Chapter 6

Finite Element Method

“Who is wise? He that learns from everyone.

Who is powerful? He that governs his passion.

Who is rich? He that is content.

Who is that? Nobody.” Benjamin Franklin

6.1 Introduction

The finite element method (FEM) has its origin in the field of structural analy-
sis. Although the earlier mathematical treatment of the method was provided by
Courant [1] in 1943, the method was not applied to electromagnetic (EM) problems
until 1968. Since then the method has been employed in diverse areas such as waveg-
uide problems, electric machines, semiconductor devices, microstrips, and absorption
of EM radiation by biological bodies.

Although the finite difference method (FDM) and the method of moments (MOM)
are conceptually simpler and easier to program than the finite element method (FEM),
FEM is a more powerful and versatile numerical technique for handling problems
involving complex geometries and inhomogeneous media. The systematic generality
of the method makes it possible to construct general-purpose computer programs for
solving a wide range of problems. Consequently, programs developed for a particular
discipline have been applied successfully to solve problems in a different field with
little or no modification [2].

The finite element analysis of any problem involves basically four steps [3]:

« discretizing the solution region into a finite number of subregions or elements,
* deriving governing equations for a typical element,
« assembling of all elements in the solution region, and

« solving the system of equations obtained.
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Discretization of the continuum involves dividing up the solution region into sub-
domains, called finite elements. Figure 6.1 shows some typical elements for one-,
two-, and three-dimensional problems. The problem of discretization will be fully
treated in Sections 6.5 and 6.6. The other three steps will be described in detail in the
subsequent sections.
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Figure 6.1

Typical finite elements: (a) One-dimensional, (b) two-dimensional, (c) three-
dimensional.

6.2 Solution of Laplace’s Equation

As an application of FEM to electrostatic problems, let us apply the four steps men-
tioned above to solve Laplace’s equation, V2V = 0. For the purpose of illustration,
we will strictly follow the four steps mentioned above.

6.2.1 Finite Element Discretization

To find the potential distribution V (x, y) for the two-dimensional solution region
shown in Fig. 6.2(a), we divide the region into a number of finite elements as il-
lustrated in Fig. 6.2(b). In Fig. 6.2(b), the solution region is subdivided into nine
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nonoverlapping finite elements; elements 6, 8, and 9 are four-node quadrilaterals,
while other elements are three-node triangles. In practical situations, however, it is
preferred, for ease of computation, to have elements of the same type throughout the
region. Thatis, in Fig. 6.2(b), we could have split each quadrilateral into two triangles
so that we have 12 triangular elements altogether. The subdivision of the solution
region into elements is usually done by hand, but in situations where a large number
of elements is required, automatic schemes to be discussed in Sections 6.5 and 6.6
are used.
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Figure 6.2
(a) The solution region; (b) its finite element discretization.

We seek an approximation for the potential V, within an element e and then interre-
late the potential distribution in various elements such that the potential is continuous
across interelement boundaries. The approximate solution for the whole region is

N
Vi y) =) Velx, ), 6.1)
e=1

where N is the number of triangular elements into which the solution region is divided.
The most common form of approximation for V, within an element is polynomial
approximation, namely,

Ve(x,y) =a+bx +cy (6.2)
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for a triangular element and
Ve(x,y) =a+bx +cy+dxy (6.3)

for a quadrilateral element. The constants a, b, ¢, and d are to be determined. The
potential V, in general is nonzero within element e but zero outside e. In view of
the fact that quadrilateral elements do not conform to curved boundary as easily as
triangular elements, we prefer to use triangular elements throughout our analysis in
this chapter. Notice that our assumption of linear variation of potential within the
triangular element as in Eq. (6.2) is the same as assuming that the electric field is
uniform within the element, i.e.,

E, = —VV, = — (ba, + cay) (6.4)

6.2.2 Element Governing Equations

Consider a typical triangular element shown in Fig. 6.3. The potential V,1, V2,
and V.3 at nodes 1, 2, and 3, respectively, are obtained using Eq. (6.2), i.e.,

Vel 1 x1 y1 I
Vo l|=|1x2 y»||b (6.5)
Ve3 L x3 y3] [c

The coefficients a, b and ¢ are determined from Eq. (6.5) as

_1 —
a 1 x1 y1 Vel
bl = |1 x » Vez (6.6)
c 1 x3 y3 | Ve3

Substituting this into Eq. (6.2) gives

(x2y3 — x3¥2) (x3y1 —x1y3) (X1y2 — X2)1)

1 Vel
Ve= [lx y]ﬂ (2 —y3) 3 —y1) 1 —y2) Ve2
V.
(x3 — x2) (x1 —x3) (x2 —x1) e
or
3
Vo= ai(x.y)Vei (6.7)
i=1
where
1
== [(x2y3 —x3y2) + (2 — y3) x + (x3 — x2) ¥] , (6.8a)
1
0= [(3yr —x1y3) + (3 —yD)x + (x1 —x3) ¥] (6.8b)
1
o3 = 5~ [(x1y2 —x2y1) + (1 — y2) x + (x2 —x1) y] , (6.8¢)
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and A is the area of the element e, i.e.,

1L x1 y1
2A =11 xp »

I x3 y3
= (x1y2 — x2y1) + (x3y1 — x1y3) + (x2y3 — X3)2)

or

1
A=5[(362—361)()’3—yl)—(X3—X1)(y2—Y1)] (6.9)

The value of A is positive if the nodes are numbered counterclockwise (starting from
any node) as shown by the arrow irt Fig. 6.3. Note that Eq. (6.7) gives the potential

y
VeS
(X3, ¥3)

Figure 6.3

Typical triangular element; local node numbering 1-2-3 must proceed counter-
clockwise as indicated by the arrow.

at any point (x, y) within the element provided that the potentials at the vertices are
known. This is unlike finite difference analysis, where the potential is known at the

grid points only. Also note that ¢; are linear interpolation functions. They are called
the element shape functions and they have the following properties [4]:

w=1b i (6.10a)
0, i#j

3
Zai(x, y) =1 (6.10b)
i=1

The shape functions o, g, and a3 are illustrated ir Fig. 6.4.
The functional corresponding to Laplace’s equation, V2V = 0, is given by

1 2 1 2
We=> | €lElPds = [ €VV.I*dS (6.11)
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Figure 6.4
Shape functions o, oy, and o3 for a triangular element.

(Physically, the functional W, is the energy per unit length associated with the element
e.) From Eq. (6.7),

3
VVe =Y VeiVa (6.12)

i=1

Substituting Eq. (6.12) into Eq. (6.11) gives

W, =

DD eV [/ Va; - Va, dS] Ve (6.13)

i=1 j=1

13
2 p—

If we define the term in brackets as

e = / Ve - Vay dS, (6.14)
we may write Eq. (6.13) in matrix form as
LV e®
W, = Ee[Ve] [C][Ve] (6.15)
where the superscript ¢ denotes the transpose of the matrix,
_Vel
[Vel = | Ve2 (6163—)
Ve3

and
[ ~(e) () ()
Ciy Ciy Cy5

[C“)] —|cc¥c (6.16b)

(e) ~(e) ~(e)
_C31 C32 C33
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The matrix [C©]is usually called the element coefficient matrix (or “stiffness matrix”

in structural analysis). The element Ci(?) of the coefficient matrix may be regarded as
the coupling between nodes i and j; its value is obtained from Eqs. (6.8) and (6.14).
For example,

cl = f Vai - Vaa dS

Similarly,

Also

1
= 1Az [(y2 = y3) (y3 — y1) + (x3 — x2) (x1 —X3)]/ ds

1
=1 [(y2 —y3) (3 — y1) + (x3 — x2) (x1 — x3)]

e 1
C§3) = 1A [(v2 —y3) 1 — y2) + (x3 —x2) (x2 — x1)]

¢ 1
cl = 2 [03 =3 1 = 32) + (1 = x3) (12 = x)]

1
i = (o2 =+ @ -]
1

) = [+ @ —x)?]

A
c“’)z—[( — )%+ (12 — x1)?
33 1A y1— )2 2 1

© _ @ O _ 0 e e
C21 - Cl2 ’ C31 - C13 ’ C32 - C23

6.2.3 Assembling of All Elements

(6.172)

(6.17b)
(6.17¢)
(6.17d)
(6.17¢)

(6.17f)

(6.18)

Having considered a typical element, the next step is to assemble all such elements
in the solution region. The energy associated with the assemblage of elements is

where

N
1
W= We=elVICIV]
e=1

Vi
\%}

vi=|Vs|,

Va
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n is the number of nodes, N is the number of elements, and [C] is called the overall or
global coefficient matrix, which is the assemblage of individual element coefficient
matrices. Notice that to obtain Eq. (6.19), we have assumed that the whole solution
region is homogeneous so that € is constant. For an inhomogeneous solution region
such as shown in Fig. 6.5, for example, the region is discretized such that each finite
element is homogeneous. In this case, Eq. (6.11) still holds, but Eq. (6.19) does
not apply since €(= €,€,) or simply €, varies from element to element. To apply
Eq. (6.19), we may replace € by ¢, and multiply the integrand in Eq. (6.14) by ¢,.

Yk

Medium 1

NALY

edium 2

Figure 6.5
Discretization of an inhomogeneous solution region.

The process by which individual element coefficient matrices are assembled to
obtain the global coefficient matrix is best illustrated with an example. Consider the
finite element mesh consisting of three finite elements as shown in Fig. 6.6. Observe

®

Figure 6.6

Assembly of three elements; i-j-k corresponds to local numbering (1-2-3) of the
element in Fig. 6.3.

the numberings of the mesh. The numbering of nodes 1, 2, 3, 4, and 5 is called global
numbering. The numbering i-j-k is called local numbering, and it corresponds with
1 - 2 - 3 of the element in Fig. 6.3. For example, for element 3 in Fig. 6.6, the
global numbering 3 - 5 - 4 corresponds with local numbering 1 - 2 - 3 of the element
in Fig. 6.3. (Note that the local numbering must be in counterclockwise sequence
starting from any node of the element.) For element 3, we could choose 4 - 3 - 5
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instead of 3 - 5 - 4 to correspond with 1 - 2 - 3 of the element in Fig. 6.3. Thus the
numbering in Fig. 6.6 is not unique. But whichever numbering is used, the global
coefficient matrix remains the same. Assuming the particular numbering in Fig. 6.6,
the global coefficient matrix is expected to have the form

Ci1 Ci2 Ci3 Ciu Cys
Cy1 Cp Co3 Coyq Cos
[Cl=|C31 C30 C33 C34 C3s (6.21)
Ca1 Cap Cy3 Cyq Cys
Cs1 Csp Cs3 Csyq Css

which is a 5 x 5 matrix since five nodes (n = 5) are involved. Again, C;; is the
coupling between nodes i and j. We obtain C;; by using the fact that the potential
distribution must be continuous across interelement boundaries. The contribution
to the i, j position in [C] comes from all elements containing nodes i and j. For
example, in Fig. 6.6, elements 1 and 2 have node 1 in common; hence

cn=cV+c (6.22a)
Node 2 belongs to element 1 only; hence

Cp =CY (6.22b)
Node 4 belongs to elements 1, 2, and 3; consequently

Cas = C3y +CF + ¢35 (6.22¢)
Nodes 1 and 4 belong simultaneously to elements 1 and 2; hence

Cia=Cy =C\y) +CF (6.22d)
Since there is no coupling (or direct link) between nodes 2 and 3,

Cxn=Cx»=0 (6.22¢)

Continuing in this manner, we obtain all the terms in the global coefficient matrix by
inspection of Fig. 6.6 as

r o~ (2) (1 (2) (1 (2) 7
Ciy +Ch C13 C2 Ch +C13 0
(1) (D (1)
C31 C33 0 C32 0
(2) (2) (3) (2) (3) (3)
G 0 Gy +Ch Gy +Cp5 Ci (6.23)

W, @ O @B Dy @, B O
C21 + C31 C23 C32 + C31 C22 + C33 + C33 C32

3 3) 3)
0 0 o € €y
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Note that element coefficient matrices overlap at nodes shared by elements and that
there are 27 terms (9 for each of the 3 elements) in the global coefficient matrix [C].
Also note the following properties of the matrix [C]:

(1) Itis symmetric (C;; = Cj;) just as the element coefficient matrix.

(2) Since C;; = 0 if no coupling exists between nodes i and j, it is expected that
for a large number of elements [C] becomes sparse. Matrix [C] is also banded
if the nodes are carefully numbered. It can be shown using Eq. (6.17) that

3 3
@ _ o ©
Y G =0=3"Cj;
i=1 =1

(3) Itissingular. Although this is not so obvious, it can be shown using the element
coefficient matrix of Eq. (6.16b).

6.2.4 Solving the Resulting Equations

Using the concepts developed in Chapter 4, it can be shown that Laplace’s equation
is satisfied when the total energy in the solution region is minimum. Thus we require
that the partial derivatives of W with respect to each nodal value of the potential be

Zero, i.e.,
ow . ow _ . ow _0
Vi _8V2_ _avn B
or
ow
A k=1,2,....n (6.24)
Vi

oW
For example, to get 77 0 for the finite element mesh of Fig. 6.6, we substitute

1
Eq. (6.21) into Eq. (6.19) and take the partial derivative of W with respect to V;. We

obtain
0= g_\v/[: =2ViC11 + VoCo + V3C13 + VaCra + V5Cy5
+ VoCa1 + V3C31 + VaCay + V5Csy
or
0=ViCy1 + VaCi2 + V3C13 + V4Crq + V5Cis (6.25)

ow
In general, — = 0 leads to
Vi

n
0= Z ViCix (6.26)
i=1
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where n is the number of nodes in the mesh. By writing Eq. (6.26) for all nodes
k=1,2,...,n, we obtain a set of simultaneous equations from which the solution
of [V]' = [V1, Va,..., V,] can be found. This can be done in two ways similar to
those used in solving finite difference equations obtained from Laplace’s equation in
Section 3.5.

(1) Iteration Method: Suppose node 1 in Fig. 6.6, for example, is a free node. From
Eq. (6.25),

5
1
Vi=——— E ViCii 6.27
1 Ciy — iC1i ( )

Thus, in general, at node k in a mesh with n nodes

Vi=——— > ViCu (6.28)

where node £ is a free node. Since Cy; = 0 if node k is not directly connected to
node i, only nodes that are directly linked to node k contribute to Vi in Eq. (6.28).
Equation (6.28) can be applied iteratively to all the free nodes. The iteration process
begins by setting the potentials of fixed nodes (where the potentials are prescribed
or known) to their prescribed values and the potentials at the free nodes (where the
potentials are unknown) equal to zero or to the average potential [5]

1
Vave = 5 (Vmin + Vmax) (6-29)

where Vinin and Viax are the minimum and maximum values of V at the fixed nodes.
With these initial values, the potentials at the free nodes are calculated using Eq. (6.28).
At the end of the first iteration, when the new values have been calculated for all the
free nodes, they become the old values for the second iteration. The procedure is
repeated until the change between subsequent iterations is negligible enough.

(2) Band Matrix Method: If all free nodes are numbered first and the fixed nodes
last, Eq. (6.19) can be written such that [4]

! Cpr Cy, } [Vf]
W=—€|V¢V, Jo=Jp ; (6.30)
2 [ ! p] |:Cpf Cop ] [Vp

where subscripts f and p, respectively, refer to nodes with free and fixed (or pre-
scribed) potentials. Since V), is constant (it consists of known, fixed values), we only
differentiate with respect to V¢ so that applying Egs. (6.24) to (6.30) yields

[Crr Cp] [“;ﬂ =0
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or

\ [Crel (Vi) ==[Crp] [Vi] \ 6.31)

This equation can be written as

[A][V] = [B] (6.322)
or

[V]=T[A]"'[B] (6.32b)
where [V] = [V(],[A] = [Cy],[B] = —[Cypl[V,]. Since [A] is, in general,

nonsingular, the potential at the free nodes can be found using Eq. (6.32). We can
solve for [V'] in Eq. (6.32a) using Gaussian elimination technique. We can also solve
for [V]in Eq. (6.32b) using matrix inversion if the size of the matrix to be inverted is
not large.

. . . . oV
It is sometimes necessary to impose Neumann condition (— = 0) as a boundary

n
condition or at the line of symmetry when we take advantage of the symmetry of the
problem. Suppose, for concreteness, that a solution region is symmetric along the

v
y-axis as in Fig. 6.7. We impose condition (8_ = 0) along the y-axis by making
x

Vi=Vy, Vu=Vs;, V=W (6.33)
y

1 2 3

' X

4 5 6

17 8 9

Figure 6.7
A solution region that is symmetric along the y-axis.

Notice that as from Eq. (6.11) onward, the solution has been restricted to a two-
dimensional problem involving Laplace’s equation, V2V = 0. The basic concepts
developed in this section will be extended to finite element analysis of problems
involving Poisson’s equation (V2V = —p,/e, V?A = —uJ) or wave equation
(V2® — y2® = 0) in the next sections.
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The following two examples were solved in [3] using the band matrix method; here
they are solved using the iterative method.

Example 6.1
Consider the two-element mesh shown in Fig. 6.8(a). Using the finite element
method, determine the potentials within the mesh. 1
M
4
Node (x,y)
T3 1(08,1.8)
2 (1.4,1.4)
1 V=10 3 (2.1,2.1)
T 4(1.2,2.7)
V=0 2
X
(a)
1 L1
Figure 6.8

For Example 6.1: (a) Two-element mesh, (b) local and global numbering at the
elements.

Solution
The element coefficient matrices can be calculated using Eqs. (6.17) and (6.18).
However, our calculations will be easier if we define

Pi=02—y3), Po=(3—y1), Pxs=0Q1—y2), (6.34)
Or=03—x2), QOr=(x1—x3), Q3=(x2—x1)

With P; and Q; (i = 1,2, 3 are the local node numbers), each term in the element
coefficient matrix is found as

1
©
Cii’ = 57 (PP + QiQ)) (6.35)
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1
where A = —(P> (03 — P30>). Itis evident that Eq. (6.35) is more convenient to use

than Eqs. (6.17) and (6.18). For element 1 consisting of nodes 1 - 2 - 4 corresponding
to the local numbering 1 - 2 - 3 as in Fig. 6.8(b),

Pr=-13, P=09, P;=04,
01=-02, 0,=-04, 03=06,

1
A= 5(0.54 +0.16) = 0.35

Substituting all of these into Eq. (6.35) gives

12357 —0.7786 —0.4571
[c“) — | —0.7786 0.6929 0.0857 (6.36)
—0.4571 0.0857 0.3714

Similarly, for element 2 consisting of nodes 2 - 3 - 4 corresponding to local num-
bering 1 - 2 - 3 as in Fig. 6.8(b),
pPr=-06, P,=13 P3;=-0.7,
01=-09, 0,=02, 03=07,
1
A= 5(0.91 +0.14) = 0.525

Hence

0.5571 —0.4571 —0.1
[c<2>]= —0.4571 0.8238 —0.3667 (6.37)
—0.1 —0.3667 0.4667

The terms of the global coefficient matrix are obtained as follows:

Co=C) +C? =0.6929 +0.5571 = 1.25
Cos = C3Y) + C? = 0.0857 — 0.1 = —0.0143
Cas = CY) + C? = 0.3714 4 0.4667 = 0.8381
Ca1 = CY)) = —0.7786

Cy = CY) = —0.4571

Ca1 = CS)) = —0.4571

Cy3 = CS) = —0.3667
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Note that we follow local numbering for the element coefficient matrix and global
numbering for the global coefficient matrix. Thus

oo 0o
W e R el
0o e
e el @ ek

[ 1.2357 —0.7786 0  —0.4571
| —0.7786 125 —0.4571 —0.0143 638)
- 0 —0.4571 0.8238 —0.3667 :

| —0.4571 —0.0143 —0.3667 0.8381

4 4
Note that Z Cij=0= Z C;j. This may be used to check if C is properly obtained.
i=1 j=1
We now apply Eq. (6.28) to the free nodes 2 and 4, i.e.,

1
Vo = ——— (ViCi2 4+ V3C32 + V4Ca2)
Cxn

1
Viy=——(ViCig 4+ V2Coq + V3C3q)
Cuq

or
1
V2 = =1z (~4571 - 0.0143Va) (6.39a)
- _ —0.143V, — 3.667 6.39b
Ve = ~058381 ¢ V2 ) (6.39%)

By initially setting V, = 0 = V4, we apply Eqgs. (6.39a), (6.39b) iteratively. The
first iteration gives Vo = 3.6568, V4 = 4.4378 and at the second iteration V, =
3.7075, V4 = 4.4386. Just after two iterations, we obtain the same results as those
from the band matrix method [3]. Thus the iterative technique is faster and is usually
preferred for a large number of nodes. Once the values of the potentials at the nodes are
known, the potential at any point within the mesh can be determined using Eq. (6.7).

Example 6.2
Write a FORTRAN program to solve Laplace’s equation using the finite element
method. Apply the program to the two-dimensional problem shown in Fig. 6.9(a).
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Figure 6.9

For Example 6.2: (a) Two-dimensional electrostatic problem, (b) solution region
divided into 25 triangular elements.

Solution

The solution region is divided into 25 three-node triangular elements with total number
of nodes being 21 as shown ir Fig. 6.9(b). This is anecessary step in order to have input
data defining the geometry of the problem. Based on the discussions in Section 6.2, a
general FORTRAN program for solving problems involving Laplace’s equation using
three-node triangular elements is developed as shown in Fig. 6.10. The development
of the program basically involves four steps indicated in the program and explained
as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the
only step that depends on the geometry of the problem at hand. Through a data file,
we input the number of elements, the number of nodes, the number of fixed nodes,
the prescribed values of the potentials at the free nodes, the x and y coordinates of
all nodes, and a list identifying the nodes belonging to each element in the order of
the local numbering 1 - 2 - 3. For the problem in Fig. 6.9, the three sets of data for
coordinates, element-node relationship, and prescribed potentials at fixed nodes are
shown in Tables 6.1, 5.2. anc. 6.3, respectively.
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Figure 6.10
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20

30

FINITE ELEMENT SOLUTION OF LAPLACE’S EQUATION FOR
TWO-DIMENSIONAL PROBLEMS
TRIANGULAR ELEMENTS ARE USED

THE UNKNOWE POTENTIALS ARE OBTAINED USING
ITERATION METHOD

§D = NO. OF NODES

NE = NO. OF ELEMERTS

NP = N0. OF FIXED NODES (WHERE POTENTIAL IS PRESCRIBED)
EDP(I) = NODE NO. OF PRESCRIBED POTEETIAL, I = 1,2,...KP
VAL(I)) = VALUE OF PRESCRIBED POTENTIAL AT ¥ODE NDP(I)
FL(I,J) = LIST OF NODES FOR EACH ELEMENT I, WHERE

LF(I) = LIST OF FREE NODES I = 1,2,...,NF=§D-NP

J =1, 2, 3 IS THE LOCAL KODE NUMBER

CE(I,J) = ELEMENT COEFFICIENT MATRIX

ER(I) = VALUE OF THE RELATIVE PERMITTIVITY FOR ELEMENT I
C(I,J) = GLOBAL COEFFICIENT MATRIX

X(I), Y(I) = GLOBAL COORDINATES OF NODE I

XL{J), YL(J) = LOCAL COORDIFATES OF NODE J = 1,2,3

V(I) = POTENTIAL AT NODE I

MATRICES P(I) AND Q(I) ARE DEFINED IN EQ.(6.1.1)

DIMENSION X(100), Y(100), €(100,100), CE(100,100)
DIMENSION FL(100,3), ¥DP(100), VAL(100),LF(100)
DIMENSION V(100),P(3),Q(3),XL(3),YL(3),ER(100)

LA L Y LT T

FIRST STEP - IKPUT DATA DEFINING GEOMETRY AND
BOURDARY CONDITIONS

L L e R P

NI = 50 ! NO. OF ITERATIOKS

READ(S,+) NE,ND, NP

READ(5,#)( I, ( NL(I,J), J=1,3),I=1,NE)

READ(5,#) (I, X(I), Y(I), I=1,¥D)

READ(5,*) ( EDP(I), VAL(I), I=1,NP)

PIE = 4.0%ATAN(1.0)

EO = 1.0E-9/(36.0+PIE)

PO 10 I=1,NE

ER(I) = 1.0

CONTINUE

REEKEEEEEEREXRNEE RN AR R R R R R EA R AR AR R R R R KK

SECOND STEP - EVALUATE COEFFICIENT MATRIX FOR EACH
ELEMENT AED ASSEMBLE GLOBALLY

E2 R 22 2 22 2 S R R 2 2 s 2 R e 2 S22 2222 2222 2% 3

DO 20 M =1, WD

DO 20 N=1,ED

C(M,¥) = 0.0

CONTINUE

D070 I =1, NE

FIND LOCAL COORDINATES XL(J), YL(J) FOR ELEMENT I

DO 30 J=1,3
K=NL(I,J)

XL(J) = X(K)

YL(J) = Y(K)
CONTINUE

P(1) = YL(2) - YL(3)
P(2) = YL(3) - YL(1)
P(3) = YL(1) - YL(2)
Q(1) = XL(3) - XxL(2)
Q(2) = IL(1) - XL(3)

Computer program for Example 6.2 (Continued).
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0063 Q(3) = xL(2) - XL(1)
0064 AREA = 0.5#ABS( P(2)*Q(3) - Q(2)+P(3) )

0065 C DETERMINE COEFFICIENT MATRIX FOR ELEMERT I

0066 DO 40 M=1,3

0067 DO 40 ¥=1,3

0068 CE(M,¥) = ER(I)*( P(M)*P(N) + Q(M)*Q(N) )/(4.0%AREA)
0069 40 CORTINUE

0070 C ASSEMBLE GLOBALLY - FIND C(I,J})

0071 DO 60 J=1,3

0072 IR = NL(I,1)

0073 DO 50 L=1,3

0074 IC = ¥L(I,L)

0075 C(IR,IC) = C(IR,IC) + CE(J,L)

0076 50 CONTINUE

0077 60 CONTINUE

0078 70 CONTINUE

0079 C EEEEEEES RS R R R R AR R RS R R RS R R R R R SRR KRR R R ARk &
0080 C THIRD STEP - SOLVE THE RESULTING SYSTEM

0081 [ ITERATIVELY

0082 C EEEEEREERE R R RR AR AR RS RN R AR R RNk kb bk bk kK k&
0083 C

0084 C INITIALIZE AKD DETERMIKE LF(I) - LIST OF FREE NODES I
0085 C

0086 NF = 0

0087 DO 120 I=1,ND

0088 vV(I) = 0.0

0089 DO 110 K=1 ,NP ! CHECK IF NODE I IS A PRESCRIBED NODE
0090 IF(I.EQ.NDP(K)) THEN

0091 V(I) = VAL(K)

0092 print *, i, v(i)

0093 GO TO 120

0094 ERDIF

0095 110 CONTINUE

0096 NF = §F + 1

0097 LF(NF) = I ' IF I IS EOT A PRESCRIBED NODE, IT IS FREE
0098 120 CONTINUE

0099 PRINT *,EF,ND-NP,’CHECK IF THESE ARE EQUAL’

0100 C

0101 C NOW, APPLY ITERATIVE METHOD

0102 [

0103 b0 150 ¥ = 1,NI

0104 b0 140 I = 1,WF

0105 SUM = 0.0

0106 K = LF(I)

0107 DO 130 J=1,¥D

0108 IF(J.EQ.K) GO TO 130

0109 SUM = SUM + V(J)*C(J,K)

0110 130 CONTINUE

0111 V(K) = - SUM/C(K,K) ! APPLIES ONLY TO FREE NODES

0112 140 CONTINUE
0113 150 CONTINUE

0114 C S Lty
0115 [ FOURTH STEP - FINALLY OUTPUT THE RESULTS

0116 C LR L T T LTI
0117 WRITE(6,170) KD, NE, NP

0118 DO 160 I=1,HD

0119 WRITE(6,*)I, X(I),Y(1),v(I)

0120 160  CONTINUE
0121 170  FORMAT(2X,’NO. OF NODES = ’>,I3,2X,’NO. OF ELEMENTS =7,

0122 1 13,2X,’NO. OF FIXED NODES = ’,I3,/)
0123 STOP
0124 END

Figure 6.10

(Cont.) Computer program for Example 6.2.
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Table 6.1 Nodal Coordinates of the
Finite Element Mesh in Fig. 6.9

Node x y Node x y

1 0.0 0.0 12 0.0 04
2 02 0.0 13 02 04
3 04 0.0 14 04 04
4 0.6 0.0 15 0.6 04
5 0.8 0.0 16 0.0 0.6
6 1.0 0.0 17 02 0.6
7 00 02 18 0.4 0.6
8 02 02 19 0.0 0.8
9 04 02 20 02 08
10 06 02 21 0.0 1.0
11 08 0.2

Table 6.2 Element-Node Identification

Local node no. Local node no.
Element 1 2 3 Element 1 2 3
1 1 2 7 14 9 10 14
2 2 8 7 15 10 15 14
3 2 3 8 16 10 11 15
4 3 9 8 17 12 13 16
5 3 4 9 18 13 17 16
6 4 10 9 19 13 14 17
7 4 5 10 20 14 18 17
8 5 11 10 21 14 15 18
9 5 6 11 22 16 17 19
10 7 8 12 23 17 20 19
11 8 13 12 24 17 18 20
12 8 9 13 25 19 20 21
13 9 14 13

Step 2: This step entails finding the element coefficient matrix [C©)] for each element
and using the terms to form the global matrix [C].

Step 3: At this stage, we first find the list of free nodes using the given list of
prescribed nodes. We now apply Eq. (6.28) iteratively to all the free nodes. The
solution converges at 50 iterations or less since only 6 nodes are involved in this case.
The solution obtained is exactly the same as those obtained using the band matrix
method [3].

Step 4: This involves outputting the result of the computation. The output data for
the problem in Fig. 6.9 is presented in Table 6.4. The validity of the result in Table 6.4
is checked using the finite difference method. From the finite difference analysis, the
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Table 6.3 Prescribed Potentials at

Fixed Nodes
Prescribed Prescribed
Node potential Node potential
1 0.0 18 100.0
2 0.0 20 100.0
3 0.0 21 50.0
4 0.0 19 0.0
5 0.0 16 0.0
6 50.0 12 0.0
11 100.0 7 0.0
15 100.0

Table 6.4 Output Data of the
Program in Fig. 6.10. No. of
Nodes = 21, No. of Elements =
25, No. of Fixed Nodes = 15

Node X Y Potential
1 0.00 0.00 0.000
2 0.20 0.00 0.000
3 0.40 0.00 0.000
4 0.60 0.00 0.000
5 0.80 0.00 0.000
6 1.00 0.00 50.000
7 0.00 0.20 0.000
8 0.20 0.20 18.182
9 0.40 0.20 36.364
10 0.60 0.20 59.091
11 0.80 0.20  100.000
12 0.00 0.40 0.000
13 0.20 0.40 36.364
14 0.40 0.40 68.182
15 0.60 0.40 100.000
16 0.00 0.60 0.000
17 0.20 0.60 59.091
18 0.40 0.60  100.000
19 0.00 0.80 0.000
20 0.20 0.80  100.000
21 0.00 1.00 50.00




potentials at the free nodes are obtained as:

Vs = 1541, Vo =126.74, Vio=56.69,
Vi3 = 34.88, Via=65.41, Vi3 =5872V

Although the result obtained using finite difference is considered more accurate in this
problem, increased accuracy of finite element analysis can be obtained by dividing the
solution region into a greater number of triangular elements, or using higher-order
elements to be discussed in Section 6.8. As alluded to earlier, the finite element
method has two major advantages over the finite difference method. Field quantities
are obtained only at discrete positions in the solution region using FDM; they can
be obtained at any point in the solution region in FEM. Also, it is easier to handle
complex geometries using FEM than using FDM. |

6.3 Solution of Poisson’s Equation
To solve the two-dimensional Poisson’s equation,

&
€

ViV = - (6.40)
using FEM, we take the same steps as in Section 6.2. Since the steps are essentially
the same as in Section 6.2 except that we must include the source term, only the major
differences will be highlighted here.

6.3.1 Deriving Element-governing Equations

After the solution region is divided into triangular elements, we approximate the
potential distribution V,(x, y) and the source term o5, (for two-dimensional prob-
lems) over each triangular element by linear combinations of the local interpolation
polynomial ¢, i.e.,

3
Vo= Veicti(x, y) (6.41)
i=1

3
Pse = Y Peii(X, ) (6.42)
i=1

The coefficients V,; and p,;, respectively, represent the values of V and py at vertex i
of element e as in Fig. 6.3. The values of p,; are known since p;(x, y) is prescribed,
while the values of V,; are to be determined.
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From Table 4.1, an energy functional whose associated Euler equation is Eq. (6.40)
is

1
F(V,) = 5/5 [e YV, — 2pseve] ds (6.43)

F (V,) represents the total energy per length within element e. The first term under the

. .1 . . .
integral sign, =D - E = —€|VV,|%, is the energy density in the electrostatic system,

while the second term, pg. V,dS, is the work done in moving the charge p;5.dS to its
location at potential V,. Substitution of Egs. (6.41) and (6.42) into Eq. (6.43) yields

3
1
F(Ve) =3 Z €Vei [f Va; - Votde] Vej

Vgi |:/ Qi dSi| Pej

F o) = e[V [CO1ve] = [V [7)nd] (6:44)

[\

-

=]]
3

i=1 j=1

]«

This can be written in matrix form as

where
c = f Va; - Va, dS (6.45)
which is already defined in Eq. (6.17) and
g@:/m%ds (6.46)

It will be shown in Section 6.8 that

(6.47)

ro_ ANz iz
i ae i=j

where A is the area of the triangular element.

Equation (6.44) can be applied to every element in the solution region. We obtain
the discretized functional for the whole solution region (with N elements and n nodes)
as the sum of the functionals for the individual elements, i.e., from Eq. (6.44),

N
1
F(V) = E F(Ve) = EE[V]t[C][V] — [VI'[T]lp] (6.48)
e=1

where ¢ denotes transposition. In Eq. (6.48), the column matrix [V] consists of the
values of V,;, while the column matrix [ o] contains n values of the source function pg
at the nodes. The functional in Eq. (6.48) is now minimized by differentiating with
respect to V,; and setting the result equal to zero.
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6.3.2 Solving the Resulting Equations

The resulting equations can be solved by either the iteration method or the band
matrix method as discussed in Section 6.2.4.

Iteration Method: Consider a solution region in Fig. 6.6 having five nodes so that
n = 5. From Eq. (6.48),

Ci Cn - Ci5][W
1 Cay Cn -+ G| | V2
F=§6[V1V2~~V5] . . .
Cs1 Csp -+ Css| | Vs
T T - Tis|[m
Ty T - Ts||p
ViV Vsl : : (6.49)
Isi T, -+ Ts5] | ps
We minimize the energy by applying
oF
— =0, k=12,...,n (6.50)
oV

oF
From Eq. (6.49), we get P 0, for example, as
1

88—51 =e[ViCi1 + V2Co1 + -+ -+ VsCs1] — [Tiip1 + Taip2 + - - + T5105] = 0
or
1 g
R DI GIEE 3 (651)
Thus, in general, for a mesh with n nodes
1 1 ¢
Ve=-go i:%;k ViCui + o ; Tii pi (6.52)

where node k is assumed to be a free node.

By fixing the potential at the prescribed nodes and setting the potential at the free
nodes initially equal to zero, we apply Eq. (6.52) iteratively to all free nodes until
convergence is reached.

Band Matrix Method: If we choose to solve the problem using the band matrix
method, we let the free nodes be numbered first and the prescribed nodes last. By
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doing so, Eq. (6.48) can be written as

_1 CrrCrp||Vr Trr Trp | | pr
P = 56 [Vf Vp] |:Cpf CoplLVp N [Vf Vp] Tpr Tpp | [ Pp (033

Minimizing F (V) with respectto V¢, i.e.,

OF
vy
gives
0=e(CrrVy+CppVp) = (Trror + Trppp)
or

[CA V) == [Cn) Wl + £ Tl [of) + < [Tl lon]| - 639

This can be written as
[Al[V] = [B] (6.55)

where [A] = [Cyr], [V] = [Vy] and [B] is the right-hand side of Eq. (6.54). Equa-
tion (6.55) can be solved to determine [V] either by matrix inversion or Gaussian
elimination technique discussed in Appendix D. There is little point in giving ex-
amples on applying FEM to Poisson’s problems, especially when it is noted that the
difference between Egs. (6.28) and (6.52) or Egs. (6.54) and (6.31) is slight. See [19]
for an example.

6.4 Solution of the Wave Equation
A typical wave equation is the inhomogeneous scalar Helmholtz’s equation
V2o 4+ kD =g (6.56)

where @ is the field quantity (for waveguide problem, ® = H, for TE mode or E,
for TM mode) to be determined, g is the source function, and k = w,/ji€ is the
wave number of the medium. The following three distinct special cases of Eq. (6.56)
should be noted:

(i) k =0 = g: Laplace’s equation;
(i1) k = 0: Poisson’s equation; and

(iii) k is an unknown, g = 0: homogeneous, scalar Helmholtz’s equation.
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We know from Chapter 4 that the variational solution to the operator equation
Ld=g (6.57)
is obtained by extremizing the functional
I(®)=<L,®o>-2<d,g> (6.58)

Hence the solution of Eq. (6.56) is equivalent to satisfying the boundary conditions
and minimizing the functional

[(®) = %// [|Vd>|2 2ol +2<Dg] ds (6.59)

If other than the natural boundary conditions (i.e., Dirichlet orhomogeneous Neumann
conditions) must be satisfied, appropriate terms must be added to the functional as
discussed in Chapter 4.

We now express potential ® and source function g in terms of the shape functions
«; over a triangular element as

3
Cox,y) = ) i (6.60)
i=1
3
ge(X,¥) = ) igei 6.61)
i=1

where ®,; and g,; are, respectively, the values of ® and g at nodal point i of element
e.
Substituting Egs. (6.60) and (6.61) into Eq. (6.59) gives

3
1(d,) = % DD eid // Vo - Va; dS
3
Z D, D //aiaj as
=1
3
Z cDeigej /f a,»aj ds

e roled < (@] r9l6] 6o

where [@,] = [®,1, P2, Pe3l’, [Gel = [gel, ge2, ge3]', and [C@] and [T®] are
defined in Egs. (6.17) and (6.47), respectively.
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Equation (6.62), derived for a single element, can be applied for all N elements in

the solution region. Thus,

N
(@) =) "1(®,)
e=1
From Egs. (6.62) and (6.63), 1 (®) can be expressed in matrix form as

1 k>
I(P) = §[®]I[C][d>] - ?[fb]’[T][d)] + [@[T][G]
where

[@] = [®1, D2, ..., PN],
[G]Z[gl7g2""7gN]l b

(6.63)

(6.64)

(6.652)
(6.65b)

[C], and [T] are global matrices consisting of local matrices [C®] and [T©], re-

spectively.

Consider the special case in which the source function g = 0. Again, if free nodes

are numbered first and the prescribed nodes last, we may write Eq. (6.64) as

! Crr Cy ] |:<Df}
I =—-|drd P
2 [ / p] |:Cpf Cpp @,

k2 Trr Ty | [®
e 01| T .pr f]
2 [ ! p] |:Tpf Tpp || Pp

equal to zero gives

. al
Setting 5D
f

) ) )
[Crr Crp] [cpﬂ —k* [Ty Ty [dj =0
For TM modes, ®, = 0 and hence
[Cff — szff] Dp= 0

Premultiplying by Tf_fl gives

77/ Crr —K1]@r =0

Letting

A=T;/Crr, K =1 X=a
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(6.68)

(6.69)

(6.70a)



we obtain the standard eigenproblem

(A—ADX =0 (6.70b)

where [ is a unit matrix. Any standard procedure [7] (or see Appendix D) may
be used to obtain some or all of the eigenvalues A1, Az, ..., A, f and eigenvectors
X1, X2,..., X, IS where n 7 is the number of free nodes. The eigenvalues are always
real since C and T are symmetric.

Solution of the algebraic eigenvalue problems in Eq. (6.70) furnishes eigenvalues
and eigenvectors, which form good approximations to the eigenvalues and eigenfunc-
tions of the Helmholtz problem, i.e., the cuttoff wavelengths and field distribution
patterns of the various modes possible in a given waveguide.

The solution of the problem presented in this section, as summarized in Eq. (6.69),
can be viewed as the finite element solution of homogeneous waveguides. The idea
can be extended to handle inhomogeneous waveguide problems [8]-[11]. However,
in applying FEM to inhomogeneous problems, a serious difficulty is the appearance of
spurious, nonphysical solutions. Several techniques have been proposed to overcome
the difficulty [12]-[18].

Example 6.3

To apply the ideas presented in this section, we use the finite element analysis to
determine the lowest (or dominant) cutoff wavenumber k. of the TM|; mode in
waveguides with square (a x a) and rectangular (a x b) cross sections for which the
exact results are already known as

ke = \/(mn/a)z + (nm/b)?

where m = n = 1.

It may be instructive to try with hand calculation the case of a square waveguide
with 2 divisions in the x and y directions. In this case, there are 9 nodes, 8 triangular
elements, and 1 free node (ny = 1). Equation (6.68) becomes

Cii —k*Ty =0

where C11 and T7; are obtained from Eqgs. (6.34), (6.35), and (6.47) as

el m—a Al
11_2A5 11_ ) - 8
Hence
K= a_z - 2
2A2 42
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or

ka = 5.656

which is about 27% off the exact solution. To improve the accuracy, we must use
more elements.

The computer program in Fig. 6.11 applies the ideas in this section to find k.. The
main program calls subroutine GRID (to be discussed in Section 6.5) to generate the
necessary input data from a given geometry. If n, and n, are the number of divisions in
the x and y directions, the total number of elements n, = 2n,n,. By simply specifying
the values of a, b, n,, and ny, the program determines k. using subroutines GRID,
INVERSE, and POWER or EIGEN. Subroutine INVERSE available in Appendix D
finds TECI required in Eq. (6.70a). Either subroutine POWER or EIGEN calculates
the eigenvalues. EIGEN finds all the eigenvalues, while POWER only determines the
lowest eigenvalue; both subroutines are available in Appendix D. The results for the
square (¢ = b) and rectangular (b = 2a) waveguides are presented in Tables 6.5a
and 6.5b, respectively.

Table 6.5 (a) Lowest
Wavenumber for a Square
Waveguide (b = a)

ny ne kea % error

2 8 5.656 27.3

3 18  5.030 132

5 50 4.657 4.82

7 98 4553 247

10 200 4.497 1.22

Exact: kca = 4.4429, ny = ny

Table 6.5 (b) Lowest
Wavenumber for a Rectangular
Waveguide (b = 2a)

ny ne kea % error

2 16  4.092 16.5

4 64 3.659 4.17

6 144 3.578 1.87

8 256 3.549 1.04

Exact: kca = 3.5124, ny = 2ny
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0060
0061

Figure 6.11

(ol L e T T T
FINITE ELEMENT SOLUTION OF THE WAVE EQUATION
TRIANGULAR ELEMENTS ARE USED

D N0. OF NODES

NE NO. OF ELEMENTS

§L(I,D) LIST OF BODES FOR EACH ELEMENT I, WHERE
CE(I,D ELEMERT COEFFICIENT MATRIX

c(1I,n GLOBAL COEFFICIENT MATRIX

X(I), Y(I) = GLOBAL COORDINATES OF NODE I

XL(J), YL(J) = LOCAL COORDINATES OF KODE J = 1,2,3
MATRICES P(I) AND Q(I) ARE DEFINED IN¥ EQ.(9)

LF(I) = LIST OF FREE NODES

ALAM(I) = CONTAINS EIGENVALUES

aaoaaoaoaaaoaoaaan

DIMENSION C(400,400), CE(400,400),LF(400)

DIMEESION V(400), P(3), Q(3), XL(3), YL(3)

DIMENSION T(400,400), A(400,400), ALAM(400)

COMMON X(400),Y(400),DX(50),DY(50),NL(400,3) ,¥DP(400)

L R Y
FIRST STEP - INPUT DATA DEFINING GEOMETRY AND
BOUNDARY COEDITIONS (USE SUBROUTINE GRID)
B T T R P Y
PRINT *, ’INPUT NX’
READ(5,*) EX

aacgaa

NY = 2.0+BX
AL = 1.0
BB = 2.0

DELTAX = AA/FLOAT(NX)
DELTAY = BB/FLOAT(NY)
DO 10 I=1,NMX
DX (I)=DELTAX
10 CONTINUE
D0 20 I=1,NY
DY (I)=DELTAY
20 CONTINUE
CALL GRID(HEX,NY,ED,NE,NP)
EEEER SRR AR LR R R R REREEER R R AR R RN RN RN R R A KRS R kX
SECORD STEP - EVALUATE COEFFICIEET MATRIX FOR EACH
ELEMENT AND ASSEMBLE GLOBALLY
FEREEE RS EA B RSB RN TR AR R RN AR R R AR R AR SRR R ARk N Rk b
DO 30 M =1, ED
DO 30 ¥=1,ED
c(M,X) = 0.0
30 CONTINUE
DO8OI =1
DO 40 J=1,3
K=NL(I,J)
IL(J) = X(K)
YL(J) = Y(K)
40 CONTINUE
P(1) = YL(2) - YL(3)

aaaan

, NE

P(2) = YL(3) ~ YL(1)

P(3) = YL(1) - YL(2)

Q(1) = XL(3) - XL(2)

Q(2) = XL(1) - XL(3)

Q(3) = 1L(2) - XL(1)

AREA = 0.5+ABS( P(2)#*Q(3) - Q(2)+P(3) )

C DETERMINE COEFFICIENT MATRIX FOR ELEMENT I

DG 50 M=1,3

Computer program for Example 6.3 (Continued).
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0062 DO 50 ¥=1,3

0063 CE(M,K) = ( P(M)+P(N) + Q(M)+Q(N) )/(4.0%AREA)
0064 50 CONTINUE

0065 C ASSEMBLE GLOBALLY - FIND C(I,J) AND T(I,J)
0066 DO 70 J=1,3

0067 IR = ¥L(I,J)

0068 DO 60 L=1,3

0069 IC = NL(I,L)

0070 C(IR,IC) = C(IR,IC) + CE(J,L)

0071 IF(J.EQ.L) THEN

0072 T(IR,IC) = T(IR,IC) + AREA/6.0

0073 GO TO 60

0074 ELSE

0075 T(IR,IC) = T(IR,IC) + AREA/12.0

0076 ENDIF

0077 60 CONTINUE
0078 70 CONTINUE
0079 80 CONTINUE

0080 PRINT *, 'C AND T HAVE BEEN CALCULATED’
0081 C L Ty P T T T sals]
0082 o} THIRD STEP - SOLVE THE RESULTING SYSTEM
0083 C L L Y e LR AT
0084 C DETERMINE LF(I) - LIST OF FREE NODES

0085 NF =0

0086 DO 100 I=1,ED

0087 DG 90 K=1,KP ! CHECK IF BODE I IS PRESCRIBED
0088 IF(I . EQ.BDP(K)) GO TO 100

0089 90 CONTINUE

0090 NF = HF + 1

0091 LF(NF) = I ¢ NODE I IS FREE

0092 100 COETINUE

0093 PRINT *,NF ND-NP,’ CHECK IF TEESE ARE EQUAL’
0094 C

0096 Cc FROM GLOBAL C AND T, FIND C_ff AND T_ff

0096 C

0097 DO 110 I=1,NF

0098 DO 110 J=1 ,NF

0099 C(I,J) = C(LF(I),LF(J))

0100 T(I,J) = T(LF(I),LFQ1))

0101 110 COBTINUE

0102 NMAX = 400

0103 CALL IBVERSE(T,NF,NMAX)

0104 DO 120 I = 1,NF

0105 D0 120 J = 1,BF

0106 DO 120 K=1,NF

0107 ACT,J) = A(T,1) + T(I,K)*C(K,J)

0108 120 CORTINUE

0109 C CALL INVERSE(A,BF,HMAX)

0110 €  CALL POWER(A,ALAMBDA,X KNMAX,NF,IT)
0111 CALL EIGEN(A,X,NMAX HF,ALAM)

0112 C BEERESBEERABREERARNRER AR LR R R RS F R AR RS RS R AR R AR SRR bR
0113 o} FOURTH STEP - OUTPUT THE RESULTS

0114 C FEERERERNEI KRB R SRR R R AR R AR R AR R B R AR RN R R R R K&
0115 WRITE(6,130) HD,NE,6NP

0116 130 FORMAT(2X,’E0. OF NODES = ’,I3,2X,°K0. OF ELEMENTS =7
0117 1 I3,2X,’H0. OF PRESCRIBED NODES’®,I3,/)

0118 C  AK = 1.0/SQRT(ALAMBDA)
0119 C  WRITE (6,+)NX, Y, AK,IT

Figure 6.11
(Cont.) Computer program for Example 6.3 (Continued).
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0120 DO 140 I=1,N§F

0121 ALAM(I) = SQRT{( ALAM(I) )
0122 PRINT *,I ALAM(I)

0123 WRITE(6,%) I, ALAM(I)

0124 140 CONTINUE

0125 STOP

0126 E¥D

Figure 6.11
(Cont.) Computer program for Example 6.3.

6.5 Automatic Mesh Generation I — Rectangular Domains

One of the major difficulties encountered in the finite element analysis of con-
tinuum problems is the tedious and time-consuming effort required in data preparation.
Efficient finite element programs must have node and element generating schemes,
referred to collectively as mesh generators. Automatic mesh generation minimizes
the input data required to specify a problem. It not only reduces the time involved
in data preparation, it eliminates human errors introduced when data preparation
is performed manually. Combining the automatic mesh generation program with
computer graphics is particularly valuable since the output can be monitored visually.
Since some applications of the FEM to EM problems involve simple rectangular
domains, we consider the generation of simple meshes [19] here; automatic mesh
generator for arbitrary domains will be discussed in Section 6.6.

Consider a rectangular solution region of size a x b as in Fig. 6.12. Our goal is
to divide the region into rectangular elements, each of which is later divided into
two triangular elements. Suppose n, and n, are the number of divisions in x and y
directions, the total number of elements and nodes are, respectively, given by

ne = 2nyny

ng =y + 1) (ny +1) (6.71)

Thus it is easy to figure out from Fig. 6.12 a systematic way of numbering the elements
and nodes. To obtain the global coordinates (x, y) for each node, we need an array
containing Ax;,i =1,2,...,nyand Ay;, j = 1,2, ..., ny, which are, respectively,
the distances between nodes in the x and y directions. If the order of node numbering
is from left to right along horizontal rows and from bottom to top along the vertical
rows, then the first node is the origin (0,0). The next node is obtained as x — x + Ax|
while y = 0 remains unchanged. The following node has x — x + Ax,, y =0, and
so on until Ax; are exhausted. We start the second next horizontal row by starting
with x =0, y = y 4+ Ay; and increasing x until Ax; are exhausted. We repeat the
process until the last node (ny + 1)(n, + 1) is reached, i.e., when Ax; and Ay; are
exhausted simultaneously.

The procedure presented here allows for generating uniform and nonuniform
meshes. A mesh is uniform if all Ax; are equal and all Ay; are equal; it is nonuni-
form otherwise. A nonuniform mesh is preferred if it is known in advance that the
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Figure 6.12
Discretization of a rectangular region into a nonuniform mesh.

parameter of interest varies rapidly in some parts of the solution domain. This al-
lows a concentration of relatively small elements in the regions where the parameter
changes rapidly, particularly since these regions are often of greatest interest in the
solution. Without the preknowledge of the rapid change in the unknown parameter,
a uniform mesh can be used. In that case, we set

Axy=Axp=---=hy
Ayr = Ay, =---=hy (6.72)

where hy = a/ny, and hy = b/n,.

In some cases, we also need a list of prescribed nodes. If we assume that all
boundary points have prescribed potentials, the number 1, of prescribed node is
given by

np=2 (nx + ny) (6.73)

A simple way to obtain the list of boundary points is to enumerate points on the
bottom, right, top, and left sides of the rectangular region in that order.

The ideas presented here are implemented in the subroutine GRID in Fig. 6.13.
The subroutine can be used for generating a uniform or nonuniform mesh out of a
given rectangular region. If a uniform mesh is desired, the required input parameters
are a, b, ny, and ny. If, on the other hand, a nonuniform mesh is required, we need
to supply ny,ny, Ax;,i = 1,2,...,ny, and Ay;, j = 1,2,...,n,. The output
parameters are n, nq, np, connectivity list, the global coordinates (x, y) of each
node, and the list of prescribed nodes. It is needless to say that subroutine GRID is
not useful for a nonrectangular solution region. See the program in Fig. 6.11 as an
example on how to use subroutine GRID. A more general program for discretizing a
solution region of any shape will be presented in the next section.
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Figure 6.13

SUBROUTINE GRID

THIS PROGRAM DIVIDES A RECTANGULAR DOMAIX INTO

TRIANGULAR ELEMENTS (BX BY NY NOEUEIFORM

MESH IE GENERAL)

NX & Y ARE THE B0 S OF SUBDIVISION ALCEG X & Y AXES

NE = B0. OF ELEMENTS IF THE MESH

D N0 . OF NODES IN THE MESH

| 13 ¥0. OF BOUKDARY (PRESCRIBED) NODES

X(I) & Y(I) ARE GLOBAL COORDINATES OF ¥ODE I

DX(I) & DY(I) ARE DISTANCES BETWEEN NODES ALONG X & Y AXES

FL(I,]) IS THE LIST OF NODES FOR ELEMENT I, J=1,2,3 ARE
LOCAL NUMBERS

EDP(I) = LIST OF PRESCRIBED NODES I

REF: J. N. REDDY, "AN INTRODUCTION TO THE FINITE ELEMERT

METHOD", NEW YORK: MCGRAW-HILL, 1984, P. 436.

SUBROUTINE GRID(NX,NY,¥D,NE,NP)
COMMON X(400),Y(400),DX(50),DY(50),¥1.(400,3) ,EDP(400)

CALCULATE EE, ND, AND FKP

NE=2+NXsNY
§P = 2+(¥X + FY)
NX1=NX + 1
BYi=KY + 1
NXX1=2+KX
RYY1=2+KY
ND=NX1+§Y1

DETERMIKE NL(I,J) STARTING FROM LEFT BOTTOM CORKER

NL(1,1)=1

NL(1,2)=KX1 + 2
NL(1,3)=BX1 + 1
NL(2,1)=1

WL(2,2)=2

NL(2,3)=KX1 + 2

X=3

DO 50 IY=1,NY

L=IY*NXX1

M=(IY - 1)+NXX1

IF(NX EQ.1) GO TO 30
DO 20 W=K,L,2

D0 10 I=1,3
NL(K,I)=NL(N-2.1) + 1
NL(E+1,T)=NL(N-1,I) + 1
CONTINUE

IF(NY.EQ.1) GO TO 50
D0 40 I=1,3
NL(L+1,T)=NL(M+1,1) + NX1
NL(L+2,1)=NL(M+2,I) + NX1
X=L + 3

DETERMINE X(I) AND Y(I)

L=0

Subroutine GRID (Continued).
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0060 YC=0.0

0061 DO 80 J=1,NY1

0062 XC=0.0

0063 DO 70 I=1,NX1

0064 L=L + 1

0065 X(L)=XC

0066 Y(L)=YC

0067 70 XC=XC + DX(I)

0068 80 YC=YC + DY(J])

0069 [

0070 C  DETERMINE ¥DP(I)

0071 [

0072 ¥ =0

0073 DO 90 K=1,NX1

0074 ¥ =¥+1

0075 HDP(X) = X

0076 90 CONTINUE ! BOTTOM SIDE
0077 DO 100 K=1,HY

0078 ¥ = §+1

0079 EDP(K) = NDP(N-1) + EX1
0080 100 CONTINUE ! RIGHT SIDE
0081 DO 110 K=1,KX

0082 N=N+1

0083 KDP(K) = NDP(N-1) - 1
0084 110 CONTINUE ! TOP SIDE
0085 DO 120 K=1,NY-1

0086 ¥F=0+1

0087 NDP(N) = NDP(N-1) - ¥X1
0088 120 CONTINUE ! LEFT SIDE
0089 WRITE(6,*) NE,ND,NP
0090 DO 130 I=1,NE

0091 WRITE(6,*) I,( ¥L(I,J),6J=1,3)
0092 130 COBTINUE

0093 DO 140 I=1,ND

0094 WRITE(6,*) I,X(I),Y(I)
0095 140 CONTINUE

0096 DO 150 I=1,KP

0097 WRITE(6,*) NDP(I)

0098 150 CONTINUE

0099 RETURN

0100 END

Figure 6.13
(Cont.) Subroutine GRID.

6.6 Automatic Mesh Generation II — Arbitrary Domains

As the solution regions become more complex than the ones considered in Sec-
tion 6.5, the task of developing mesh generators becomes more tedious. A number of
mesh generation algorithms (e.g., [21]-[33]) of varying degrees of automation have
been proposed for arbitrary solution domains. Reviews of various mesh generation
techniques can be found in [34, 35].

The basic steps involved in a mesh generation are as follows [36]:

« subdivide solution region into few quadrilateral blocks,

« separately subdivide each block into elements,
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 connect individual blocks.

Each step is explained as follows.

6.6.1 Definition of Blocks

The solution region is subdivided into quadrilateral blocks. Subdomains with dif-
ferent constitutive parameters (o, i, €) must be represented by separate blocks. As
input data, we specify block topologies and the coordinates at eight points describing
each block. Each block is represented by an eight-node quadratic isoparametric ele-
ment. With natural coordinate system (¢, 1), the x and y coordinates are represented
as

8

X(@m) =) i@, nxi (6.74)
i=1
8

Y@ =Y ai(g. ) yi (6.75)
i=1

where «; (¢, ) is a shape function associated with node i, and (x;, y;) are the coordi-
nates of node i defining the boundary of the quadrilateral block as shown iri Fig. 6.14.
The shape functions are expressed in terms of the quadratic or parabolic isoparametric
elements shown in Fig. 6.15. They are given by:

ai:%(1+§§i)(1+7777i)(§§i+77’7i+1), i=13,57 (6.76)
for corner nodes,
ai = 57 (4260 (1)
+%n?(1+nni+1)(1 —¢?),  i=24638 (6.77)
for midside nodes. Note the following properties of the shape functions:

(1) They satisfy the conditions

> ei(c ) =1 (6.782)
i=1
Lo
o (cj,nj)={0 i #j. (6.78b)

(2) They become quadratic along element edges ({ = 1, n = £1).
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Figure 6.14
Typical quadrilateral block.
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n=1
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=148
¢ T=1 ¢
1 2 3

(-1.-1) n=-1

Figure 6.15
Eight-node Serendipity element.

6.6.2 Subdivision of Each Block

For each block, we specify N DIV X and N DIV'Y, the number of element sub-
divisions to be made in the ¢ and n directions, respectively. Also, we specify the
weighting factors (W;); and (W)); allowing for graded mesh within a block. In
specifying N DIV X, N DIVY, W, , and W), care must be taken to ensure that the sub-
division along block interfaces (for adjacent blocks) are compatible. We initialize ¢
and 7 to a value of —1 so that the natural coordinates are incremented according to

2 (W),
=0 l 6.79
GGt T (6.79)
2(Wy),
= (6.80)
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where

NDIVX

wi= > (We); (6.81a)
j=1
NDIVX

W) = Z (W), (6.81b)
j=1

and
Fo {1, for linear elements

2, for quadratic elements

Three element types are permitted: (a) linear four-node quadrilateral elements,
(b) linear three-node triangular elements, (c) quadratic eight-node isoparametric ele-
ments.

6.6.3 Connection of Individual Blocks

After subdividing each block and numbering its nodal points separately, it is nec-
essary to connect the blocks and have each node numbered uniquely. This is ac-
complished by comparing the coordinates of all nodal points and assigning the same
number to all nodes having identical coordinates. That is, we compare the coordi-
nates of node 1 with all other nodes, and then node 2 with other nodes, etc., until
all repeated nodes are eliminated. The listing of the FORTRAN code for automatic
mesh generation is shown in Fig. 6.16; it is essentially a modified version of the one
in Hinton and Owen [36]. The following example taken from [36] illustrates the
application of the code.

Example 6.4
Use the code in Fig. 6.16 to discretize the mesh in Fig. 6.17. I

Solution

The input data for the mesh generation is presented in Table 6.6. The subroutine
INPUT reads the number of points (NPOIN) defining the mesh, the number of
blocks (NELEM), the element type (NNODE), the number of coordinate dimen-
sions (NDIME), the nodes defining each block, and the coordinates of each node in
the mesh. The subroutine GENERATE reads the number of divisions and weighting
factors along ¢ and n directions for each block. It then subdivides the block into
quadrilateral elements. At this point, the whole input data shown in Table 6.6 have
been read. The subroutine TRIANGLE divides each four-node quadrilateral element
across the shorter diagonal. The subroutine OUTPUT provides the coordinates of
the nodes, element topologies, and material property numbers of the generated mesh.
For the input data in Table 6.6, the generated mesh with 200 nodes and 330 elements
is shown in Fig. 6.18. I
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0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033

Figure 6.16

CEXRXXXERER RS SR AR SRR R ST R AR A AR R R R AR AR IR KRR R KRR KA E
C THIS PROGRAM PERFORMS A MESH GEEERATION OF AN
C ARBITRARY SOLUTION DOMAIN USIEG A SYSTEMATIC
C APPROACH. A FEW POINTS ARE GIVEN TO DETERMIBE
C THE GENERAL COEFIGURATION OF THE REGION.
C THEN THE PROGRAM AUTOMATICALLY GENERATES
C TRIANGULAR OR QUADRILATERAL ELEMENTS
C REFERENCE: HINTON AND OWEE [36]
CHESX XA XASARRRREEER AR RS S KB ERRRARER DR K NBR R K R EE KR ®
IMPLICIT INTEGER (I-N)
IMPLICIT REAL (4-E,0-2)
COMMOE /MESH1/COORD(1500,2) ,BL(750,8) ,HATEO(750),
1 SHEAPE(9) ,NP ,NELEM, NTYPE,EDIME,MEODE

C THIS SUBROUTINE ACCEPTS DATA DEFINING THE SOLUTION REGION
CALL INPUT

C THIS SUBROUTINE UEDERTAKES THE MESH SUBDIVISION
CALL GENERATE

C THIS SUBROUTIKE SUBDIVIDES INTO TRIAEGULAR ELEMENTS
IF(NTYPE EQ.3)CALL TRIAKGLE

C THIS SUBROUTIBE OUTPUTS THE GENERATED MESH
C THE SUBROUTINE DOES NOT BEED TO BE CALLED IF A PLOTTING
C SUBROUTINE USED IN DISPLAYIEG THE OUTPUT

CALL OUTPUT

STOP

END

CrES AR RSB AR R RS S S A SRR AR AR AR AR R RN R R AR R AR R SRR N
THIS SUBROUTINE ACCEPTS THE DATA WHICH DEFINES THE
SOLUTION REGION OUTLINE AND THE MATERIAL ZONES
¥P = NUMBER OF COORDINATE POINTS DEFINING THE
SOLUTION REGION
NELEM = FUMBER OF BLOCKS OR ZONES
ETYPE = THE TYPE OF ELEMENT INTO WHICH THE
STRUCTURE IS TO BE SUBDIVIDED
NDIME = THE NUMBER OF COORDINATE DIMENSIOES

FOR A PLANE EDIME=2
NUMEL = BLOCK NUMBER
( BL(NUMEL,INODE),INODE=1,NTYPE) )=THE
BLOCK TOPOLOGY DEFINITION
MATNO(NUMEL) THE MATERIAL IDENTIFICATION NUMBER:
INPUT SPECIFICATION FOR EACH BLOCK
JPOIN = POINT NUMBER
(COORD(JPOI,IDIME) ,IDIME=1,EDIME)=X&Y COORDINATES

acaoaoaoaocaoaoaaoaoaoaoaaoaaaa

SUBROUTINE INPUT
COMMON /MESH1 /COORD(1500,2) ,KL(750,8) ,
1MATNO(750) ,SHAPE(9) ,NP ,KELEM ,KTYPE ,NDIME ,MNODE
DATA LEODE/8/

READ(S,+) NP,NELEM,NTYPE,NDIME

DO 10 IELEM=1,NELEM

READ(S,*) NUMEL,( NL(NUMEL,I), I=1,LNODE ),

1 MATNO (FUMEL)
10 CONTIEUE

DO 20 IPOIE=1,EP

READ(S5,+)JPOIN, ( COORD(JPOIN,I), I=1,NDIME )
20 CONTIBUE

RETURK

END

FORTRAN code for automatic mesh generation (Continued).
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Figure 6.16

C*

aaaoaaoaaan

aaan

10

20

30

40
C
C
Cc

C
C
C

50

60

AR e T T P
THIS SUBROUTINE UNDERTAKES TBE SUBDIVISIOE OF EACH
BLOCK AND ELIMINATES COMMON NODES ALONG BLOCK INTERFACES
KBLOC = BLOCK NUMBER

EDIVI/NDIVY = NUMBER OF ELEMENTS IN THE ZETA/ETA
DIRECTION INTO WBEICH THE BLOCK IS TO BE SUBDIVIDED
WEITX(IDIVX) AND WEITHY = WEIGHTING FACTORS

SUBROUTINE GERERATE
DIMEESION WEITX(40) ,WEITY(40),TCORD(81,2),

THODS (50,8) ,
1TMATO (50) ,LREPN(350) ,LASOC(350) ,LFINN(350) ,LFASC(350)
COMMON/MESH1/COORD(1500,2) ,NL(750,8) ,MATRO(750),
1SHAPE(9) ,¥P ,NELEM,¥TYPE,¥DIME ,MNODE
DATA MREPN/350/,MPOIN/1500/,LNODE/8/

INITIALIZATION SECTION

DO 10 IREPE=1,6MREPN
LREPN(IREPX)=0

NPONT=KP

NBLOC=NELEM

NP=0

NELEN=0

MNODE=4

IF(NTYPE EQ.8)MNODE=8
KEODE=MKODE/4

FNODE=KEODE

DO 20 IPONT=1,NPONT

DO 20 IDIME=1,NDIME

TCORD(IPONT ,IDIME)=COORD (IPONT, IDIME)
DO 30 IPOIN=1,MPOIN

DC 30 IDIME=1,KDIME
COORD(IPOIN,IDIME)=0.0

DO 40 IBLOC=1,NBLOC

TMATO (IBLOC)=MATNO(IBLOC)

DD 40 INODE=1,LNODE

THODS (IBLOC,INODE)=NL(IBLOC, INDDE)

READ AND WRITE BLOCK SUBDIVISION DATA

DO 170 IBLOC=1,NBLOC
READ(5,*)KBLOC,NDIVX ,EDIVY

READ(5,*) ( WEITX(IDIVX), IDIVX=1,KDIVX )
READ(5,) ( WEITY(IDIVY), IDIVY=1,EDIVY )

DIVIDE EACH BLOCK INTO ELEMENTS

TOTAL=0.0

DO 50 IDIVK=1 ,NDIVX

IF(WEITX(IDIVX) .EQ.0.0)WEITX(IDIVX)=1.0
TOTAL=TOTAL+WEITX(IDIVX)
INORM=2.0/TOTAL

TOTAL=0.0

DO 60 IDIVY=1,NDIVY
IF(WEITY(IDIVY) .EQ.O0 .O)WEITY(IDIVY)=1.0
TOTAL=TOTAL+WEITY(IDIVY)
YNORM=2.0/TOTAL

NXTWO=EDIVX*KNODE+1

EYTWO=NDIVY+KNODE+1

IASEY=0

ETASP=-1.0

(Cont.) FORTRAN code for automatic mesh generation (Continued).
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Figure 6.16

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

0120
0121
0122
0123
0124

70

80

90

100
110
120
130
140
150
160

170
C

KVETY=0

DO 160 IYTWO=1,NYTWO

IASEY=IASEY+1

IF(NTYPE.NE.8. AND.IASEY.EQ.3)IASEY=2

IF(NTYPE .EQ.8.AND .IASEY EQ.4)IASEY=2

IASEX=0

EXISP=-1.0

KWETX=0

DO 130 IXTWO=1,NXTWO

TASEX=TASEX+1

IF(NTYPE .NE .8 AND .IASEX.EQ.3)IASEX=2

IF(NTYPE .EQ.8.AND .IASEX.EQ.4)IASEX=2

NP=KP+1

CALL SHAPEF (EXISP,ETASP)

DO 70 INODE=1,LEODE

JTEMP=TRODS (IBLOC,INODE)

DO 70 IDIME=1,NDIME

COORD (NP ,IDIME)=COORD(NP,IDIME) +
SHAPE (INODE) *TCORD(JTEMP, IDIME)

GO TO (80,90) KNODE

IF(IASEX.NE.2.0R.IASEY .NE.2)GO TO 100

NELEM=NELEM+1

JPOIN=NP~-BXTWO

NL(NELEM,1)=JPOIN-1

NL(NELEM,2)=JPOIN

NL(NELEM,3)=N§P

NL(NELEM,b4)=NP-1

MATNO (NELEM)=TMATO(IBLOC)

IF(IASEX.NE.3.0R.IASEY.NE.3)GO TO 100

NELEM=NELEM+1

IPOIN=NP-IXTWO-NDIVX+(IXTW0-1)/2

JPOIN=NP-NXTWO-NDIVX-1

NL(NELEM,1)=JPOIK-2

NL(NELEM,2)=JPOIK-1

NL(NELEM,3)=JPOIN

NL(NELEM,4)=IPOIN

NL(NELEM,5)=NP

NL(NELEM,6)=NP-1

NL(NELEM,7)=NP-2

NL(NELEM,8)=IPOIN-1

MATNO(NELEM)=TMATO(IBLOC)

CONTINUE

GO TO (110,120) ,KKODE

KWETX=KWETX+1

GO TO 130

IF(KONTX.LT.0) KWETX=KWETX + 1

KONTX=KONTX*(-1)

EXISP=EXISP+XNORM*WEITX(KWETX) /FNODE

GO TO (140,150) ,KNODE

KWETY=KWETY+1

GO TO 160

IF(KONTY.LT.O) KWETY=KWETY + 1

KONTY=KONTY*(-1)

ETASP=ETASP+YNORM+*WEITY(KWETY) /FEODE

CONTIRUE

C ELIMINATE REPEATED NODES AT BLOCK INTERFACES

[

NREPE=0

DO 210 IPOIN=1,EP

IF(NREPN .EQ.0)GO TO 190

DO 180 IREPN=1,NREPK

IF(IPOIN .EQ.LREPN(IREPN))GO TO 210

(Cont.) FORTRAN code for automatic mesh generation (Continued).
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0125 180 CONTINUE
0126 190 CONTINUE

0127 LPOIN=IPOIN+1

0128 DO 200 JPONT=LPOIK,NP

0129 TOTAL=ABS(COORD(IPOIN,1)~COORD(JPONT,1)) +
0130 1 ABS(COORD(IPOIN,2)-COORD(JPONT,2))
0131 IF(TOTAL.GT.0.00001)G0 TO 200

0132 NREPN=NREPN+1

0133 LREPE (EREPY)=JPONT

0134 LASOC(NREPE)=IPOIN

0135 200  CONTINUE
0136 210  CONTINUE

0137 IF(WREPK.EQ.0)GO TO 360

0138 INDEX=0

0139 DO 240 IPOIN=1,KP

0140 DO 220 IREPN=1,EREPN

0141 IF(LREPN (IREPN) .EQ.IPOIN)GO TO 230
0142 220  CONTINUE

0143 GO TO 240

0144 230  INDEX=INDEX+1

0145 LFINN (INDEX)=LREPN(IREPN)

0146 LFASC(INDEX)=LASOC(IREPN)

0147 240  CONTINUE

0148 DO 250 IREPE=1,NREPN

0149 LREPN (IREPK)=LFINN(IREPR)

0150 250  LASOC(IREPN)=LFASC(IREPY)

0151 DO 260 IREPN=1,NREPX

0152 DO 260 1ELEM=1,¥ELEM

0153 DO 260 INODE=1,MEODE

0154 IF(NL(IELEM,INODE) .EQ.LREPN (IREPN))
0155 1¥L(IELEM,INODE)=LASOC(IREPN)

0156 260  CONTINUE

0157 DO 310 IPOIN=1,NP

0158 DO 270 IREPE=1,NREPN

0159 IF(IPOIN EQ.LREPN(IREPN)) GO TO 310
0160 270  CONTINUE

0161 IF(IPOIN.LT.LREPN(1))G0O TO 310
0162 IDIFF=IPOIN-EREPX

0163 IF(IPOIN.GT.LREPN(NREPN))GO TO 290
0164 DO 280 IREPN=1,NREPN

0165 KREPN=NREPN-IREPN+1

0166 280 IF(IPCIN.LT.LREPN(KREPN))IDIFF=IPOIN-KREPE+1
0167 290 DO 300 IDIME=1 ,NDIME

0168 300 COORD (IDIFF,IDIME)=COORD(IPOIN,IDIME)

0169 310  CONTIRUE

0170 DO 350 IELEM=1,BELEM

0171 DO 350 INODE=1,MNODE

0172 NPOSI=NL(IELEM,INODE)

0173 DO 320 IREPE=1,NREPK

0174 IF(NPOSI.EQ.LREPK(IREPK))GO TO 350
0175 320  CONTINUE

0176 IF(BPOSI.LT.LREPN(1))GO TO 350
0177 IDIFF=NPOSI-NREPK

0178 IF(NPOSI .GT.LREPN(NREP¥))GO TO 340
0179 DO 330 IREPN=1,NREPX

0180 KREPE=NREPN-IREPN+1

0181 330 IF(NPOSI.LT.LREPN(KREPN))IDIFF=NPOSI-KREPE+1
0182 340 NL(IELEM,INODE)=IDIFF

0183 350 CORTINUE

0184 360 CONTIRUE

0185 NP=NP-NREPE
0186 RETURN
0187 END

Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation. (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation. (Continued).
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C THIS SUBROUTINE EVALUATES THE SHAPE FUNCTIONS

[o

SUBROUTINE SHAPEF(S,T)
COMMON/MESH1/COORD(1500,2) ,KL(750,8) ,
1MATNO(750) ,SHAPE(9) ,BP ,NELEM ,NTYPE , EDIME ,MNODE

SHAPE(1)=0.25#(1.0-S)*(1.0-T)*(~-S-T-1.0)
SBAPE(2)=0.5#(1.0-S*S)*(1.0-T)
SHAPE(3)=0.25%(1.0+S5)*(1.0-T)*(S-T-1.0)
SHAPE(4)=0.5%(1.0-T*T)*(1.0+S)
SHAPE(5)=0.25#(1.0+S)*(1.0+T)*(S+T-1.0)
SHAPE(6)=0.5%(1.0-5%S5)*(1.0+T)
SHAPE(7)=0.25#(1.0-5)#(1.0+T)*(~S+T-1.0)
SHAPE(8)=0.5%(1.0-T*T)*(1.0-S)

RETURE

END

CHESEIRREERS AR RN ERRBR R RS RS RE BN R SRR SRR SRR RS S

aaaao

10

20

[

THIS SUBROUTINE SUBDIVIDES EACH 4-NODED
QUADRILATERAL ELEMEET INTO TWO TRIABGULAR
ELEMENTS:THE SUBDIVISION IS DONE ACROSS THE
SHORTER DIAGONAL

SUBROUTINE TRIANGLE

DIMENSION CORDE(4,2) ,LTEMP(4)

COMMON/MESH1/ COORD(1500,2) ,NL(750,8),
1MATNO(750) ,SHAPE(9) , NP ,NELEM,NTYPE ,NDIME , MEODE

KOUNT=0

DO 10 IELEM=1,NELEM
NOTAL=NELEM+IELEN
MATNO(NOTAL)=MATNO(IELEM)

DO 10 INODE=1,MNODE

NL(NOTAL ,INODE)=NL(IELEM,INODE)

DO 40 IELEM=1,BELEM
EOTAL=NELEM+IELEM

DO 20 INODE=1,MEODE

IKDEX=NL (EOTAL ,INODE)

LTEMP (INODE) =INDEX

DO 20 IDIKE=1,NDIME
CORDE(INODE,IDIME)=COORD(IKDEX,IDIME)
DIAG1=SQRT ((CORDE(1,1)-CORDE(3,1))##+2 +

1 (CORDE(1,2)-CORDE(3,2))#++2)
DIAG2=SQRT((CORDE(2,1)-CORDE(4,1)) %2 +
1 (CORDE(2,2)-CORDE(4,2))%%2)

C DIVIDE ACROSS THE SHORTER DIAGONAL

Cc

DIFER=DIAG1-DIAG2
IF(DIFER.GT.1.0E-9)GO TO 30
KOUNT=KOUNT+1
NL(XOUNT,1)=LTEMP(1)
EL(KOUNT,2)=LTEMP(2)
NL(KOUNT,3)=LTEMP(3)

MATNO (KOUNT)=MATNO(NOTAL)
KOUNT=KOUNT+1
NL(KOUNT,1)=LTEMP (1)
BL(KOUNT,2)=LTEMP(3)
BL(KOUNT,3)=LTEMP (4)

MATNO (KOUNT) =MATNO(NOTAL)
GO TO 40



0045 30 KOUNT=KOUNT+1

0046 NL(KOUNT,1)=LTEMP(1)

0047 JL(KOUNT,2)=LTEMP(2)

0048 ¥L(KOUNT,3)=LTEMP(4)

0049 MATNO (KOUNT)=MATNO(NOTAL)
0050 KOUNT=KOURT+1

0051 NL(KOUNT,1)=LTEMP(2)

0052 NL(KOUNT,2)=LTEMP(3)

0053 NL(KOUNT,3)=LTEMP(4)

0054 MATNO (KOUNT)=MATNO(NOTAL)
0055 40 CONTINUE

0056 NELEM=2+NELEM

0057 RETURN

0058 END

0001 CEERR BRI ERR SRR R AR AR R R R R ERRE SRR KRR R R R R R R K

0002 C THIS SUBROUTINE OUTPUTS THE COORDINATES AND
0003 C ELEMENT TOPOLOGIES OF THE GENERATED MESH

0004 C
0005 SUBROUTINE OUTPUT
0006 COMMON/MESH1/ COORD(1500,2) ,HL(750,8),
0007 1 MATNO(750) ,SHAPE(9) ,NP,NELEM ,NTYPE,KDIME ,MEODE
0008 C
0009 WRITE(6,#)§P ! TOTAL NO. OF POINTS
0010 WRITE(6,*)NELEM ! TOTAL NO. OF ELEMEKRTS
0011 DO 10 IPOIN=1,NP
0012 10  WRITE(6,*)IPOIN,( COORD(IPOIN,I), I=1,NDIME )
0013 DO 20 IELEM=1,NELEM
0014 20 WRITE(6,*)IELEM, (NL(IELEM,I),I=1,NTYPE) ,MATHO(IELEM)
0015 RETURK
0016 END
Figure 6.16

(Cont.) FORTRAN code for automatic mesh generation.

y
2 27 28 29 30
u O©
22
21 23
169(3) 17 184 (D919 (6 20
13 15
14
n @
¢ 7 8 9 10

Figure 6.17
Solution region of Example 6.4.
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Figure 6.18
The generated mesh corresponding to input data in Table 6.6.

6.7 Bandwidth Reduction

Since most of the matrices involved in FEM are symmetric, sparse, and banded,
we can minimize the storage requirements and the solution time by storing only the
elements involved in half bandwidth instead of storing the whole matrix. To take the
fullest advantage of the benefits from using a banded matrix solution technique, we
must make sure that the matrix bandwidth is as narrow as possible.

If we let d be the maximum difference between the lowest and the highest node
numbers of any single element in the mesh, we define the semi-bandwidth B (which
includes the diagonal term) of the coefficient matrix [C] as

B={+1f (6.82)

where f is the number of degrees of freedom (or number of parameters) at each node.
If, for example, we are interested in calculating the electric field intensity E for a
three-dimensional problem, then we need E,, E,, and E; at each node, and f = 3
in this case. Assuming that there is only one parameter per node,

B=d+1 (6.83)
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Table 6.6 Input Data for Automatic Mesh Generation for

the Solution Region in Fig. 6.17
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The semi-bandwidth, which does not include the diagonal term, is obtained from
Eq. (6.82) or (6.83) by subtracting one from the right-hand side, i.e., for f = 1,

B=d (6.84)

Throughout our discussion in this section, we will stick to the definition of semi-
bandwidth in Eq. (6.84). The total bandwidth may be obtained from Eq. (6.84) as
2B + 1.

The bandwidth of the global coefficient matrix depends on the node numbering.
Hence, to minimize the bandwidth, the node numbering should be selected to min-
imize d. Good node numbering is usually such that nodes with widely different
numbers are widely separated. To minimize d, we must number nodes across the
narrowest part of the region.

Consider, for the purpose of illustration, the mesh shown in Fig. 6.19. If the mesh
is numbered originally as in Fig. 6.19, we obtain d, for each element e as

di=2,dy=3,d3=4,dys=5,d5=6,ds =7 (6.85)

From this, we obtain

d = maximum d, =7

or
B =17 (6.86)
4 5
®
3 @ 6
®
2 @ 7
®
1 @ 8
Figure 6.19

Original mesh with B = 7.
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Alternatively, the semi-bandwidth may be determined from the coefficient matrix,

which is obtained by mere inspection of Fig. 6.19 as

B=7

123456738

1[x x x ]

21 x x x X X

3 X X X X

4 X X X X
[C]_S X x x

6 X X X X X

7 X X X X

8_xx x|

(6.87)

where x indicates a possible nonzero term and blanks are zeros (i.e., C;; = 0, indicat-
ing no coupling between nodes i and j). If the mesh is renumbered as in Fig. 6.20(a),

di=4=d =dys =ds = ds = dg

and hence
d = maximum d, =4
or
B=4
4 8 7 8
® ®
3 @ 7 5 @ 6
® ®
2 O 6 3 @ 4
® ®
1 @ 5 1 @ 2
(a) (b)
Figure 6.20

Renumbered nodes: (a) B =4, (b) B =2.
Finally, we may renumber the mesh as in Fig. 6.20(b). In this case
di =2 =dy =d3y =dy =ds = dg
and

d = maximum d, =2

© 2001 by CRCPRESSLLC

(6.88)

(6.89)

(6.90)

(6.91)



or
B=2 (6.92)

The value B = 2 may also be obtained from the coefficient matrix for the mesh in
Fig. 6.20(b), namely,

B=2
—
P Q
123456738
1 [xxx ]
2 1 xxx x
3 {xxxxx
[C]l= 4 X X X X (6.93)
5 X X X X X
6 xx x x x| R
7 X X X X
8 L x x x| S

From Eq. (6.93), one immediately notices that [C] is symmetric and that terms are
clustered in a band about the diagonal. Hence [C] is sparse and banded so that only
the data within the area PQRS of the matrix need to be stored—a total of 21 terms
out of 64. This illustrates the savings in storage by a careful nodal numbering.

For a simple mesh, hand-labeling coupled with a careful inspection of the mesh (as
we have done so far) can lead to a minimum bandwidth. However, for a large mesh,
a hand-labeling technique becomes a tedious, time-consuming task, which in most
cases may not be successful. It is particularly desirable that an automatic relabeling
scheme is implemented within a mesh generation program. A number of algorithms
have been proposed for bandwidth reduction by automatic mesh renumbering [37]—
[40]. A simple, efficient algorithm is found in Collins [37].

6.8 Higher Order Elements

The finite elements we have used so far have been the linear type in that the shape
function is of the order one. A higher order element is one in which the shape function
or interpolation polynomial is of the order two or more.

The accuracy of a finite element solution can be improved by using finer mesh or
using higher order elements or both. A discussion on mesh refinement versus higher
order elements is given by Desai and Abel [2]; a motivation for using higher order
elements is given by Csendes in [41]. In general, fewer higher order elements are
needed to achieve the same degree of accuracy in the final results. The higher order
elements are particularly useful when the gradient of the field variable is expected
to vary rapidly. They have been applied with great success in solving EM-related
problems [4], [41]-[46].
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6.8.1 Pascal Triangle

Higher order triangular elements can be systematically developed with the aid of the
so-called Pascal triangle given in Fig. 6.21. The family of finite elements generated
in this manner with the distribution of nodes illustrated in Fig. 6.22. Note that in
higher order elements, some secondary (side and/or interior) nodes are introduced in
addition to the primary (corner) nodes so as to produce exactly the right number of
nodes required to define the shape function of that order. The Pascal triangle contains
terms of the basis functions of various degrees in variables x and y. An arbitrary
function ®;(x, y) can be approximated in an element in terms of a complete nth
order polynomial as

D(x.y) =D o (6.94)
i=l1

where
m= %(n + D(n+2) (6.95)

is the number of terms in complete polynomials (also the number of nodes in the
triangle). For example, for second order (n = 2) or quadratic (six-node) triangular
elements,

®o(x, y) = aj + axx + azy + asxy + asx* + agy? (6.96)

This equation has six coefficients, and hence the element must have six nodes. It
is also complete through the second order terms. A systematic derivation of the
interpolation function « for the higher order elements involves the use of the local
coordinates.

a
ax asy
a4x asxy 06}'
a7x‘ asx y agxy aIOy‘
X a X3y @, a, xy a,.y
12 135 149 15)

Figure 6.21

The Pascal Triangle. The first row is: (constant, n = 0), the second: (linear,
n = 1), the third: (quadratic, n = 2), the fourth: (cubic, n = 3), the fifth:
(quartic, n = 4).
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Figure 6.22

The Pascal triangle and the associated polynomial basis function for degreen = 1
to 4.

6.8.2 Local Coordinates

The triangular local coordinates (§1, >, §3) are related to Cartesian coordinates
(x,y)as

x =&1x1 + &x2 + 53x3 (6.97)
y=E&y1 +&y2 +&y3 (6.98)

The local coordinates are dimensionless with values ranging from O to 1. By
definition, &; at any point within the triangle is the ratio of the perpendicular distance
from the point to the side opposite to vertex i to the length of the altitude drawn from
vertex i. Thus, from Fig. 6.23 the value of &1 at P, for example, is given by the ratio
of the perpendicular distance d from the side opposite vertex 1 to the altitude & of
that side, i.e.,

d

= 6.99
&1 A (6.99)
Alternatively, from Fig. 6.23, &; at P can be defined as
A.
& = Xl (6.100)
so that
E1+&+E&=1 (6.101)

since A] + Ay + Az = A. In view of Eq. (6.100), the local coordinates &; are also
called area coordinates. The variation of (£1, &>, £€3) inside an element is shown in
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Fig. 6.24. Although the coordinates £, &>, and &3 are used to define a point P, only two
are independent since they must satisfy Eq. (6.101). The inverted form of Egs. (6.97)
and (6.98) is

1
& = A [ci +bix +a;y] (6.102)
where

a; = Xg — Xj,
bi =yj—yk.
Ci = XjYk — Xk)j

1
A = area of the triangle = 3 (bray — bray) (6.103)
and (i, j, k) is an even permutation of (1,2,3). (Notice that @; and b; are the same as

Q; and P; in Eq. (6.34).) The differentiation and integration in local coordinates are
carried out using [47]:

of _ _of , of
%, = by % (6.104a)
af af af
8%‘2 - 1a—x +b 1@ (6.104b)
of _ L (, f  , of
ax (bl 081 02 352) (61040
of 1 af af
S — 6.104d
oy ( og T asz) (1040
1] rl-&
/ de=2A/ [/0 f &1 &) dflj| d& (6.104e)
jlk!
/ 515253 (+J+k+2),2A (6.104f)
dS =2Adg d& (6.104g)

6.8.3 Shape Functions

We may now express the shape function for higher order elements in terms of local
coordinates. Sometimes, it is convenient to label each point in the finite elements in
Fig. 6.22 with three integers i, j, and k from which its local coordinates (&1, &2, &3)
can be found or vice versa. At each point Pk

] k
(1. £ £3) = (i J —) (6.105)

nn
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3
Y (X3,Y3)
]. ®
xpyp '
¥
: d
! > (X,.Y,)
i h ‘

Figure 6.23
Definition of local coordinates.

& =18 =348 =128 =1/4 & =0

Figure 6.24
Variation of local coordinates.
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Hence if a value of @, say ®;j, is prescribed at each point P;jx, Eq. (6.94) can be

written as

D (§1,5,8) =

1

aijk (€1, &2, 3) Diji

m m—i

1 j=1

-

where

ag =0k =pi ED)pjE)pr &), £=1,2,...

1 r—1
o (E) = ﬁtl:([)(néj—t), r>0

1, r=0

andr € (i, j, k). pr(§) may also be written as

— 1
pe) =" 00 Lo, rs0

where po(§) = 1.

(6.106)

(6.107)

(6.108)

(6.109)

The relationships between the subscripts g € {1,2,3} on §,,¢ € {1,2,...,m}
onay, and r € (i, j, k) on p, and P;j; in Egs. (6.107) to (6.109) are illustrated in
Fig. 6.25 for n ranging from 1 to 4. Henceforth point P;j; will be written as P, for

conciseness.
100 200
l I
2Q) (3)3 i 5 6
010 001 020 o011
(@n=1 (byn=2
Figure 6.25

Distribution of nodes over triangles for » = 1 to 4. The triangles are in standard

position (Continued).
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N II ’ II
’ \ \
11 Q 2 13 14 15
030 021 012 003 040 031 022 013 004
(©)n=3 (dn=4

Figure 6.25

(Cont.) Distribution of nodes over triangles for n = 1 to 4. The triangles are in
standard position.

Notice from Eq. (6.108) or Eq. (6.109) that

po§) =1
p1(§) = né
1
p2§) = E(né — Dné
1
p3(§) = g(né —2)(n& — né
1
pa(§) = ﬁ(né —3)(n€E — 2)(n&E — né&, etc (6.110)

Substituting Eq. (6.110) into Eq. (6.107) gives the shape functions o« for nodes
£ =1,2,...,m,as shown in Table 6.7 for n = 1 to 4. Observe that each oy takes
the value of 1 at node ¢ and value of 0 at all other nodes in the triangle. This is easily
verified using Eq. (6.105) in conjunction with Fig. 6.25.

6.8.4 Fundamental Matrices

The fundamental matrices [7'] and [ Q] for triangular elements can be derived using
the shape functions in Table 6.7. (For simplicity, the brackets [ ] denoting a matrix
quantity will be dropped in the remaining part of this section.) In Eq. (6.46), the T

matrix is defined as
Tij = // Qi ds (646)

From Table 6.7, we substitute « in Eq. (6.46) and apply Eqgs. (6.104f) and (6.104g)
to obtain elements of 7. For example, forn = 1,

1 1-&
T = 2A/ / L dE i
0 0
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Table 6.7 Polynomial Basis Function e, &, &, &) for First-, Second-,
Third-, and Fourth-Order

n=3

n=4

1

o = 58610361 =268 - D
9

ay = 551 (351 — Dé&
9

a3 = 551(%1 —Dé&3

9
ay = 551 (B& — D&
a5 = 2781553

9
g = 551 (&3 — &3
1
@7 = 550G =205 -1
9
ag = 552(352 — &3
9
ag = 552(353 - Dé&;3

1
ajp = 583(353 -2)3&3 -1

1

o) = 551 (461 —3)(46; —2)(4&1 — 1)
8

ay = 551 (461 —2)(4&1 — D&
8

3 = 5?1 (461 —2)(461 — &3

a4 =481 (45 — D@5 — D&
as =321 (45) — D&283

ag =481 (45 — D@5 — D&

a7 = 251 (45 —2)(45 — D&

ag = 3251 (45 — DExE3

ag = 32515 (453 — D&3

ajp = 251(453 —2)(4& — D&3

oy = é$2(452 —3)45 —-2)@5n -1

8
oy = 552(4& —2)4& — D3

o3 = 4545 — D463 — DE3
8
o4 = 5&2(453 —2)(453 — Dé&3

1
a5 = (53045 — )M - (s - D

ap=§ o =§025 -1
ay =& o =45
a3 =§& o3 =4£83
ay =828 —1)
a5 = 4583
g =§&3(263 — 1)
Wheni # j,

wheni = j,

Hence

2A1D(1HOYH A
Li=—0 =1 (6.111a)
24) A
T TS (6.111b)
A2
T=>—"1|121 (6.112)
121712

By following the same procedure, higher order T matrices can be obtained. The T
matrices for orders up to n = 4 are tabulated in Table 6.8 ‘where the factor A, the area
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of the element, has been suppressed. The actual matrix elements are obtained from
Table 6.8 by multiplying the tabulated numbers by A and dividing by the indicated
common denominator. The following properties of the T matrix are noteworthy:

(a) T is symmetric with positive elements;

m m
(b) elements of T all add up to the area of the triangle, i.e., Z Z T;j = A, since

i J
m

by definition Z a¢ = 1 at any point within the element;
=1

(c) elements for which the two triple subscripts form similar permutations are
equal, i.e., Tijk, prqg = Tikj,prq = Tkijrpq = Tkjirgp = Tjki,qgrp = Tjik,qprs
this should be obvious from Eqgs. (6.46) and (6.107).

These properties are not only useful in checking the matrix, they have proved useful
in saving computer time and storage. It is interesting to know that the properties are
independent of coordinate system [46].

Table 6.8 Table of T Matrix for n = 1 to 4 (Continued)
n =1 Common denominator: 12

—_— N
—_ N =
DO =

n =2 Common denominator: 180
6 0 0-1-4-1
0 32 16 0 16 —4
0 16 32 —4 16 0
-1 0-4 6 0 -1
—4 16 16 0 32 O
-1 -4 0-1 0 6

n =3 Common denominator: 6720

76 18 18 0 36 0 11 27 27 11
18 540 270 —189 162 —135 0 —135 —54 27
18 270 540 —135 162 —189 27 —-54 —135 0
0 —189 —135 540 162 —54 18 270 —135 27
36 162 162 162 1944 162 36 162 162 36
0 —135 —189 —54 162 540 27 —135 270 18
11 0 27 18 36 27 76 18 011
27 —135 =54 270 162 —135 18 540 —189 O
27 =54 —135 —135 162 270 0 —189 540 18
11 27 0 27 36 18 11 0 18 76
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Table 6.8 (Cont.) Table of T Matrix forn = 1 to 4

n =4 Common denominator: 56700
290 160 160 —80 160 —80 0 —-160 —160 0o =27 -112 —-12  —-112 =27
160 2560 1280 —1280 1280  —960 768 256 256 512 0 512 64 256 —112
160 1280 2560  —960 1280 —1280 512 =256 256 768 —112 256 64 512 0
—80 —1280 —960 3168 384 48 —1280 384  —768 64 —80 —960 48 64 —12
160 1280 1280 384 10752 384 256 —1536 —1536 256 —160 —256 —768 —256 —160
—-80 —960 —1280 48 384 3168 64  —768 384 —1280 —12 64 48 —960 —80
0 768 512 —1280 256 64 2560 1280  —256 256 160 1280  —960 512 —112
—160 256  —256 384 —1536  —768 1280 10752 —1536  —256 160 1280 384 256 —160
—160  —256 256  —768 —1536 384 256 —1536 10752 1280 —160 256 384 1280 160
0 512 768 64 256 —1280 256  —256 1280 2560 —112 512 —960 1280 160
27 0 -112 -80 —160 —-12 160 160 —-160 —112 290 160 —80 0o =27
—112 512 256  —960 —256 64 1280 1280 256 512 160 2560 —1280 768 0
—12 64 64 48  —768 48  —960 384 384 —-960 —80 —1280 3168 —1280 —80
—112 256 512 64 —256 —960 512 256 1280 1280 0 768 —1280 2560 160
=27 112 0 —12  —160 -80 —112 —160 160 160 =27 0 —80 160 290




In Eq. (6.14) or Eq. (6.45), elements of [C] matrix are defined by

// Ba, Baj 80{, 80{1 Js 6.113)
Ax ox 8y ay

By applying Eqgs. (6.104a) to (6.104d) to Eq. (6.113), it can be shown that [4, 43]

3
1 da oy doj  Oaj
c,-j=_§:ot9q//( o “’)( o “’)ds
2A o g1 05g—1/) \ 0841 0&5—1

or

3
Cij =Y 01 cot b, (6.114)
g=1

where 0, is the included angle of vertex ¢ € {1, 2, 3} of the triangle and

, = = )( e > d§d 6.115
Qi = //(8Sq+1 0E4—1 0& 11 0E, §1d& (6.115)

We notice that matrix C depends on the triangle shape, whereas the matrices Q9
do not. The QD) matrices for n = 1 to 4 are tabulated in Table 6.9. The following
properties of O matrices should be noted:

(a) they are symmetric;

m
(b) the row and column sums of any Q matrix are zero, i.e., Z QE;.’) =0=
i=1

m
Z Ql(;?) so that the C matrix is singular.
Jj=l

0® and Q® are easily obtained from Q" by row and column permutations so
that the matrix C for any triangular element is constructed easily if Q! is known.
One approach [48] involves using a rotation matrix R similar to that in Silvester and
Ferrari [4], which is essentially a unit matrix with elements rearranged to correspond
to one rotation of the triangle about its centroid in a counterclockwise direction. For
example, for n = 1, the rotation matrix is basically derived from Fig. 6.26 as

(6.116)

=
I
o = O
—_ o O
SO =

where R;; = 1 node i is replaced by node j after one counterclockwise rotation, or
R;j = 0 otherwise. Table 6.10 presents the R matrices for n = 1 to 4. Note that each
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Table 6.9 Table of Q Matrices for n = 1 to 4 (Continued)

n =1 Common denominator: 2
0O 0 O
(0 1 —1)
0 -1 1

n =2 Common denominator: 6

0O 0 0 0 0 O

0 8-8 0 0 O

0-8 8 0 0O O

0O 0 0 3 -4 1

0O 0 0-4 8 -4

0O 0 0 1-4 3

n =3 Common denominator: 80

0 0 0 0 0 0 0 0 0
135 —135 =27 0 27 3 0 0 -3
—135 135 27 0 =27 -3 0 0 3
=27 27 135 —162 27 3 0 0 -3
0 0 —162 324 —162 0 0 0 0
27 =27 27 —162 135 -3 0 0 3

0
0
0
0
0
0
0 3 =3 3 0 -3 34 54 27 -7
0

0

0

0 0 0 0 0 —54 135 —108 27
0 0 0 0 0 27 —108 135 —54
-3 3 -3 0 3 =7 27 =54 34
1 3
—_—>
2 3 1 2

(@ (b)

Figure 6.26
One counterclockwise rotation of the triangle in (a) gives the triangle in (b).

row or column of R has only one nonzero element since R is essentially a unit matrix
with rearranged elements.
Once the R is known, we obtain

]Q”:RQWR’ (6.117a)

]QﬁzRQ@Rﬂ (6.117b)

where R! is the transpose of R.
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Table 6.9

(Cont.) Table of Q Matrices forn =1to4

n =4 Common denominator: 1890

[=NeNeololooloNoloRoloXeNe ool

0

3968
—3968
—1440
0

1440
640

0

0
—640
—80

0

0

0

80

0
—3968
3968
1440

0
—1440
—640
0

0

640

80

0

0

0

—80

0
—1440
1440
4632
—5376
744
—1248
768
768
—288
80
—128
96
—128
80

0

0

0
—5376
10752
—5376
1536
—1536
—1536
1536
—160
256
—-192
256
—160

0

1440
—1440
744
—5376
4632
—288
768
768
—1248
80
—128
96
—128
80

0

640
—640
—1248
1536
—288
3456
—4608
1536
—384
240
—256
192
—256
80

0

0

0

768
—1536
768
—4608
10752
—7680
1536
—160
256
—192
256
—160

0

768
—1536
768
1536
—7680
10752
—4608
—160
256
—-192
256
—160

0
—640
640
—288
1536
—1248
—384
1536
—4608
3456
80
—256
192
—256
240

0 0
—80 0
80 0

80 —128
—160 256
80  —128
240  -256
—160 256
—160 256
80  —256
705 —1232
—1232 3456
884 —3680
—464 1920
107 —464

0

0

0

96
—-192
96

192
—-192
—-192
192
884
—3680
5592
—3680
884

0

—128
256
—128
—256
256
256
—256
—464
1920
—3680
3456
—1232




Table 6.10 R Matrix forn = 1to 4

— o O
SO~
S — O

— O OO OO
SO —~O OO
SO OO O~
S — OO OO
SO oo —=O
SO —=O O

I
—_ OO OO OoOoO O

QO OO OO O
SO OO —-OOO O
SO OO OO —
O~ OO OO O
QOO O O OO0 O
QOO OoO —=O
QOO O OO O
SO O OO OoOO OO
_0000001000

I
— OO OO OO0 O 0O

SO~ OO0 OO0
SO OO O~ OO OO
sleeoelolololalal =l =leNoR)
SO OO OO0 OO0 O —~
=R lelololololaolalalasleolclels)
QOO OO OO0 O O
QO OO OO —~O O OO O
SO OO0 0O —HO
S OO~ OO0 OoO OO
SO OO OO OO OO O
slsjeojojlololslaolalalacleh i =2
QOO OO OO0
QOO O OO OO0 =000
_000000000010000
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Example 6.5
For n = 2, calculate Q! and obtain Q® from Q) using Eq. (6.117a). I

Solution
By definition,

M _ %_%)<E_%)dd
o = [f (8& 06 ) \ae, ~om ) 1%

Forn =2,i,j =1,2,...,6, and «; are given in terms of the local coordinates in
Table 6.7. Since Q) is symmetric, only some of the elements need be calculated.
Substituting for oy from Table 6.7 and applying Eqgs. (6.104¢) and (6.104f), we obtain

01 =0, j=1to6,
0i1=0, i=1t06,

1 8
0 = ﬂ// @) deibr =

1 8
023 ﬁ// @) (48 dier = — .

1
O = ﬂ// (4&1) (461 — 1) d&1& =0 = Q26,

1
025 54 // (4&1) (483 — 4&2) d§16 =0,

1 8
Q33:ﬂ//(_4él)2d$1$2:6’
1
03 = ﬂff (—4€)) (42 — 1) dErer = 0 = Q36
1
Q35 = ﬁ// (—48&1) (483 — 4&) d&1&5 =0,
- 4k — 12 dErgy =
Q44—ﬂ//(éz—) s =,
1 4
Q45=ﬂ//(%z—1)(453—4$2)d§1§2=—6,
1 1
s = ﬁ// @62 — 1) (4 — D (- Ddir = ¢ |
_ ! 4y — 452)? dErr = o
Q55_ﬁff(€3_ &) 5152—6,
| 4
056 = ﬁ// 4 —48) (-1) (45 — 1) drtr = — .
_ 1! 1) (4 D2 d _3
Q66—ﬂ//<—)<ss—> T
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Hence

00 0 0 0 O
08 -8 0 0 O
Q(l):lO—SS 0 0 O
6/0 0 0 3 —4 1
00 0 —4 8 —4
00 0 1 —4 3
We now obtain Q@ from
Q(2) — RQ(I)RZ
00 0 0 0 O 000100
0 8 -8 0 0 O 000010
—1R0_88 0 0 O 010000
"6 00 0 3 —4 1 000001
00 0 —48 —4(|001000
00 0 1 —4 3 100000
[00000 1 0o 0 000 O
001000 0O -8 0 0 8 O
_1000010 0O 8 0 0-8 0
T 6100000 1 0 40 0 3
010000(|—-4 0 8 0 0 —4
000100 30 400 1
3 0 —40 0 1
0O 8 0 0-8 0
1l-4 0 8 0 0 —4
@ _ Z
0 6/0 0 0 O0O0 O I
0O -8 0 0 8 O
|1 0 40 0 3
|

6.9 Three-Dimensional Elements

The finite element techniques developed in the previous sections for two-dimen-
sional elements can be extended to three-dimensional elements. One would expect
three-dimensional problems to require a large total number of elements to achieve
an accurate result and demand a large storage capacity and computational time. For
the sake of completeness, we will discuss the finite element analysis of Helmholtz’s
equation in three dimensions, namely,

V2o 4+ kD =g (6.118)

We first divide the solution region into tetrahedral or hexahedral (rectangular prism)
elements as in Fig. 6.27. Assuming a four-node tetrahedral element, the function ®
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is represented within the element by
b, =a+bx+cy+dz (6.119)

The same applies to the function g. Since Eq. (6.119) must be satisfied at the four
nodes of the tetrahedral elements,

b, =a + bx; +cy; +dz;, i=1....4 (6.120)

3 1 >
(a) (b)
Figure 6.27

Three-dimensional elements: (a) Four-node or linear-order tetrahedral,
(b) eight-node or linear-order hexahedral.

Thus we have four simultaneous equations (similar to Eq. (6.5)) from which the
coefficients a, b, ¢, and d can be determined. The determinant of the system of
equations is

X1 Y1 21

20222 6y (6.121)
X3 y3 73

X4 Y4 24

det =

—_—

where v is the volume of the tetrahedron. By finding a, b, ¢, and d, we can write

4
D, =Y ai(x, y) Do (6.122)

i=1

where
X y Z

1
L x2 » 22 (6.1232)
1 x3 y3 z3 ’
1 x4 ys4 z4
L x1 y1 21
1 x y z

6.123b
1 x3 y3 23 ( )
1 x4 ys4 z4
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with o3 and o4 having similar expressions. For higher order approximation, the
matrices for as become large in size and we resort to local coordinates. Another
motivation for using local coordinates is the existence of integration equations which
simplify the evaluation of the fundamental matrices 7" and Q.

For the tetrahedral element, the local coordinates are &1, &>, €3, and &4, each per-
pendicular to a side. They are defined at a given point as the ratio of the distance
from that point to the appropriate apex to the perpendicular distance from the side to
the opposite apex. They can also be interpreted as volume ratios, i.e., at a point P

£ = — (6.124)

Z g =1 (6.125a)

or

=1-6-8—-& (6.125b)

The following properties are useful in evaluating integration involving local coordi-
nates [47]:

dv = 6v d&| d& dés | (6.126a)
1 1-& 1-&6—-&
[[[ rav=so [ [ [ ( [ fdgl)d&} e (6.1260)
0 0 0
P kel o iljlke!
// §15,636, dv = (i+j+k+€—|—3)!6v (6.126¢)

In terms of the local coordinates, an arbitrary function ® (x, y) can be approximated
within an element in terms of a complete nth order polynomial as

Do(x,y) =) ai(x, y)Pei (6.127)
i=1

1
where m = g(n + 1)(n + 2)(n + 3) is the number of nodes in the tetrahedron or

the number of terms in the polynomial. The terms in a complete three-dimensional
polynomial may be arrayed as shown in Fig. 6.28.

Each point in the tetrahedral element is represented by four integers i, j, k, and £
which can be used to determine the local coordinates (§1, &2, &3, &4). That is at P;je,

i k¢
. ,-) (6.128)

|~

i
n non

S

(61,62.83,84) = (
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Figure 6.28
Pascal tetrahedron and associated array of terms.

Hence at each node,

ag = ajjre = pi §1) pj (§2) pi (63) pe (84) (6.129)

where ¢ = 1,2, ..., m and p, is defined in Eq. (6.108) or (6.109). The relationship
between the node numbers ¢ and ijk¢ is illustrated in Fig. 6.29 for the second order
tetrahedron (n = 2). The shape functions obtained by substituting Eq. (6.108) into
Eq. (6.129) are presented in Table 6.11 forn = 1 to 3.

1 (2000)

4(1001)

(1100) 10 (0002)

I

. 9
e oton (0011)

5 6 8
(0200) (0110) (0020)

Figure 6.29
Numbering scheme for second-order tetrahedron.

The expressions derived from the variational principle for the two-dimensional
problems in Sections 6.2 to 6.4 still hold except that the fundamental matrices [7T']
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Table 6.11 Shape Functions o, (&1, &, &3, &) forn = 1to 3

n=1 n=2 n=3

G=h w=6Q-1) e =60k -G - D
=8 a =455 oy = 251(351 —Dé&

a3 =& a3 =485 o3 = 251(351 — Dé&3

as =& a4 =454 a4 = 251(351 — D&,

as =528 —1)
o = 46283
a7 = 4568,
ag =628 — 1)
a9 = 48384

a0 = 64254 — 1)

9
as = 5%’1 (3& — Dé&
ag = 27616263
a7 = 27616284

9
ag = 551 (383 — 1)&3
ag = 27516384

a0 = gél (384 — D&
o = 352(352 - DB&-2)
oy = 252(352 — D&
@ = 2606 — Dés

o4 = 252(353 — Dé&3

ars = 27528384

a6 = 352(353 — Dé&3

o7 = %53(353 - D@8 —-2)
@i = 26508 — D&

arg = §r§3(3§4 — D&

1
ax = 554(354 —1)(3854 - 2)
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and [Q] now involve triple integration. For Helmholtz equation (6.56), for example,
Eq. (6.68) applies, namely,

[Crr =T @5 =0 (6.130)
except that
Cl-(;) = /Vozi -Vajdv
v

=/ %%JF%EJF%% dv (6.131)
v \ dx Ox dy dy 9z 9z

Ti? = /O‘iaj dv = v/// ojaj d§ d& d&3 (6.132)
v

For further discussion on three-dimensional elements, one should consult Silvester
and Ferrari [4]. Applications of three-dimensional elements to EM-related problems
can be found in [49]-[53].

6.10 Finite Element Methods for Exterior Problems

Thus far in this chapter, the FEM has been presented for solving interior problems.
To apply the FEM to exterior or unbounded problems such as open-type transmission
lines (e.g., microstrip), scattering, and radiation problems poses certain difficulties.
To overcome these difficulties, several approaches [54]-[82] have been proposed, all
of which have strengths and weaknesses. We will consider three common approaches:
the infinite element method, the boundary element method, and absorbing boundary
condition.

6.10.1 Infinite Element Method

Consider the solution region shown in Fig. 6.30(a). We divide the entire domain
into a near field (n.f.) region, which is bounded, and a far field (f.f.) region, which is
unbounded. The n.f. region is divided into finite triangular elements as usual, while
the f.f. region is divided into infinite elements. Each infinite elements shares two
nodes with a finite element. Here we are mainly concerned with the infinite elements.

Consider the infinite element in Fig. 6.30(b) with nodes 1 and 2 and radial sides
intersecting at point (x,, y,). We relate triangular polar coordinates (p, &) to the
global Cartesian coordinates (x, y) as [62]

X =x0+p[(x1 _xo)+$(x2 _xl)]
y=Yyo+pl(y1 —yo) +& 2 —y1)] (6.133)
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X
Ground Planc/

(a)

(b)

Figure 6.30
(a) Division of solution region into finite and infinite elements; (b) typical infinite
element.

where 1 < p < 00, 0 < & < 1. The potential distribution within the element is
approximated by a linear variation as

1
V= P [Vi(l — &) + V28]

or
2
1% =Zal~Vi (6.134)
i=1

where V| and V; are potentials at nodes 1 and 2 of the infinite elements, «; and o3
are the interpolation or shape functions, i.e.,
1—
o] = —S oy = é (6.135)
p o

The infinite element is compatible with the ordinary first order finite element and
satisfies the boundary condition at infinity. With the shape functions in Eq. (6.135), we
can obtain the [C(©] and [T ©)] matrices. We obtain solution for the exterior problem
by using a standard finite element program with the [C©)] and [T ()] matrices of the
infinite elements added to the [C] and [T ] matrices of the n.f. region.
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6.10.2 Boundary Element Method

A comparison between the finite element method (FEM) and the method of mo-
ments (MOM) is shown in Table 6.12. From the table, it is evident that the two
methods have properties that complement each other. In view of this, hybrid methods
have been proposed. These methods allow the use of both MOM and FEM with the
aim of exploiting the strong points in each method.

Table 6.12 Comparison Between Method of Moments and
Finite Element Method [83]

Method of Moments Finite Element Method
Conceptually easy Conceptually involved
Requires problem-dependent  Avoids difficulties associated with
Green’s functions singularity of Green’s functions
Few equations; O (n) for 2-D, Many equations; O (n?) for 2-D,
O (n?) for 3-D O (n?) for 3-D
Only boundary is discretized ~ Entire domain is discretized
Open boundary easy Open boundary difficult
Fields by integration Fields by differentiation
Good representation of Good representation of
far-field condition boundary conditions
Full matrices result Sparse matrices result
Nonlinearity, inhomogeneity Nonlinearity, inhomogeneity
difficult easy

One of these hybrid methods is the so-called boundary element method (BEM).
It is a finite element approach for handling exterior problems [68]-[80]. It basically
involves obtaining the integral equation formulation of the boundary value prob-
lem [84], and solving this by a discretization procedure similar to that used in regular
finite element analysis. Since the BEM is based on the boundary integral equivalent
to the governing differential equation, only the surface of the problem domain needs
to be modeled. Thus the dimension of the problem is reduced by one as in MOM. For
2-D problems, the boundary elements are taken to be straight line segments, whereas
for 3-D problems, they are taken as triangular elements. Thus the shape or interpola-
tion functions corresponding to subsectional bases in the MOM are used in the finite
element analysis.

6.10.3 Absorbing Boundary Conditions

To apply the finite element approach to open region problems such as for scattering
or radiation, an artificial boundary is introduced in order to bound the region and limit
the number of unknowns to a manageable size. One would expect that as the boundary
approaches infinity, the approximate solution tends to the exact one. But the closer the
boundary to the radiating or scattering object, the less computer memory is required.
To avoid the error caused by this truncation, an absorbing boundary condition (ABC)
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is imposed on the artificial boundary S, as typically portrayed in Fig. 6.31. The ABC
minimizes the nonphysical reflections from the boundary. Several ABCs have been
proposed [85]-[91]. The major challenge of these ABCs is to bring the truncation
boundary as close as possible to the object without sacrificing accuracy and to absorb
the outgoing waves with little or no reflection. A popular approach is the PML-based
ABC discussed in Section 3.8.3 for FD-TD. The finite element technique is used in
enforcing the condition as a tool for mesh truncation [87].

object

Figure 6.31
A radiating (or scattering) object surrounded by an absorbing boundary.

Another popular ABC derived Bayliss, Gunzburger, and Turkel (BGT) employs
asymptotic analysis [91]. For example, for the solution of a three-dimensional prob-
lem, an expansion of the scalar Helmholtz equation is [90]:

o0

Fi6,9)
; oy (6.136)

e—jkr

O, 0,¢) = o

The sequence of BGT operators is obtained by the recursion relation

0 ) 1
B, = (—+Jk+—>
or r

|
B = 5+ jk+ Bu_i, m=203,... (6.137)
"

r

Since @ satisfies the higher-order radiation condition

Bn® =0 (1/r2’"+1) (6.138)
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imposing the mth-order boundary condition
By®=0 onS (6.139)

will compel the solution ® to match the first 2m terms of the expansion in Eq. (6.136).
Equation (6.139) along with other appropriate equations is solved for ® using the finite
element method.

6.11 Concluding Remarks

An introduction to the basic concepts and applications of the finite element method
has been presented. It is by no means an exhaustive exposition of the subject. How-
ever, we have given the flavor of the way in which the ideas may be developed; the
interested reader may build on this by consulting the references. Several introductory
texts have been published on FEM. Although most of these texts are written for civil or
mechanical engineers, the texts by Silvester and Ferrari [4], Chari and Silvester [41],
Steele [92], Hoole [93], and Itoh [94] are for electrical engineers.

Due to its flexibility and versatility, the finite element method has become a
powerful tool throughout engineering disciplines. It has been applied with great
success to numerous EM-related problems. Such applications are:

* transmission line problems [95]-[97],

« optical and microwave waveguide problems [8]-[17], [92]-[103],
« electric machines [41], [104]-[106],

* scattering problems [71, 72, 75, 107, 108],

 human exposition to EM radiation [109]-[112], and

others [113]-[116].

Applications of the FEM to time-dependent phenomena can be found in [108],
[117]-[126].

For other issues on FEM not covered in this chapter, one is referred to introductory
texts on FEM such as [2, 4, 36, 41, 47], [92]-[94], [126]-[133]. The issue of edge
elements and absorbing boundary are covered in [126]. Estimating error in finite
element solution is discussed in [52, 124, 125]. The reader may benefit from the
numerous finite element codes that are commercially available. An extensive de-
scription of these systems and their capabilities can be found in [127, 134]. Although
the codes were developed for one field of engineering or the other, they can be applied
to problems in a different field with little or no modification.
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Problems

6.1 For the triangular elements in Fig. 6.32. determine the element coefficient

matrices.
3
(7,6)
2
(1.5,2.5)
3¢ ® | 1 2
0.5,1) (2,0.5) 4,2) (7,2)
(a) (b)
Figure 6.32

For Problem 6.1.
6.2 Find the coefficient matrix for the two-element mesh of Fig. 6.33. Given that
V>, = 10 and V4 = —10, determine V| and V3.
6.3 Determine the shape functions o1, a2, and o3 for the element in Fig. 6.34.

6.4 Consider the mesh shown in Fig. 6.35. The shaded region is conducting and
has no finite elements. Calculate the global elements C3 19 and C3 3.

6.5 With reference to the finite element in Fig. 6.36, calculate the energy per unit
length associated with the element.
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Figure 6.33

For Problem 6.2.
1
(8.5)
2
34
(6,0)
3
Figure 6.34
For Problem 6.3.
AY
3cm , ”
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15 10

=X
5 6 7 8 3¢n

Figure 6.35
For Problem 6.4.
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Figure 6.36
For Problem 6.5.
6.6 Consider the element whose sides are parallel to the x and y axis, as shown

6.7

6.8
6.9

6.10

6.11

6.12

in Fig. 6.37. Verify that the potential distribution within the elements can be
expressed as
Vix,y) =a1tVi+aVa+a3Vs +aqVy

where V; are the nodal potentials and «; are local interpolating functions defined
as

) = (x —x2) (y — ya)
(x1 —x2) (y1 — y4)
L= (x—x1) (y—y3)
(x2 —x1) 2 — y3)

s = (x —x4) (y — y2)
(x3 — x4) (y3 — »2)

\ = (x —x3) (y — y1)
(x4 — x3) (4 — y1)

The cross section of an infinitely long rectangular trough is shown in Fig. 6.38;
develop a program using FEM to find the potential at the center of the cross
section. Take ¢, = 4.5.

Solve the problem in Example 3.3 using the finite element method.

Modify the program in Fig. 6.10 to calculate the electric field intensity E at any
point in the solution region.

The program in Fig. 6.10 applies the iteration method to determine the potential
at the free nodes. Modify the program and use the band matrix method to
determine the potential. Test the program using the data in Example 6.2.

A grounded rectangular pipe with the cross section in Fig. 6.39 is half-filled
with hydrocarbons (¢ = 2.5¢,, p, = 1073 C/m3). Use FEM to determine the
potential along the liquid-air interface. Plot the potential versus x.

Solve the problem in Example 3.4 using the finite element method.
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Figure 6.37
For Problem 6.6.
d 10V
20 cm /
8[]
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Figure 6.38
For Problem 6.7.

6.13 The cross section of an isosceles right-triangular waveguide is discretized as in
Fig. 6.40). Determine the first 10 TM cutoff wavelengths of the guide.

6.14 Using FEM, determine the first 10 cutoff wavelengths of a rectangular waveg-
uide of cross section 2 cm by 1 cm. Compare your results with exact solution.
Assume the guide is air-filled.

6.15 Use the mesh generation program in Fig. 6.16 to subdivide the solution regions
in Fig. 6.41. Subdivide into as many triangular elements as you choose.
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Figure 6.39
For Problem 6.11.
y
(L1
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Figure 6.40
For Problem 6.13.

6.16 Determine the semi-bandwidth of the mesh shown in Fig. 6.42. Renumber the
mesh so as to minimize the bandwidth.

6.17 Find the semi-bandwidth B of the mesh in Fig. 6.43. Renumber the mesh to
minimize B and determine the new value of B.

6.18 Rework Problem 3.18 using the FEM.
Hint: Aftercalculating V atall free nodes with € lumped with C;;, use Eq. (6.19)
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Figure 6.41
For Problem 6.15.
6 9 12 14 15

11 13

Figure 6.42
For Problem 6.16.

to calculate W, i.e., .
W= E[V]I[C][V]

Then find the capacitance from

C_2W
_de

where V; is the potential difference between inner and outer conductors.
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Figure 6.43
For Problem 6.17.

6.19
6.20

6.21

6.22

6.23
6.24
6.25

Verify the interpolation functions for the six-node quadratic triangular element.

Using the area coordinates (£, &2, £€3) for the triangular element in Fig. 6.3,
evaluate:

(@) [sxdS,
b) [, x dS,
(© [sxydS

Evaluate the following integrals:
@ [5a3ds,

(b) [s aras dS,
(¢) [garmpazdS

Evaluate the shape functions «y, ..., ag for the second-order elements in
Fig. 6.44.

Derive matrix T forn = 2.
By hand calculation, obtain Q® and Q® forn = 1 and n = 2.

The D@ matrix is an auxilliary matrix used along with the T matrix to derive
other fundamental matrices. An element of D is defined in [43] as the partial
derivative of o; with respect to &, evaluated at node Pj, i.e.,

8 .
@ _ %%l iji=1,2....m
T 9,
where g € {1, 2, 3}. Forn = 1 and 2, derive D", From D, derive D® and
DO,
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Figure 6.44
For Problem 6.22.

6.26 (a) The matrix K P9 can be defined as

K.(Pq) f/ 3(1, aOl]
Y &, Béq

where p,q = 1,2,3. Using the D@D matrix of the previous problem,
show that
KPP — p») TD(CI)'

where ¢ denotes transposition.
(b) Show that the Q@ matrix can be written as

0@ — [D(q—H) _ D(q—l)] T [D(q-i-l) _ D(q—l)]’

Use this formula to derive Q1 for n = 1 and 2.
6.27 Verify the interpolation function for the 10-node tetrahedral element.

6.28 Using the volume coordinates for a tetrahedron, evaluate

fz2dv

Assume that the origin is located at the centroid of the tetrahedron.
6.29 Obtain the T matrix for the first-order tetrahedral element.

6.30 For the tetrahedral cell, obtain the matrix M whose elements are defined by

1
Mij = ;/&'SJ‘ dv
v
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6.31 For the two-dimensional problem, the BGI sequence of operators are defined
by the recurrence relation

where B, = 1. Obtain Bj and B;.
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