages, as shown
in Fig. 2(b).

2) An auxiliary equation can be obtained from the relation-
ship between the voltage and current on the thin wire to
account for the unknown auxiliary current.

3) The solution of the circuit determines the nodal voltages
and auxiliary currents. From these values, the boundary
values for the wire at the junction are obtained.

Adhering to the above procedure gives a general method for
interfacing an arbitrary number of thin-wire segments to an ar-
bitrary circuit. In Section II-D, we will show that the assumption
in item 1) always holds for certain circuits. In Section III-C, we
develop the auxiliary equation required by item 2). Time syn-
chronization between the thin wires and volumetric (14) and
(15) are discussed in Section III-E.
Before proceeding, we note that the proposed circuit–wire

interfacing does not impose any geometric constraints on the
circuit beside its topological connection to the wires; the circuit
can have arbitrary extent, provided that its solution still adheres
to lumped-element circuit modeling assumptions. On the other
hand, the formulation also permits a circuit to be introduced at
a single point. This is the ideal case, where circuit quantities,
such as nodal voltages, are truly spatially independent.

D. Compatibility of Thin-Wire and Circuit Voltages

Care must be taken when defining the voltage relationship
between a circuit and a thin wire: the wire voltage should ap-
proximate the difference between two nodal voltages in the ad-
joining circuit. Three situations that do not require any approx-
imations to make this connection are depicted in Fig. 3: First,
some wire–circuit configurations do not require a circuit refer-
ence and can be consistently referenced to the wire. The bal-
anced differentially driven wire configuration shown in Fig. 3
(top) serves as an example. Second, when a wire is connected
to an open circuit as shown in Fig. 3 (bottom left), the current
at the wire–circuit interface must be zero, and this can be used

Fig. 3. The compatibility of the thin-wire voltage and circuit nodal voltages
are independent of the coupling radius in at least three cases: differentially
balanced circuits where the circuit is independent of the reference node (top);
open circuits, where zero current is required at the interface independent of the
voltage (bottom left); and short circuits where the voltage is zero at the interface
independent of the current (bottom right).

directly as the auxiliary equation independent of voltage ref-
erence. Last, when a wire is connected to a short-circuit, zero
voltage is required at the circuit–wire interface, as shown in
Fig. 3 (bottom right). From the definition of the thin wire (10),
this condition is equivalent to enforcing at the
interface, independent of the voltage reference. The short-cir-
cuit and open-circuit conditions, are respectively equivalent to
Edelvik’s boundary conditions used when the wire is connected
(normal to) a large PEC or to an open termination [2].

E. Boundary Conditions for Hyperbolic Systems and the
Thin-Wire Auxiliary Equation

The appropriate boundary conditions for the hyperbolic
system (10) are best formulated in terms of the characteristic
variables arising from the diagonalization of an equivalent
lossless system [20]. A so-called characteristic variable flowing
from a wire into a circuit is made up of a combination of the
wire voltage and current and provides an auxiliary equation
for the circuit. As upwind FVTD and DGTD algorithms are
explicitly formulated using characteristic propagation, they are
well suited to interface circuits as wire boundary conditions.
An auxiliary equation compatible with the FVTD solution of
the wire equations is given in Section III-C. In other numerical
methods, such as FDTD and FETD, the discretization of the
system (10) may associate an unknown current or voltage
directly at the circuit–wire interface, making it necessary to
enforce the circuit–wire boundary conditions in other ways.

III. THE FVTD FORMULATION

What follows are the details for combining the circuit-driven
thin-wire model with an FVTD field solver. The thin-wire equa-
tions are solved using a one-dimensional FVTD formulation for
consistency with the three-dimensional solver.

A. Volumetric FVTD

To formulate the FVTD solution to the volumetric field
problem, it is assumed that a finite computational domain
is partitioned into a set of first-order polyhedral fi-

nite-volumes (or cells) , with each having an associated
volume m . Each cell is bounded by flat facets

. The material parameters associated with
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the th volume are constants: the permittivity in the th cell is
[F/m], the permeability is [H/m], and the conductivity is
[S/m]. Maxwell’s curl equations at time and position are

integrated over each cell, and an application of the divergence
theorem yields the system of equations in for ,

(14)

The solution vector contains both the electric field
[V/m] and the magnetic field [A/m], i.e.,

, where denotes transposi-
tion. The source vector supports
impressed current densities A/m under a total field
formulation. Here and throughout, parenthesized subscripts de-
note the volumetric averages of the solution and source vectors
over . The constant physical medium associated with the th
cell is represented by the 6 6 diagonal matrices and :

Finally, the 6 6matrix is a function of the outward normal
to on the surface as well as the physical medium in
[12].
FVTD discretizes the system (14) by associating the vol-

umetric average with each volume . The surface
integrals are approximated by numerical quadrature. No sur-
face values are stored, but are instead reconstructed to a desired
level of accuracy from the volumetric averages of the sur-
rounding cells. Our FVTD implementation uses a flux-split,
upwind scheme where the fields are collocated in time. Details
are available in [12], [21], and [22].

B. The FVTD Formulation of the Thin-Wire Equations

The one-dimensional system of thin wire (10) is hyperbolic
and can be solved using a one-dimensional FVTD formula-
tion. We assume the wire domain is discretized into
first-order line segments , each having length , as shown
in Fig. 1(b). The current and voltage on each wire segment are
assumed to be related by a segment-dependent instance of the
system (10). The physical parameters of the medium are as-
sumed to be constants for a cylinder or radius surrounding
each wire segment and are represented by , , and . The
FVTD equations for segment are obtained by averaging (10)
over the segment and applying the one-dimensional divergence
theorem. For , this results in

(15)

The thin-wire solution vector is
and the source vector is . The matrices

, and are

(16)

where the parameters , , , and depend on the seg-
ment. The summation over is a convenient way to represent
the two ends of the wire located at , with accounting for
the outward normal and where does not contribute to the
equation. The analogy between the one-dimensional system
(15) and the volumetric system (14) is clear—the thin-wire
equations are solved using the one-dimensional analog of the
flux-split, upwind scheme used in the volumetric formulation.
Flux-splitting results in a decomposition of the evaluation at
each end of the segment into incoming (superscript ) and
outgoing (superscript ) contributions at each end of the wire,

(17)

where is the value of the solution at reconstructed from
the inside of the segment and is reconstructed from outside
the segment. Details can be found in [12] and [20].

C. The FVTD Thin-Wire Auxiliary Equation

While the flux-split approach to solving hyperbolic systems
of equations like (14) and (15) are well documented [12], [20],
[21], it is the flux-split details that provides the auxiliary equa-
tion used to interface thin-wires to circuits in an FVTD formu-
lation. Diagonalizing the -direction flux matrix
by a similarity transformation gives

(18)

where the matrix of eigenvalues and

(19)

Above, the segment velocity is , the wire-segment
impedance is defined as and the
wire-segment admittance .
The thin-wire characteristic variables , associated with

the th segment and direction , are

(20)
and propagate unchanged along the wire segment in the direc-
tion of the segment outward normal [20]. The characteristic
leaving the segment at is then and is directly

related to the outgoing flux of (17).
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Suppose now that segment is connected to a circuit at .
Using the method of Section II-C, the characteristic variable

can be written in terms of the auxiliary current and nodal
voltages in the circuit. When is known, this provides the
required auxiliary equation for the circuit. For the example cir-
cuit of Fig. 2(b), the auxiliary equation present as the last row
completes the MNA system

(21)

where, for compactness, we have written the matrix as

. Note that, in this example, the solution to the circuit
equation at time provides the boundary voltage

and the boundary current . For gen-
eral circuit–wire interfaces, the computed boundary values are
used to provide the value for the incoming characteristic vari-
able at the interface. This value is directly related to the

incoming flux required by (17).

D. Field-to-Wire and Wire-to-Field Coupling

In the Edelvik’s tube-distribution model, coupling from the
fields to the wires occurs in the thin wire (10) through the source
term . For wire segment , the
source is computed as the -weighted, average -directed
field along the segment

(22)

where is dependent on the orientation of segment and
where when and is zero otherwise [2]. The
finite support of both and limit the integration over
to a set of cells in the vicinity of . The

integral over each cell in the set is performed numerically to
the desired order of accuracy by reconstructing the electric field

from cell-averaged field values.
Coupling from the wire to the fields is performed as in [2], by

defining a volumetric current density supported by the wires:

(23)

The contribution from is restricted to . The source term
required in the volumetric update of (14) for cell , is

computed by evaluating

(24)

Once again, the integral is computed using numerical quadrature
to the desired order.

E. Temporal Synchronization of Circuits, Wires and Fields

We are now ready to deal with the issue of synchronizing
the fields, wires and circuits. Without loss of generality, we
will illustrate the procedure for a simple first-order explicit time
step of length in the loss-free case. Note that to ensure sta-
bility, we must select as being the minimum of the time-
step limit imposed by the volumetric FVTD update (14) and
the wire FVTD update (15). When volumetric element dimen-
sions are of the same linear size as wire segments, the three-di-
mensional time step will be required [20]. In practice, higher
order temporal schemes are implemented using combinations of
first-order steps. We begin by writing the field and wire equa-
tions in a general operator form as

(25)

where the operators and account for the surface inte-
grals over the cell boundaries for the field and wire equations,
respectively, and is the time-step index. When a thin wire is
terminated at a circuit, the operator requires knowledge of
the circuit solution at time , which is obtained from the circuit
system (13) using a backward step

(26)

This circuit solution is dependent on the previous circuit solu-
tion and the circuit source vector , which includes any con-
nected thin-wire characteristics variables at time . Note that
the implicit backward difference is essential: According to (13),

a forward difference would require the computation of ,
which may not exist.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

For validating the circuit-driven thin-wiremodel, we consider
the experimental setup shown in Fig. 4, consisting of an alu-
minum metal plate and two monopole antennas located at po-
sitions and . The monopole antennas are constructed to be
5 [cm] in length using SMA connectors and a 0.51-[mm]-di-
ameter center conductor made from silver-covered copper-clad
steel [23]. In all numerical simulations, circuits are introduced
at a single point. All meshes were produced using Gmsh [24].

A. Single Monopole Over a PEC Ground Plane

As a first example, we consider a single monopole located
at location with the monopole at location removed. In the
numerical simulation, we consider a hemispherical domain as
shown in Fig. 5. The radius of the computational domain is
selected to be 0.1 [m]. The PEC surface (located in the –
plane at ) extends to the edge of the computational do-
main. The monopole is located at its center. While the PEC
surfaces in the experimental and numerical simulations are not
the same, we assume they are sufficiently large in both cases
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Fig. 4. Top: Experimental monopole configuration. Bottom: The 5-[cm]-long,
0.51-[mm]-diameter monopole.

Fig. 5. Surface of the volumetric mesh used for the single monopole example.

to be approximately infinite. For all FVTD simulations, the ab-
sorbing boundary of the computational domain is enforced by a
Silver–Müller boundary condition [21].
A discretization of the domain supporting frequencies up

to 5 [GHz] at 10 samples per wavelength resulted in 600 000
tetrahedral elements. The wire was made up of 49 straight
line segments and was driven and terminated using the circuit
configuration shown in Fig. 6(a), where the voltage and
the current were extracted from the simulation run. The
voltage source was set as the derivative of a Gaussian
pulse having spectral content over the range 200 [MHz] to
5 [GHz]. The simulation was run for 15 000 time steps, or
to roughly 5 [ns], and the monopole input impedance was
computed as , where denotes the
Fourier transform of . The input impedance was measured
experimentally using a 9 [kHz]–8.5 [GHz] Agilent E5071C
network analyzer. A comparison of the broadband numerical
and experimental monopole results are shown in Fig. 7 and
show good agreement. The small variations are consistent with
other numerical simulations of resonant structures [1], [2], [10].

B. Dual Monopoles Over a PEC Ground Plane

As a second example, we consider the coupling between two
monopoles corresponding to the experimental setup of Fig. 4.
The mesh used for this problem is shown in Fig. 8. In this case,
the numerical and experimental ground-planes correspond. The

Fig. 6. Monopole driving circuits. (a) Monopole over PEC ground plane at
location A. (b) Monopole over PEC ground plane at location B.

Fig. 7. Simulated and measured input resistance (top) and reactance (bottom)
for a monopole over PEC ground plane.

Fig. 8. Surface of the volumetric mesh used for the dual monopole example.

mesh contained roughly 2.3 million volumetric elements and
each monopole consisted of 120 wire segments. The circuit con-
figuration of Fig. 6 was used and , , and were
extracted. The computed and measured -parameters for the
two-port network are shown in Figs. 9 and 10. A FEKO sim-
ulation [25] of the monopoles over an infinite ground plane is
also shown.

C. Dipole Results

As a final example, we consider a dipole radiating in free
space. Each dipole leg has dimensions equal to themonopoles of
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Fig. 9. for two monopoles over a PEC ground plane, magnitude (top) and
phase (bottom).

Fig. 10. for two monopoles over a PEC ground plane, magnitude (top) and
phase (bottom).

the previous examples, driven as shown in Fig. 11, where a ca-
pacitor is used to model feed capacitance.Without the capacitor,
the input impedance should be exactly twice that of the single
monopole example. A comparison of these results are shown in
Fig. 12. Next, we introduce a 10 [pF] capacitor across the termi-
nals of the dipole’s driving circuit. The input impedance of this
new configuration is equal to the input impedance without the
capacitor in parallel with the impedance
of the capacitor. In Fig. 13, we compare the input impedance
when the capacitor is included as part of the FVTD simulation
and when it is added to the unloaded input impedance of the
dipole.

V. CONCLUSION

In this work, we have provided a method for interfacing arbi-
trary lumped-element circuits with Holland–Simpson type thin-

Fig. 11. Dipole driving circuit. In case 1, the capacitance is set to zero.

Fig. 12. Input resistance (top) and reactance (bottom) of the dipole compared
to two times the monopole results.

Fig. 13. Input resistance (top) and reactance (bottom) of the capacitively
loaded dipole when the capacitor is included in the simulation and when its
impedance is added after the fact.

wire models. Using modified nodal analysis and characteristic
decomposition of the thin-wire solution allows circuits to be
placed at a single point at wire terminals preserving the mesh-in-
dependent nature of the thin-wire model. The method has been
implemented within an FVTD field solver and has been numer-
ically and experimentally validated successfully.
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