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Abstract—The multiplicatively regularized Gauss–Newton
inversion (GNI) algorithm is enhanced and utilized to obtain
complex permittivity profiles of biological objects-of-interest. The
microwave scattering data is acquired using a microwave tomog-
raphy system comprised of 24 co-resident antennas immersed
into a saltwater matching fluid. Two types of biological targets
are imaged: ex vivo bovine legs and in vivo human forearms. Four
different forms of the GNI algorithm are implemented: a blind
inversion, a balanced inversion, a shape-and-location inversion,
and a novel balanced shape-and-location inversion. The latter
three techniques incorporate typical permittivity values of biolog-
ical tissues as prior information to enhance the reconstructions.
In those images obtained using the balanced shape-and-location
reconstruction algorithm, the various parts of the tissue being
imaged are clearly distinguishable. The reconstructed permittivity
values in the bovine leg images agree with those obtained via
direct measurement using a dielectric probe. The reconstructed
images of the human forearms qualitatively agree with magnetic
resonance imaging images, as well as with the expected dielectric
values obtained from the literature.

Index Terms—Animal tissue, Gauss–Newton inversion (GNI),
human forearm, imaging, microwave tomography (MWT),
shape-and-location reconstruction.

I. INTRODUCTION

M ICROWAVE tomography (MWT) has been utilized to
retrieve quantitative and qualitative images of various

nonbiological objects-of-interest (OIs) in the past, including
3-D [1], and 2-D objects [2], as well as tissue mimicking
phantoms [3], [4]. Various experimental prototypes and data
acquisition systems have been implemented, such as a single
rotary-receiver system [5], a co-resident antenna array [6], and
more sophisticated systems based on the modulated scatterer
technique and near-field measuring probes [7], [8].
While different biomedical imaging modalities, e.g., X-ray

computed tomography (CT), ultrasound, and magnetic reso-
nance imaging (MRI), are standard clinical imaging techniques
[9], the use of MWT biomedical imaging is still under inves-
tigation. An early tomographic system, developed in the late

Manuscript received March 07, 2013; revised June 23, 2013; accepted June
25, 2013. Date of publication July 29, 2013; date of current version August
30, 2013. This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.
The authors are with the Department of Electrical and Computer Engi-

neering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6 (e-mail:
Joe_LoVetri@umanitoba.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMTT.2013.2273758

1970s [10], used transmission coefficients between two parallel
scanning antennas to reconstruct images of a canine kidney
[11]. These experiments nurtured plenty of subsequent research
on biomedical MWT with various clinical prototypes targeting
different applications having been developed. These include
systems for the imaging of animal extremities [12], [13], breast
cancer diagnosis and detection [4], [14], [15], chemotherapy
monitoring [16], calcaneus and heel imaging [17], as well as
human forearm imaging [18]. The human forearm is a difficult
test case because it contains tissues with a wide range of
complex permittivity values. An early human forearm study
was reported in [18]. Although scattering data from that study
was made available to other researchers to test their inversion
algorithms, e.g., [19], no measurements from other MWT
systems have been reported.
The mathematical optimization problem associated with

quantitative MWT is inherently nonlinear and ill posed. Dif-
ferent algorithms and regularization techniques have been
implemented to treat these difficulties; a review of these
algorithms is available in [20]. Although the imaging of non-
biological objects and dielectric phantoms is essential for
quantitative experimentation and the improvement of inversion
algorithms, the imaging of real biological tissues provides
valuable insight into the performance of MWT for biomedical
imaging purposes. Our group has recently completed a pilot
study of human forearm imaging that included the collection
of MWT scattering data from five volunteers using one of our
dipole-based MWT systems. The study also included MRI
images of each forearm. Images of each volunteer’s forearm
were reconstructed in the frequency range from 0.8 to 1.2 GHz.
The male and female volunteers were of various ages and
the outer adipose layer surrounding the forearm exhibited
different thicknesses. It has been our observation that a thicker
adipose layer generally makes MWT imaging more difficult,
sometimes producing unrecognizable images of the forearm.
These observations were based on inversions attempted using
both the multiplicatively regularized contrast source inversion
(MR-CSI) method, as well as the multiplicatively regularized
Gauss–Newton inversion (MR-GNI). Thus, because these are
currently state-of-the-art inversion techniques, the dataset is
useful as a basis upon which to study improvements to the
algorithms that would lead to more robust and accurate imaging
with higher resolution.
The general approach taken here is to incorporate expected

values of the complex permittivity for the tissues involved in
the OI being imaged into the MR-GNI algorithm. With regard
to biological tissue imaging, there exist good sources of prior in-
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formation in the literature regarding the expected values of rel-
ative complex permittivities [21], [22]. The differences in value
of the dielectric properties between in vivo and ex vivo tissues
is also well known [23] and could be taken into account. Blind
MWT reconstructions of biological targets that neglect avail-
able prior information put the already difficult job of inverting
the data at a disadvantage resulting in: 1) poor qualitative ac-
curacy, i.e., the different parts of the tissue are not discernible
and 2) poor quantitative accuracy, i.e., the obtained complex
permittivities may be incorrect. For the case of limb imaging,
the inversion problem is especially difficult because of the wide
range of complex permittivity values associated with the tissues
involved: skin, adipose, muscle, and bone. In addition to the
ill-posed nonlinear characteristics of the mathematical problem
and the wide variety of tissues involved, MWT tissue imaging
is also difficult because of the large difference between the real
and imaginary parts of the permittivity. That is, MWT algo-
rithms may favor either the real or the imaginary part of the
reconstruction [24]. These difficulties are also compounded by
the fact that most numerical algorithms do not fully model the
complete MWT experimental system where the measurements
are made. This leads to modeling error, which is the mismatch
between the numerical model being used in the inversion algo-
rithm and the experimental system.
In this paper, we investigate the use of prior information

in the form of estimated complex permittivity values for
the various tissues as a means of improving the imaging
performance of MR-GNI [25]. For this study, four different
implementations of MR-GNI are utilized with or without the
use of prior information. The OIs being imaged are ex vivo
animal tissues: two bovine legs with and without skin, and
in vivo human forearms: two volunteers one with a thin and
another with a thick adipose layer. The former objects, ex
vivo targets, are used for quantitative evaluation because their
dielectric properties can also be measured using a dielectric
probe. The in vivo human forearms are used for qualitative
evaluation because the MRI image of the volunteers are also
available. We first present blind reconstructions without the
use of any prior information (Section IV-A). We then present
the results obtained by balancing the real and imaginary parts
of the image (Section IV-B), as well as shape-and-location
reconstruction of the tissues (Section IV-C). Finally, we recon-
struct the images of each tissue using a novel combination of
the shape-and-location and balanced MR-GNI (Section IV-D).
From the results obtained (presented in Section VI), the use
of balanced shape-and-location reconstruction enhances the
quality of the images where different parts of the tissue are
clearly distinguished. We also measured the permittivity of the
bovine legs using a commercial dielectric probe (Section V)
and found that the complex permittivity values for the different
tissue regions agree with the direct dielectric probe measure-
ments.

II. SYSTEM DESCRIPTION

The measurement system consists of a metallic enclosure
comprising 24 dipole antennas designed for operation at 1 GHz
in the water matching medium. The antennas are held by rigid
coaxial cables that feed through to a vector network analyzer

Fig. 1. Measurement system. (a) Schematic diagram (dimensions in centime-
ters). (b) Photograph during measurement of a skinless bovine leg. (c) Bovine
leg with skin. (d) Photograph during measurement of a volunteer’s forearm.

(VNA) that collects the scattering parameter, , between each
pair of the antennas. The two ports of the VNA connect to the
antennas via a 24-2 port multiplexer. The VNA and multiplexer
are controlled through a general purpose interface bus (GPIB)
using a custom designed data acquisition program. A schematic
diagram of the system is shown in Fig. 1(a). Photographs of the
system during measurements are shown in Fig. 1(b)–(d).

A. Matching Fluid

A matching fluid consisting of simple table salt in deion-
ized water was used to decrease the dielectric contrast between
the OI and the background medium. Saltwater was used be-
cause it is readily available, inexpensive, and comfortable, as
well as nontoxic for the volunteers. Its matching performance
is good for high-permittivity tissues such as skin and muscle.
The high dielectric constant increases the amount of energy that
couples into the OI while the introduction of loss (i.e., conduc-
tivity) ensures that reflected waves from the boundary will be
sufficiently attenuated to make image reconstruction possible
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TABLE I
MATCHING FLUID RELATIVE COMPLEX

PERMITTIVITY

using only a simple model of the system. A lossless matching
fluid would have required a more complicated system model
that accounts for the multiple wave reflections from the bound-
aries, as well as the mutual coupling between the coresident an-
tennas. Without such a model, the image reconstruction would
be poor due to the large modeling error. Our group has studied
the effects of varying the matching fluid’s loss by changing
the amount of salt that was added to the water [26]. The re-
sulting imaginary part of the permittivity was so varied from

up to at 1 GHz. Imaging results for
a cylindrical phantom consisting of a glycerol/deionized water
solution were compared using single frequency reconstructions
in the frequency range from 0.8 to 1.2 GHz. The worst recon-
structions were obtained with matching fluids of
(lossless) and (high loss). It was shown that a
broad range of loss can be used for imaging and the best results
were obtained with and at
1 GHz. In this paper, we refer to these solutions as salt_12.5 and
salt_15, respectively. Salt_12.5 requires 2.5 g/L of table salt and
salt_15 requires 3.14 g/L. A commercially available dielectric
probe was used to measure the complex dielectric properties of
the matching fluid. The measured permittivities of the matching
fluids are listed in Table I.

III. PROBLEM STATEMENT

The goal is to reconstruct the complex dielectric properties of
an OI, denoted by , at positions within a square imaging
domain located inside the measurement enclosure. The mea-
surement domain, , consists of a set of points encircling at
which the antennas are located [see Fig. 1(a)]. Both imaging and
measurement domains are immersed in a background medium
with relative complex permittivity . In our case, the back-
ground medium is one of the previously described saltwater so-
lutions. The inversion problem is formulated in terms of an un-
known contrast function defined as

(1)

The objective is to find from calibrated scattered
electric-field measurements, . We assume a 2-D
transverse-magnetic (TM) illumination where the electric field
can be represented by a single component perpendicular to the
imaging domain (the -component).
Raw scattered field measurements, , are obtained by

performing two different sets of measurements. First, the OI is
successively illuminated by each transmitter and the resulting
fields are collected by the receivers. We refer to this set of mea-
surements as the total-field data, . Second, the same exper-
iment is performed in the absence of the OI. This set of measure-

ments is referred to as the incident-field data, . The mea-
sured scattered-field data, , is then obtained by subtracting
the incident-field from the total-field data. This measured scat-
tered-field data is first calibrated before it is submitted to the in-
version algorithm. Calibration is used to convert the raw exper-
imental data to what would be expected in the assumed numer-
ical model and thereby reduce the modeling error. Various cali-
bration methods, based on the expected incident field and scat-
tered field for known targets, have been reported [27]. Herein
we employ the so-called scattered-field calibration method ex-
clusively. In this method, the raw is calibrated by mul-
tiplying it with a factor determined as the ratio of the analyti-
cally derived scattered field to the measured scattered field for a
known perfect electric conductor (PEC) calibration cylinder (In
this study the diameter of the PEC cylinder is 3.5 in). That is,
the calibrated measured scattered-field data due to the OI, ,
is obtained as

(2)

where the calibration factor is given by

analytical scattered data due to the PEC cylinder
measured scattered data due to the PEC cylinder

(3)

The contrast function is discretized into square pixels and
represented by , a complex vector of length . The calibrated
measured scattered-field data is also represented by a complex
vector, , of length where is the product of the number
of transmitter and receiver antennas. Denoting as the
simulated scattered field on due to a predicted contrast ,
the MWT problem is formulated as the minimization of the fol-
lowing data misfit cost-functional:

(4)

where denotes the -norm on . The weighting coeffi-
cient is chosen to be

(5)

IV. INVERSION ALGORITHMS

To minimize the nonlinear ill-posed cost-functional ,
we use four different forms of the GNI algorithm. The first one
is a blind inversion algorithm that does not assume any prior
information about the OI. The second one is a balanced inver-
sion algorithm that assumes that an approximate ratio between
the average real and imaginary parts of the contrast is known.
The third one is a shape-and-location reconstruction algorithm
that assumes that approximate values of the contrast values are
known. The last one is a balanced shape-and-location recon-
struction algorithm that can handle both the numerical imbal-
ance between the real and imaginary parts of the contrast values
and assumes approximate values of the contrast.

A. Blind Inversion

For the blind inversion, we utilize the MR-GNI algorithm.
This inversion algorithm utilizes the so-called weighted
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-norm total variation multiplicative regularizer in conjunc-
tion with the GNI method. At the th iteration of the MR-GNI
algorithm, the following cost-functional is constructed:

(6)

The multiplicative regularizer, (in the continuous do-
main), is given as

(7)

where the gradient is taken with respect to the position vector
, and is the area of the imaging domain. The steering param-
eter is chosen to be [2], [25]

(8)

where is the area of a single cell in the uniformly discretized
domain . In the MR-GNI algorithms, the contrast is updated
in the form of , where is the step-
length determined via an appropriate line search algorithm. The
correction is found by solving the following equation:

(9)

where is the Jacobian matrix. The discrepancy
vector is given as

(10)

and . The regularization operator represents the
discrete form of the operator “ ” where “ ” is the
divergence operator and

(11)

This completes the brief description of the basic MR-GNI algo-
rithm.

B. Balanced Inversion

Due to the imbalance between the average values of the real
and imaginary parts of the relative complex permittivity of bio-
logical tissues, it is likely that a blind inversion algorithm favors
the reconstruction of the real part. This imbalance reconstruc-
tion can be alleviated by adjusting the regularization weight for
the real and imaginary parts of the contrast. In the balanced
GNI algorithm, it is assumed that the average real part of the
contrast is times greater than the imaginary part of the con-
trast. Therefore, this approximate ratio, , serves as the prior
information. Thus, in the balanced MR-GNI, the following data
misfit cost-functional is minimized at the th iteration of the al-
gorithm:

(12)

where the balanced MR (in the continuous domain) is given as

(13)

and and are the real and imaginary parts of the contrast
, respectively. The weighting is given as

(14)

Also, and are the real and imaginary parts of the
predicted contrast at the th iteration of the GNI algorithm. As
can be seen, the weight of is chosen to be times more
than that of so as to balance the contribution of these two
quantities in the multiplicative regularizer. We note that when
is chosen to be , will be the same as given in

(7).
As has been shown in [24], the real and imaginary parts of

the contrast are updated as and

, where the corrections and
can be found by solving the following equation:

(15)

As shown in [24], the pre-scaled gradient vector can be
conveniently written as

(16)

and the matrix as

(17)
The operator is the discrete form of the operator “

” [24].

C. Shape-and-Location Inversion

Assume that the imaging domain consists of contrast
values; each of which has a known contrast of , where

. Here, the goal is to find the spatial distribution
(shape-and-location) of these contrast values. To this end, we
construct the regularized cost-functional at the th
iteration of the inversion algorithm as [28]

(18)

where

(19)

The steering parameter is chosen to be

(20)
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In this method, the contrast is updated as
where the correction is found by solving the following

equation:

(21)

where is a vector of all ones. The matrix
is a diagonal matrix given as

(22)

where is the discretized form of

(23)

D. Balanced Shape-and-Location Inversion

If there is an imbalance between the average values of the
real and imaginary parts of the contrast, the shape-and-loca-
tion reconstruction may favor one. Therefore, in this paper, we
introduce a balanced shape-and-location reconstruction algo-
rithm, which can alleviate this problem. In the proposed bal-
anced shape-and-location reconstruction, we minimize the fol-
lowing cost-functional

(24)

The real and imaginary parts of the contrast are updated as
and ,

where the corrections and can be found by
solving the following equation:

(25)

By finding the first derivatives of the cost-functional, the pre-
scaled gradient vector can be conveniently written
as

(26)

and by finding the second derivatives of the cost-functional, the
matrix as

(27)

Fig. 2. Photograph of a bovine leg imaging plane during direct permittivity
measurement using a dielectric probe.

V. OIs

Using these four versions of the MR-GNI algorithm, the
complex dielectric properties of three different OIs are recon-
structed: 1) an excised bovine leg with its skin removed; 2) a
bovine leg with skin intact; and 3) two human forearms from
two different volunteers, one with a thin layer of adipose tissue
and one with a thick layer of adipose tissue.
The dielectric properties of the bovine leg tissues were mea-

sured directly using a dielectric probe. The direct dielectric mea-
surement enables us to validate the quantitative accuracy of the
reconstructed images. We refer to the bovine leg imaging as
the ex vivo imaging. These direct dielectric probe measurements
were performed immediately after the MWT data was collected
by cutting the bovine legs in half at the location of the imaging
plane. A photograph of the probe is shown in Fig. 2.
A schematic of the anatomy and a photograph of a bovine

leg are shown in Fig. 3(a) and (b). This anatomy consists of
many tiny veins and structures. For an accurate dielectric mea-
surement, our probe requires access to a minimum cross section
of 5 mm, thus we could only measure the permittivity of the
skin, bone, and flexor. The results are presented in Table II. The
in vivo experiments included the imaging of the human fore-
arms (left or right) of five volunteers who participated under
a University of Manitoba Biomedical Research Ethics Board
approved protocol. The forearm data were collected using the
system shown in Fig. 1 where each volunteer held their arm
inside the measurement enclosure parallel to the -axis [see
Fig. 1(d)]. The volunteers were able to remain stationary during
the data collection, approximately 1 min, by resting their upper
arm on the Plexiglas plate, which was placed on top of the
chamber.
Here, images for only two of the volunteers are presented.

Volunteer #1 has a thin layer of adipose tissue, whereas volun-
teer #4 has a thick layer of adipose tissue. These represent the
two extremes found in our subjects. Each volunteer’s forearm
was imaged using a 0.2-T E-scan MRI, with a forearm coil, im-
mediately after the MWT data was collected. In order to iden-
tify the MWT imaging plane in the 3-D MRI image, during the
MRI scan a vitamin E capsule was attached to each volunteer’s
forearm at the location of the MWT imaging plane. This capsule
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Fig. 3. (a) Anatomy of a bovine leg reproducedwith permission from [29, pp. 5,
9, 11]. (b) Photograph of a bovine leg used for imaging.

TABLE II
MEASURED RELATIVE COMPLEX PERMITTIVITY

OF BOVINE LEG

is clearly visible in the MRI images. During the MRI scan, the
volunteers were in supine position, resting their forearms on a
bed. Thus, the orientation of the arm during the MRI scan was
different than during the MWT data collection. The purpose of
theMRI image is to enable us to qualitatively validate ourMWT
images.

VI. IMAGING RESULTS

In this section, the reconstructed real and imaginary parts
of the permittivity of each OI is presented. The data for
each OI was collected in the frequency range from 0.4 to
1.4 GHz in 0.1-GHz steps. The best images were obtained
at frequencies in the range from 0.8 to 1.2 GHz with either
matching fluid, salt_12.5 or salt_15. For each OI, we present
the results from a blind inversion (Section IV-A), balanced
inversion (Section IV-B), shape-and-location reconstruction
(Section IV-C), and balanced shape-and-location reconstruction
(Section IV-D).
The balancing factor was set to 10 for the balanced recon-

structions. is usually calculated approximately as the ratio of
the average value of the real to imaginary parts of the contrast
value of the object. Changing the factor about the average
value may improve the imaging performance [24].

Fig. 4. Images of (left) and (right) of the skinless bovine leg,
matching fluid: salt_12.5, frequency of 0.8 GHz. First row: blind inversion,
second row: balanced inversion, third row: photograph of the imaging plane,
fourth row: shape-and-location inversion, and fifth row: balanced shape-and-lo-
cation inversion.

For the shape-and-location reconstructions, the algorithm re-
quires some prior information about the permittivities of the ob-
ject, as discussed in Sections IV-C and IV-D. Here, the -pa-
rameter is set to 3, which means three permittivity values were
given to the algorithm. Note that we have already studied the
effect of the number of contrast values on the image quality.
Providing more contrast values usually improves the imaging
results [28]. In the bovine leg experiment, the three permittivi-
ties are: 1) background medium; 2) bone; and 3) flexor. In the
forearm experiment, the three permittivities are: 1) background
medium; 2) bone; and 3) muscle. One way of supplying the
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Fig. 5. Images of (left) and (right) of the skinless bovine leg,
matching fluid: salt_12.5, frequency of 1.2 GHz. First row: blind inversion,
second row: balanced inversion, third row: photograph of the imaging plane,
fourth row: shape-and-location inversion, and fifth row: balanced shape-and-lo-
cation inversion.

known permittivities to the algorithm is to obtain them from the
literature. For instance, the permittivities of bone and muscle
are available in [21]. The other way to extract the prior permit-
tivity information is using the blind reconstruction. In this paper,
we used the latter method, using the blindly reconstructed im-
ages. For each tissue, such as bone, a point within the tissue re-
gion was randomly selected and its permittivity was then given
to the shape-and-location algorithm. Note that different point
locations provide different permittivity values. We tried dif-
ferent locations and the obtained images were similar, thus the

Fig. 6. Images of (left) and (right) of the bovine leg, matching
fluid: salt_12.5, frequency of 0.8 GHz. First row: blind inversion, second row:
balanced inversion, third row: a photograph of the imaging plane, fourth row:
shape-and-location inversion, and fifth row: balanced shape-and-location inver-
sion.

shape-and-location reconstruction is not very sensitive to these
values.

A. Skinless Bovine Leg

The imaging results of the skinless bovine leg at frequencies
of 0.8 and 1.2 GHz are shown in Figs. 4 and 5, respectively. A
photograph of the cross section at the imaging plane is also pre-
sented. Note that the imaging domain length is set to 15 cm due
to a relatively large sizes of the leg. Moreover, during plotting
of the real part of the images, the upper color limit was set to
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Fig. 7. Images of (left) and (right) of the bovine leg, matching
fluid: salt_12.5, frequency of 1.2 GHz. First row: blind inversion, second row:
balanced inversion, third row: a photograph of the imaging plane, fourth row:
shape-and-location inversion, and fifth row: balanced shape-and-location inver-
sion.

70, which is less than that of the real permittivity of the back-
ground matching fluid [ 76 (see Table I)]. The upper limit of
70 creates a uniform image background and is only applied for
displaying purposes.
Note that the modeling error is higher at 1.2 GHz than at

0.8 GHz because of the poorer performance of the dipole an-
tennas. The images obtained from blind inversions at 1.2 GHz
(Fig. 5) contain more artifacts and noise than those obtained at
0.8 GHz (Fig. 4).We present the imaging results at both frequen-
cies to show that enhancement of the images is possible from

Fig. 8. Images of (left) and (right) of volunteer 1’s forearm,
matching fluid: salt_15, frequency of 0.8 GHz. First row: blind inversion, second
row: balanced inversion, third row: MRI image at the imaging plane, fourth
row: shape-and-location inversion, and fifth row: balanced shape-and-location
inversion.

lower quality data, at 1.2 GHz, as well as from higher quality
data, at 0.8 GHz.

B. Bovine Leg

Similar to the skinless bovine leg, reconstructed images of
a bovine leg with skin at frequencies of 0.8 and 1.2 GHz are
shown in Figs. 6 and 7, respectively. The reconstructed real and
imaginary parts of the permittivity agree with the measured per-
mittivities in Table II. As for the skinless case, the imaging do-
main size is 15 cm.
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Fig. 9. Images of (left) and (right) of volunteer 4’s forearm,
matching fluid: salt_12.5, frequency of 0.8 GHz. First row: blind inversion,
second row: balanced inversion, third row: MRI image at the imaging plane,
fourth row: shape-and-location inversion, and fifth row: balanced shape-and-lo-
cation inversion.

Again the modeling error is higher at 1.2 GHz than 0.8 GHz.
Thus, the images obtained from a blind inversion at 1.2 GHz
(Fig. 7) contain more artifacts than those obtained at 0.8 GHz
(Fig. 6).

C. Human Forearm

The obtained images for volunteer #1 and #4 are shown in
Figs. 8 and 9, along with the respective MRI scan.

For the shape-and-location reconstruction, we presumed the
dielectric properties of and
at 0.8 GHz. Similar to the leg experiment, the color plots of the
real part of the permittivity is limited to 70, which is lower than
that of the background fluid. Here, the imaging domain length
is set to 10 cm.

VII. DISCUSSION AND CONCLUSION

In this study, we have utilized four different versions of the
MR-GNI algorithm to enhance the imaging of biological objects
using prior information. For the experimental part, we examined
two different objects for imaging: ex vivo bovine legs and in vivo
human forearms. For the bovine legs, we also presented directly
measured values of the complex permittivity of the tissues in the
imaging plane. For the human forearms, we presented the MRI
scans of the arm.
The images of the skinless bovine leg are shown in Figs. 4

and 5 at the frequencies of 0.8 and 1.2 GHz, respectively. The
0.8-GHz dataset is a higher quality dataset compared to the
1.2-GHz data. This shows up as many oscillations and noise in
the blindly reconstructed image at 1.2 GHz. We showed that
providing prior information enhances the performance of the
MR-GNI algorithm in all datasets. In the balanced shape-and-lo-
cation reconstruction (the last row of the images), these oscil-
lations were reduced. The different tissue types were clearly
discernible in all of the enhanced images. The average recon-
structed complex permittivity of the bone tissue is
at 1.2 GHz, which is very close to the measured permittivity
of . Similar behavior is observed for the flexor tissue.
Note that the matching fluid has penetrated into the skinless leg,
which is visible in the results of Figs. 4 and 5.
The images of the leg with intact skin are shown in Figs. 6

and 7 at the frequencies of 0.8 and 1.2 GHz, respectively. In
this case, the matching fluid did not penetrate into the leg, and
thus, the quality of the images is higher compared to the pre-
vious case (without the skin). As shown in the first and fourth
rows of Figs. 6 and 7, there are some oscillations and noise par-
ticularly in the imaginary part of the image. The first and fourth
rows correspond to the blind inversion and shape-and-location
inversion, respectively. The unwanted oscillations do not ap-
pear in the second and fifth rows in Figs. 6 and 7. These corre-
spond to the balanced inversion and balanced shape-and-loca-
tion inversion, respectively. Thus, the balancing enhancement
is an important prior information for removing unwanted os-
cillations. In all the objects, the oscillations vanished after ap-
plying the balancing factor. For the bovine leg with skin, again
the best image was obtained in the last row of the figures, which
corresponds to the balanced shape-and-location reconstruction.
The permittivity values of the bone and flexor tissue agree well
with the measured values in Table II. Note that we used both
types of bovine leg, with and without the skin, to experimen-
tally test what effect the skin layer has on the imaging results.
The exterior layer of most in vivo biomedical targets consists
of a skin layer followed by a fat layer. The skin has a high-per-
mittivity value, whereas the fat has a relatively low one. This
sharp change at the interface of these two layers is a challenge
for microwave image reconstruction. When using saltwater as
a background, the skin layer seems to be less of a problem than
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the fat layer. This can be seen from the images of the bovine
legs, with and without skin, which contained little or no fat and
are very well reconstructed.
The case is quite different for the human forearms where

more fat is situate under the skin layer. From the five volunteers,
we chose the two volunteers with the greatest difference in the
thickness of the adipose layer under the skin layer. The recon-
structed images for Volunteer #1 at 0.8 GHz, with a thin layer
of adipose tissue, are shown in Fig. 8. The first row of the figure
shows the blind inversion, which contains many oscillations and
artifacts. The imaginary part is not reconstructed well with dif-
ferent tissues such as the bones and muscles not distinguishable.
The second row in Fig. 8 shows the balancing enhancement. The
oscillations have vanished, however, the bone and muscle tis-
sues are still not clearly distinguishable. In the fourth row, using
the shape-and-location reconstruction, as for the bovine legs,
some oscillations appear, but the bone and muscle tissues are
clearly distinguishable. Finally, by combining the balancing en-
hancement and shape-and-location enhancement, shown in the
last row, the best image was produced. The results agree quali-
tatively with the MRI image.
Images for Volunteer #4 are shown in Fig. 9. The presence of

a relatively thick adipose tissue is the main challenge and this
shows up in the poorer quality of the images, as compared to
images for Volunteer #1’s, shown in Fig. 8. We have, however,
presented these results to show that the images are still enhanced
by utilizing the MR-GNI algorithm based on prior information.
Again, the best image was obtained in the last row. The bone
and muscle tissues are discernible, but the imaginary part does
not distinguish different tissues.
In conclusion, we have collected experimental biomedical

MWT data and showed the performance of three enhanced ver-
sions of the GNI inversion algorithm on inverting these data
sets. These enhanced algorithms introduce some prior informa-
tion into the MR-GNI algorithm, either: 1) the expected differ-
ence between the real and imaginary parts of the complex per-
mittivity of the tissue; 2) the expected permittivity values of a
number of tissues in the target; or 3) the combination of these
two enhancements. We refer to these three enhancements as
the balanced inversion, shape-and-location inversion, and bal-
anced shape-and-location inversion, respectively. This approx-
imate prior information can be obtained from the literature, or
as was done in this study, it can be obtained directly from a pre-
liminary quantitative blind inversion. Using both ex vivo exper-
imental data, as well as in-vivo human forearm scattering data,
we have shown that the resulting images can be significantly en-
hanced in this way.
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