
Chapter 6

Finite Element Method

“Who is wise? He that learns from everyone.
Who is powerful? He that governs his passion.
Who is rich? He that is content.
Who is that? Nobody.” Benjamin Franklin

6.1 Introduction

The finite element method (FEM) has its origin in the field of structural analy-
sis. Although the earlier mathematical treatment of the method was provided by
Courant [1] in 1943, the method was not applied to electromagnetic (EM) problems
until 1968. Since then the method has been employed in diverse areas such as waveg-
uide problems, electric machines, semiconductor devices, microstrips, and absorption
of EM radiation by biological bodies.

Although the finite difference method (FDM) and the method of moments (MOM)
are conceptually simpler and easier to program than the finite element method (FEM),
FEM is a more powerful and versatile numerical technique for handling problems
involving complex geometries and inhomogeneous media. The systematic generality
of the method makes it possible to construct general-purpose computer programs for
solving a wide range of problems. Consequently, programs developed for a particular
discipline have been applied successfully to solve problems in a different field with
little or no modification [2].

The finite element analysis of any problem involves basically four steps [3]:

• discretizing the solution region into a finite number of subregions or elements,

• deriving governing equations for a typical element,

• assembling of all elements in the solution region, and

• solving the system of equations obtained.
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Discretization of the continuum involves dividing up the solution region into sub-
domains, called finite elements. Figure 6.1 shows some typical elements for one-,
two-, and three-dimensional problems. The problem of discretization will be fully
treated in Sections 6.5 and 6.6. The other three steps will be described in detail in the
subsequent sections.

Figure 6.1
Typical finite elements: (a) One-dimensional, (b) two-dimensional, (c) three-
dimensional.

6.2 Solution of Laplace’s Equation

As an application of FEM to electrostatic problems, let us apply the four steps men-
tioned above to solve Laplace’s equation, ∇2V = 0. For the purpose of illustration,
we will strictly follow the four steps mentioned above.

6.2.1 Finite Element Discretization

To find the potential distribution V (x, y) for the two-dimensional solution region
shown in Fig. 6.2(a), we divide the region into a number of finite elements as il-
lustrated in Fig. 6.2(b). In Fig. 6.2(b), the solution region is subdivided into nine
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nonoverlapping finite elements; elements 6, 8, and 9 are four-node quadrilaterals,
while other elements are three-node triangles. In practical situations, however, it is
preferred, for ease of computation, to have elements of the same type throughout the
region. That is, in Fig. 6.2(b), we could have split each quadrilateral into two triangles
so that we have 12 triangular elements altogether. The subdivision of the solution
region into elements is usually done by hand, but in situations where a large number
of elements is required, automatic schemes to be discussed in Sections 6.5 and 6.6
are used.

Figure 6.2
(a) The solution region; (b) its finite element discretization.

We seek an approximation for the potential Ve within an element e and then interre-
late the potential distribution in various elements such that the potential is continuous
across interelement boundaries. The approximate solution for the whole region is

V (x, y) �
N∑
e=1

Ve(x, y), (6.1)

whereN is the number of triangular elements into which the solution region is divided.
The most common form of approximation for Ve within an element is polynomial
approximation, namely,

Ve(x, y) = a + bx + cy (6.2)
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for a triangular element and

Ve(x, y) = a + bx + cy + dxy (6.3)

for a quadrilateral element. The constants a, b, c, and d are to be determined. The
potential Ve in general is nonzero within element e but zero outside e. In view of
the fact that quadrilateral elements do not conform to curved boundary as easily as
triangular elements, we prefer to use triangular elements throughout our analysis in
this chapter. Notice that our assumption of linear variation of potential within the
triangular element as in Eq. (6.2) is the same as assuming that the electric field is
uniform within the element, i.e.,

Ee = −∇Ve = −
(
bax + cay

)
(6.4)

6.2.2 Element Governing Equations

Consider a typical triangular element shown in Fig. 6.3. The potential Ve1, Ve2,
and Ve3 at nodes 1, 2, and 3, respectively, are obtained using Eq. (6.2), i.e.,

Ve1
Ve2
Ve3


 =


1 x1 y1

1 x2 y2
1 x3 y3




ab
c


 (6.5)

The coefficients a, b and c are determined from Eq. (6.5) as
ab
c


 =


1 x1 y1

1 x2 y2
1 x3 y3



−1
Ve1
Ve2
Ve3


 (6.6)

Substituting this into Eq. (6.2) gives

Ve = [1 x y] 1

2A



(x2y3 − x3y2) (x3y1 − x1y3) (x1y2 − x2y1)

(y2 − y3) (y3 − y1) (y1 − y2)

(x3 − x2) (x1 − x3) (x2 − x1)




Ve1
Ve2
Ve3




or

Ve =
3∑

i=1

αi(x, y)Vei (6.7)

where

α1 = 1

2A
[(x2y3 − x3y2)+ (y2 − y3) x + (x3 − x2) y] , (6.8a)

α2 = 1

2A
[(x3y1 − x1y3)+ (y3 − y1) x + (x1 − x3) y] , (6.8b)

α3 = 1

2A
[(x1y2 − x2y1)+ (y1 − y2) x + (x2 − x1) y] , (6.8c)
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and A is the area of the element e, i.e.,

2A =
∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣
= (x1y2 − x2y1)+ (x3y1 − x1y3)+ (x2y3 − x3y2)

or

A = 1

2
[(x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)] (6.9)

The value of A is positive if the nodes are numbered counterclockwise (starting from
any node) as shown by the arrow in Fig. 6.3. Note that Eq. (6.7) gives the potential

Figure 6.3
Typical triangular element; local node numbering 1-2-3 must proceed counter-
clockwise as indicated by the arrow.

at any point (x, y) within the element provided that the potentials at the vertices are
known. This is unlike finite difference analysis, where the potential is known at the
grid points only. Also note that αi are linear interpolation functions. They are called
the element shape functions and they have the following properties [4]:

αi =
{

1, i = j

0, i �= j
(6.10a)

3∑
i=1

αi(x, y) = 1 (6.10b)

The shape functions α1, α2, and α3 are illustrated in Fig. 6.4.
The functional corresponding to Laplace’s equation, ∇2V = 0, is given by

We = 1

2

∫
ε |Ee|2 dS = 1

2

∫
ε |∇Ve|2 dS (6.11)
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Figure 6.4
Shape functions α1, α2, and α3 for a triangular element.

(Physically, the functionalWe is the energy per unit length associated with the element
e.) From Eq. (6.7),

∇Ve =
3∑

i=1

Vei∇αi (6.12)

Substituting Eq. (6.12) into Eq. (6.11) gives

We = 1

2

3∑
i=1

3∑
j=1

εVei

[∫
∇αi · ∇αj dS

]
Vej (6.13)

If we define the term in brackets as

C
(e)
ij =

∫
∇αi · ∇αj dS , (6.14)

we may write Eq. (6.13) in matrix form as

We = 1

2
ε
[
Ve

]t [
C(e)

][
Ve

]
(6.15)

where the superscript t denotes the transpose of the matrix,

[Ve] =

Ve1
Ve2
Ve3


 (6.16a)

and

[
C(e)

]
=



C

(e)
11 C

(e)
12 C

(e)
13

C
(e)
21 C

(e)
22 C

(e)
23

C
(e)
31 C

(e)
32 C

(e)
33


 (6.16b)
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The matrix [C(e)] is usually called the element coefficient matrix (or “stiffness matrix”
in structural analysis). The element C(e)

ij of the coefficient matrix may be regarded as
the coupling between nodes i and j ; its value is obtained from Eqs. (6.8) and (6.14).
For example,

C
(e)
12 =

∫
∇α1 · ∇α2 dS

= 1

4A2 [(y2 − y3) (y3 − y1)+ (x3 − x2) (x1 − x3)]
∫

dS

= 1

4A
[(y2 − y3) (y3 − y1)+ (x3 − x2) (x1 − x3)] (6.17a)

Similarly,

C
(e)
13 =

1

4A
[(y2 − y3) (y1 − y2)+ (x3 − x2) (x2 − x1)] , (6.17b)

C
(e)
23 =

1

4A
[(y3 − y1) (y1 − y2)+ (x1 − x3) (x2 − x1)] , (6.17c)

C
(e)
11 =

1

4A

[
(y2 − y3)

2 + (x3 − x2)
2
]
, (6.17d)

C
(e)
22 =

1

4A

[
(y3 − y1)

2 + (x1 − x3)
2
]
, (6.17e)

C
(e)
33 =

1

4A

[
(y1 − y2)

2 + (x2 − x1)
2
]

(6.17f)

Also

C
(e)
21 = C

(e)
12 , C

(e)
31 = C

(e)
13 , C

(e)
32 = C

(e)
23 (6.18)

6.2.3 Assembling of All Elements

Having considered a typical element, the next step is to assemble all such elements
in the solution region. The energy associated with the assemblage of elements is

W =
N∑
e=1

We = 1

2
ε[V ]t [C][V ] (6.19)

where

[V ] =




V1
V2
V3
...

Vn


 , (6.20)
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n is the number of nodes, N is the number of elements, and [C] is called the overall or
global coefficient matrix, which is the assemblage of individual element coefficient
matrices. Notice that to obtain Eq. (6.19), we have assumed that the whole solution
region is homogeneous so that ε is constant. For an inhomogeneous solution region
such as shown in Fig. 6.5, for example, the region is discretized such that each finite
element is homogeneous. In this case, Eq. (6.11) still holds, but Eq. (6.19) does
not apply since ε(= εrεo) or simply εr varies from element to element. To apply
Eq. (6.19), we may replace ε by εo and multiply the integrand in Eq. (6.14) by εr .

Figure 6.5
Discretization of an inhomogeneous solution region.

The process by which individual element coefficient matrices are assembled to
obtain the global coefficient matrix is best illustrated with an example. Consider the
finite element mesh consisting of three finite elements as shown in Fig. 6.6. Observe

Figure 6.6
Assembly of three elements; i-j -k corresponds to local numbering (1-2-3) of the
element in Fig. 6.3.

the numberings of the mesh. The numbering of nodes 1, 2, 3, 4, and 5 is called global
numbering. The numbering i-j -k is called local numbering, and it corresponds with
1 - 2 - 3 of the element in Fig. 6.3. For example, for element 3 in Fig. 6.6, the
global numbering 3 - 5 - 4 corresponds with local numbering 1 - 2 - 3 of the element
in Fig. 6.3. (Note that the local numbering must be in counterclockwise sequence
starting from any node of the element.) For element 3, we could choose 4 - 3 - 5
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instead of 3 - 5 - 4 to correspond with 1 - 2 - 3 of the element in Fig. 6.3. Thus the
numbering in Fig. 6.6 is not unique. But whichever numbering is used, the global
coefficient matrix remains the same. Assuming the particular numbering in Fig. 6.6,
the global coefficient matrix is expected to have the form

[C] =



C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55


 (6.21)

which is a 5 × 5 matrix since five nodes (n = 5) are involved. Again, Cij is the
coupling between nodes i and j . We obtain Cij by using the fact that the potential
distribution must be continuous across interelement boundaries. The contribution
to the i, j position in [C] comes from all elements containing nodes i and j . For
example, in Fig. 6.6, elements 1 and 2 have node 1 in common; hence

C11 = C
(1)
11 + C

(2)
11 (6.22a)

Node 2 belongs to element 1 only; hence

C22 = C
(1)
33 (6.22b)

Node 4 belongs to elements 1, 2, and 3; consequently

C44 = C
(1)
22 + C

(2)
33 + C

(3)
33 (6.22c)

Nodes 1 and 4 belong simultaneously to elements 1 and 2; hence

C14 = C41 = C
(1)
12 + C

(2)
13 (6.22d)

Since there is no coupling (or direct link) between nodes 2 and 3,

C23 = C32 = 0 (6.22e)

Continuing in this manner, we obtain all the terms in the global coefficient matrix by
inspection of Fig. 6.6 as



C
(1)
11 + C

(2)
11 C

(1)
13 C

(2)
12 C

(1)
12 + C

(2)
13 0

C
(1)
31 C

(1)
33 0 C

(1)
32 0

C
(2)
21 0 C

(2)
22 + C

(3)
11 C

(2)
23 + C

(3)
13 C

(3)
12

C
(1)
21 + C

(2)
31 C

(1)
23 C

(2)
32 + C

(3)
31 C

(1)
22 + C

(2)
33 + C

(3)
33 C

(3)
32

0 0 C
(3)
21 C

(3)
23 C

(3)
22




(6.23)
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Note that element coefficient matrices overlap at nodes shared by elements and that
there are 27 terms (9 for each of the 3 elements) in the global coefficient matrix [C].
Also note the following properties of the matrix [C]:

(1) It is symmetric (Cij = Cji) just as the element coefficient matrix.

(2) Since Cij = 0 if no coupling exists between nodes i and j , it is expected that
for a large number of elements [C] becomes sparse. Matrix [C] is also banded
if the nodes are carefully numbered. It can be shown using Eq. (6.17) that

3∑
i=1

C
(e)
ij = 0 =

3∑
j=1

C
(e)
ij

(3) It is singular. Although this is not so obvious, it can be shown using the element
coefficient matrix of Eq. (6.16b).

6.2.4 Solving the Resulting Equations

Using the concepts developed in Chapter 4, it can be shown that Laplace’s equation
is satisfied when the total energy in the solution region is minimum. Thus we require
that the partial derivatives of W with respect to each nodal value of the potential be
zero, i.e.,

∂W

∂V1
= ∂W

∂V2
= · · · = ∂W

∂Vn

= 0

or

∂W

∂Vk

= 0, k = 1, 2, . . . , n (6.24)

For example, to get
∂W

∂V1
= 0 for the finite element mesh of Fig. 6.6, we substitute

Eq. (6.21) into Eq. (6.19) and take the partial derivative of W with respect to V1. We
obtain

0 = ∂W

∂V1
= 2V1C11 + V2C12 + V3C13 + V4C14 + V5C15

+ V2C21 + V3C31 + V4C41 + V5C51

or

0 = V1C11 + V2C12 + V3C13 + V4C14 + V5C15 (6.25)

In general,
∂W

∂Vk

= 0 leads to

0 =
n∑

i=1

ViCik (6.26)
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where n is the number of nodes in the mesh. By writing Eq. (6.26) for all nodes
k = 1, 2, . . . , n, we obtain a set of simultaneous equations from which the solution
of [V ]t = [V1, V2, . . . , Vn] can be found. This can be done in two ways similar to
those used in solving finite difference equations obtained from Laplace’s equation in
Section 3.5.

(1) Iteration Method: Suppose node 1 in Fig. 6.6, for example, is a free node. From
Eq. (6.25),

V1 = − 1

C11

5∑
i=2

ViC1i (6.27)

Thus, in general, at node k in a mesh with n nodes

Vk = − 1

Ckk

n∑
i=1,i �=k

ViCki (6.28)

where node k is a free node. Since Cki = 0 if node k is not directly connected to
node i, only nodes that are directly linked to node k contribute to Vk in Eq. (6.28).
Equation (6.28) can be applied iteratively to all the free nodes. The iteration process
begins by setting the potentials of fixed nodes (where the potentials are prescribed
or known) to their prescribed values and the potentials at the free nodes (where the
potentials are unknown) equal to zero or to the average potential [5]

Vave = 1

2
(Vmin + Vmax) (6.29)

where Vmin and Vmax are the minimum and maximum values of V at the fixed nodes.
With these initial values, the potentials at the free nodes are calculated using Eq. (6.28).
At the end of the first iteration, when the new values have been calculated for all the
free nodes, they become the old values for the second iteration. The procedure is
repeated until the change between subsequent iterations is negligible enough.

(2) Band Matrix Method: If all free nodes are numbered first and the fixed nodes
last, Eq. (6.19) can be written such that [4]

W = 1

2
ε
[
Vf Vp

] [Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
(6.30)

where subscripts f and p, respectively, refer to nodes with free and fixed (or pre-
scribed) potentials. Since Vp is constant (it consists of known, fixed values), we only
differentiate with respect to Vf so that applying Eqs. (6.24) to (6.30) yields

[
Cff Cfp

] [Vf

Vp

]
= 0
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or [
Cff

] [
Vf

] = − [Cfp

] [
Vp

]
(6.31)

This equation can be written as

[A][V ] = [B] (6.32a)

or

[V ] = [A]−1[B] (6.32b)

where [V ] = [Vf ], [A] = [Cff ], [B] = −[Cfp][Vp]. Since [A] is, in general,
nonsingular, the potential at the free nodes can be found using Eq. (6.32). We can
solve for [V ] in Eq. (6.32a) using Gaussian elimination technique. We can also solve
for [V ] in Eq. (6.32b) using matrix inversion if the size of the matrix to be inverted is
not large.

It is sometimes necessary to impose Neumann condition (
∂V

∂n
= 0) as a boundary

condition or at the line of symmetry when we take advantage of the symmetry of the
problem. Suppose, for concreteness, that a solution region is symmetric along the

y-axis as in Fig. 6.7. We impose condition (
∂V

∂x
= 0) along the y-axis by making

V1 = V2, V4 = V5, V7 = V8 (6.33)

Figure 6.7
A solution region that is symmetric along the y-axis.

Notice that as from Eq. (6.11) onward, the solution has been restricted to a two-
dimensional problem involving Laplace’s equation, ∇2V = 0. The basic concepts
developed in this section will be extended to finite element analysis of problems
involving Poisson’s equation (∇2V = −ρv/ε, ∇2A = −µJ) or wave equation
(∇2#− γ 2# = 0) in the next sections.
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The following two examples were solved in [3] using the band matrix method; here
they are solved using the iterative method.

Example 6.1
Consider the two-element mesh shown in Fig. 6.8(a). Using the finite element

method, determine the potentials within the mesh.

Figure 6.8
For Example 6.1: (a) Two-element mesh, (b) local and global numbering at the
elements.

Solution
The element coefficient matrices can be calculated using Eqs. (6.17) and (6.18).
However, our calculations will be easier if we define

P1 = (y2 − y3) , P2 = (y3 − y1) , P3 = (y1 − y2) , (6.34)

Q1 = (x3 − x2) , Q2 = (x1 − x3) , Q3 = (x2 − x1)

With Pi and Qi (i = 1, 2, 3 are the local node numbers), each term in the element
coefficient matrix is found as

C
(e)
ij =

1

4A

(
PiPj +QiQj

)
(6.35)
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where A = 1

2
(P2Q3−P3Q2). It is evident that Eq. (6.35) is more convenient to use

than Eqs. (6.17) and (6.18). For element 1 consisting of nodes 1 - 2 - 4 corresponding
to the local numbering 1 - 2 - 3 as in Fig. 6.8(b),

P1 = −1.3, P2 = 0.9, P3 = 0.4 ,

Q1 = −0.2, Q2 = −0.4, Q3 = 0.6 ,

A = 1

2
(0.54+ 0.16) = 0.35

Substituting all of these into Eq. (6.35) gives

[
C(1)

]
=

 1.2357 −0.7786 −0.4571
−0.7786 0.6929 0.0857
−0.4571 0.0857 0.3714


 (6.36)

Similarly, for element 2 consisting of nodes 2 - 3 - 4 corresponding to local num-
bering 1 - 2 - 3 as in Fig. 6.8(b),

P1 = −0.6, P2 = 1.3, P3 = −0.7 ,

Q1 = −0.9, Q2 = 0.2, Q3 = 0.7 ,

A = 1

2
(0.91+ 0.14) = 0.525

Hence

[
C(2)

]
=

 0.5571 −0.4571 −0.1
−0.4571 0.8238 −0.3667
−0.1 −0.3667 0.4667


 (6.37)

The terms of the global coefficient matrix are obtained as follows:

C22 = C
(1)
22 + C

(2)
11 = 0.6929+ 0.5571 = 1.25

C24 = C
(1)
23 + C

(2)
13 = 0.0857− 0.1 = −0.0143

C44 = C
(1)
33 + C

(2)
33 = 0.3714+ 0.4667 = 0.8381

C21 = C
(1)
21 = −0.7786

C23 = C
(2)
12 = −0.4571

C41 = C
(1)
31 = −0.4571

C43 = C
(2)
32 = −0.3667
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Note that we follow local numbering for the element coefficient matrix and global
numbering for the global coefficient matrix. Thus

[C] =




C
(1)
11 C

(1)
12 0 C

(1)
13

C
(1)
21 C

(1)
22 + C

(2)
11 C

(2)
12 C

(1)
23 + C

(2)
12

0 C
(2)
21 C

(2)
22 C

(2)
23

C
(1)
31 C

(1)
32 + C

(2)
31 C

(2)
32 C

(1)
33 + C

(2)
33




=




1.2357 −0.7786 0 −0.4571
−0.7786 1.25 −0.4571 −0.0143

0 −0.4571 0.8238 −0.3667
−0.4571 −0.0143 −0.3667 0.8381


 (6.38)

Note that
4∑

i=1

Cij = 0 =
4∑

j=1

Cij . This may be used to check ifC is properly obtained.

We now apply Eq. (6.28) to the free nodes 2 and 4, i.e.,

V2 = − 1

C22
(V1C12 + V3C32 + V4C42)

V4 = − 1

C44
(V1C14 + V2C24 + V3C34)

or

V2 = − 1

1.25
(−4.571− 0.0143V4) (6.39a)

V4 = − 1

0.8381
(−0.143V2 − 3.667) (6.39b)

By initially setting V2 = 0 = V4, we apply Eqs. (6.39a), (6.39b) iteratively. The
first iteration gives V2 = 3.6568, V4 = 4.4378 and at the second iteration V2 =
3.7075, V4 = 4.4386. Just after two iterations, we obtain the same results as those
from the band matrix method [3]. Thus the iterative technique is faster and is usually
preferred for a large number of nodes. Once the values of the potentials at the nodes are
known, the potential at any point within the mesh can be determined using Eq. (6.7).

Example 6.2
Write a FORTRAN program to solve Laplace’s equation using the finite element

method. Apply the program to the two-dimensional problem shown in Fig. 6.9(a).
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Figure 6.9
For Example 6.2: (a) Two-dimensional electrostatic problem, (b) solution region
divided into 25 triangular elements.

Solution

The solution region is divided into 25 three-node triangular elements with total number
of nodes being 21 as shown in Fig. 6.9(b). This is a necessary step in order to have input
data defining the geometry of the problem. Based on the discussions in Section 6.2, a
general FORTRAN program for solving problems involving Laplace’s equation using
three-node triangular elements is developed as shown in Fig. 6.10. The development
of the program basically involves four steps indicated in the program and explained
as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the
only step that depends on the geometry of the problem at hand. Through a data file,
we input the number of elements, the number of nodes, the number of fixed nodes,
the prescribed values of the potentials at the free nodes, the x and y coordinates of
all nodes, and a list identifying the nodes belonging to each element in the order of
the local numbering 1 - 2 - 3.  For the problem in Fig. 6.9, the three sets of data for
coordinates, element-node relationship, and prescribed potentials at fixed nodes are
shown in Tables 6.1, 6.2, and 6.3, respectively.
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Figure 6.10
Computer program for Example 6.2 (Continued).
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Figure 6.10
(Cont.) Computer program for Example 6.2.
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Table 6.1 Nodal Coordinates of the
Finite Element Mesh in Fig. 6.9

Node x y Node x y

1 0.0 0.0 12 0.0 0.4
2 0.2 0.0 13 0.2 0.4
3 0.4 0.0 14 0.4 0.4
4 0.6 0.0 15 0.6 0.4
5 0.8 0.0 16 0.0 0.6
6 1.0 0.0 17 0.2 0.6
7 0.0 0.2 18 0.4 0.6
8 0.2 0.2 19 0.0 0.8
9 0.4 0.2 20 0.2 0.8
10 0.6 0.2 21 0.0 1.0
11 0.8 0.2

Table 6.2 Element-Node Identification
Local node no. Local node no.

Element 1 2 3 Element 1 2 3
1 1 2 7 14 9 10 14
2 2 8 7 15 10 15 14
3 2 3 8 16 10 11 15
4 3 9 8 17 12 13 16
5 3 4 9 18 13 17 16
6 4 10 9 19 13 14 17
7 4 5 10 20 14 18 17
8 5 11 10 21 14 15 18
9 5 6 11 22 16 17 19
10 7 8 12 23 17 20 19
11 8 13 12 24 17 18 20
12 8 9 13 25 19 20 21
13 9 14 13

Step 2: This step entails finding the element coefficient matrix [C(e)] for each element
and using the terms to form the global matrix [C].
Step 3: At this stage, we first find the list of free nodes using the given list of
prescribed nodes. We now apply Eq. (6.28) iteratively to all the free nodes. The
solution converges at 50 iterations or less since only 6 nodes are involved in this case.
The solution obtained is exactly the same as those obtained using the band matrix
method [3].

Step 4: This involves outputting the result of the computation. The output data for
the problem in Fig. 6.9 is presented in Table 6.4. The validity of the result in Table 6.4
is checked using the finite difference method. From the finite difference analysis, the
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Table 6.3 Prescribed Potentials at
Fixed Nodes

Prescribed Prescribed
Node potential Node potential
1 0.0 18 100.0
2 0.0 20 100.0
3 0.0 21 50.0
4 0.0 19 0.0
5 0.0 16 0.0
6 50.0 12 0.0
11 100.0 7 0.0
15 100.0

Table 6.4 Output Data of the
Program in Fig. 6.10. No. of
Nodes = 21, No. of Elements =
25, No. of Fixed Nodes = 15

Node X Y Potential
1 0.00 0.00 0.000
2 0.20 0.00 0.000
3 0.40 0.00 0.000
4 0.60 0.00 0.000
5 0.80 0.00 0.000
6 1.00 0.00 50.000
7 0.00 0.20 0.000
8 0.20 0.20 18.182
9 0.40 0.20 36.364
10 0.60 0.20 59.091
11 0.80 0.20 100.000
12 0.00 0.40 0.000
13 0.20 0.40 36.364
14 0.40 0.40 68.182
15 0.60 0.40 100.000
16 0.00 0.60 0.000
17 0.20 0.60 59.091
18 0.40 0.60 100.000
19 0.00 0.80 0.000
20 0.20 0.80 100.000
21 0.00 1.00 50.00
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potentials at the free nodes are obtained as:

V8 = 15.41, V9 = 26.74, V10 = 56.69 ,

V13 = 34.88, V14 = 65.41, V17 = 58.72V

Although the result obtained using finite difference is considered more accurate in this
problem, increased accuracy of finite element analysis can be obtained by dividing the
solution region into a greater number of triangular elements, or using higher-order
elements to be discussed in Section 6.8. As alluded to earlier, the finite element
method has two major advantages over the finite difference method. Field quantities
are obtained only at discrete positions in the solution region using FDM; they can
be obtained at any point in the solution region in FEM. Also, it is easier to handle
complex geometries using FEM than using FDM.

6.3 Solution of Poisson’s Equation

To solve the two-dimensional Poisson’s equation,

∇2V = −ρs

ε
(6.40)

using FEM, we take the same steps as in Section 6.2. Since the steps are essentially
the same as in Section 6.2 except that we must include the source term, only the major
differences will be highlighted here.

6.3.1 Deriving Element-governing Equations

After the solution region is divided into triangular elements, we approximate the
potential distribution Ve(x, y) and the source term ρse (for two-dimensional prob-
lems) over each triangular element by linear combinations of the local interpolation
polynomial αi , i.e.,

Ve =
3∑

i=1

Veiαi(x, y) (6.41)

ρse =
3∑

i=1

ρeiαi(x, y) (6.42)

The coefficients Vei and ρei , respectively, represent the values of V and ρs at vertex i

of element e as in Fig. 6.3. The values of ρei are known since ρs(x, y) is prescribed,
while the values of Vei are to be determined.
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From Table 4.1, an energy functional whose associated Euler equation is Eq. (6.40)
is

F (Ve) = 1

2

∫
S

[
ε |∇Ve|2 − 2ρseVe

]
dS (6.43)

F(Ve) represents the total energy per length within element e. The first term under the

integral sign,
1

2
D · E = 1

2
ε|∇Ve|2, is the energy density in the electrostatic system,

while the second term, ρseVedS, is the work done in moving the charge ρsedS to its
location at potential Ve. Substitution of Eqs. (6.41) and (6.42) into Eq. (6.43) yields

F (Ve) = 1

2

3∑
i=1

3∑
j=1

εVei

[∫
∇αi · ∇αj dS

]
Vej

−
3∑

i=1

3∑
j=1

Vei

[∫
αiαj dS

]
ρej

This can be written in matrix form as

F (Ve) = 1

2
ε
[
Ve

]t [
C(e)

][
Ve

]− [Ve

]t [
T (e)

][
ρe
]

(6.44)

where

C
(e)
ij =

∫
∇αi · ∇αj dS (6.45)

which is already defined in Eq. (6.17) and

T
(e)
ij =

∫
αiαj dS (6.46)

It will be shown in Section 6.8 that

T
(e)
ij =

{
A/12, i �= j

A/6 i = j
(6.47)

where A is the area of the triangular element.
Equation (6.44) can be applied to every element in the solution region. We obtain

the discretized functional for the whole solution region (withN elements and n nodes)
as the sum of the functionals for the individual elements, i.e., from Eq. (6.44),

F(V ) =
N∑
e=1

F (Ve) = 1

2
ε[V ]t [C][V ] − [V ]t [T ][ρ] (6.48)

where t denotes transposition. In Eq. (6.48), the column matrix [V ] consists of the
values of Vei , while the column matrix [ρ] contains n values of the source function ρs
at the nodes. The functional in Eq. (6.48) is now minimized by differentiating with
respect to Vei and setting the result equal to zero.
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6.3.2 Solving the Resulting Equations

The resulting equations can be solved by either the iteration method or the band
matrix method as discussed in Section 6.2.4.

Iteration Method: Consider a solution region in Fig. 6.6 having five nodes so that
n = 5. From Eq. (6.48),

F = 1

2
ε [V1 V2 · · · V5]



C11 C12 · · · C15
C21 C22 · · · C25
...

...

C51 C52 · · · C55





V1
V2
...

V5




− [V1 V2 · · · V5]



T11 T12 · · · T15
T21 T22 · · · T25
...

...

T51 T52 · · · T55





ρ1
ρ2
...

ρ5


 (6.49)

We minimize the energy by applying

∂F

∂Vk

= 0, k = 1, 2, . . . , n (6.50)

From Eq. (6.49), we get
∂F

∂V1
= 0, for example, as

∂F

∂V1
= ε [V1C11 + V2C21 + · · · + V5C51]− [T11ρ1 + T21ρ2 + · · · + T51ρ5] = 0

or

V1 = − 1

C11

5∑
i=2

ViCi1 + 1

εC11

5∑
i=1

Ti1ρi (6.51)

Thus, in general, for a mesh with n nodes

Vk = − 1

Ckk

n∑
i=1,i �=k

ViCki + 1

εCkk

n∑
i=1

Tkiρi (6.52)

where node k is assumed to be a free node.
By fixing the potential at the prescribed nodes and setting the potential at the free

nodes initially equal to zero, we apply Eq. (6.52) iteratively to all free nodes until
convergence is reached.

Band Matrix Method: If we choose to solve the problem using the band matrix
method, we let the free nodes be numbered first and the prescribed nodes last. By
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doing so, Eq. (6.48) can be written as

F(V ) = 1

2
ε
[
Vf Vp

] [Cff Cfp

Cpf Cpp

] [
Vf

Vp

]
− [Vf Vp

] [Tff Tfp
Tpf Tpp

] [
ρf
ρp

]
(6.53)

Minimizing F(V ) with respect to Vf , i.e.,

∂F

∂Vf

= 0

gives
0 = ε

(
Cff Vf + Cpf Vp

)− (Tff ρf + Tfpρp
)

or

[
Cff

] [
Vf

] = − [Cfp

] [
Vp

]+ 1

ε

[
Tff

] [
ρf
]+ 1

ε

[
Tfp

] [
ρp
]

(6.54)

This can be written as

[A][V ] = [B] (6.55)

where [A] = [Cff ], [V ] = [Vf ] and [B] is the right-hand side of Eq. (6.54). Equa-
tion (6.55) can be solved to determine [V ] either by matrix inversion or Gaussian
elimination technique discussed in Appendix D. There is little point in giving ex-
amples on applying FEM to Poisson’s problems, especially when it is noted that the
difference between Eqs. (6.28) and (6.52) or Eqs. (6.54) and (6.31) is slight. See [19]
for an example.

6.4 Solution of the Wave Equation

A typical wave equation is the inhomogeneous scalar Helmholtz’s equation

∇2#+ k2# = g (6.56)

where # is the field quantity (for waveguide problem, # = Hz for TE mode or Ez

for TM mode) to be determined, g is the source function, and k = ω
√
µε is the

wave number of the medium. The following three distinct special cases of Eq. (6.56)
should be noted:

(i) k = 0 = g: Laplace’s equation;

(ii) k = 0: Poisson’s equation; and

(iii) k is an unknown, g = 0: homogeneous, scalar Helmholtz’s equation.
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We know from Chapter 4 that the variational solution to the operator equation

L# = g (6.57)

is obtained by extremizing the functional

I (#) =< L,# > −2 < #, g > (6.58)

Hence the solution of Eq. (6.56) is equivalent to satisfying the boundary conditions
and minimizing the functional

I (#) = 1

2

∫∫ [
|∇#|2 − k2#2 + 2#g

]
dS (6.59)

If other than the natural boundary conditions (i.e., Dirichlet or homogeneous Neumann
conditions) must be satisfied, appropriate terms must be added to the functional as
discussed in Chapter 4.

We now express potential # and source function g in terms of the shape functions
αi over a triangular element as

#e(x, y) =
3∑

i=1

αi#ei (6.60)

ge(x, y) =
3∑

i=1

αigei (6.61)

where #ei and gei are, respectively, the values of # and g at nodal point i of element
e.

Substituting Eqs. (6.60) and (6.61) into Eq. (6.59) gives

I (#e) = 1

2

3∑
i=1

3∑
j=1

#ei#ej

∫∫
∇αi · ∇αj dS

− k2

2

3∑
i=1

3∑
j=1

#ei#ej

∫∫
αiαj dS

+
3∑

i=1

3∑
j=1

#eigej

∫∫
αiαj dS

= 1

2

[
#e

]t [
C(e)

][
#e

]
− k2

2

[
#e

]t [
T (e)

][
#e

]+ [#e

]t [
T (e)

][
Ge

]
(6.62)

where [#e] = [#e1,#e2,#e3]t , [Ge] = [ge1, ge2, ge3]t , and [C(e)] and [T (e)] are
defined in Eqs. (6.17) and (6.47), respectively.
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Equation (6.62), derived for a single element, can be applied for all N elements in
the solution region. Thus,

I (#) =
N∑
e=1

I (#e) (6.63)

From Eqs. (6.62) and (6.63), I (#) can be expressed in matrix form as

I (#) = 1

2
[#]t [C][#] − k2

2
[#]t [T ][#] + [#]t [T ][G] (6.64)

where

[#] = [#1,#2, . . . , #N ]t , (6.65a)

[G] = [g1, g2, . . . , gN ]t , (6.65b)

[C], and [T ] are global matrices consisting of local matrices [C(e)] and [T (e)], re-
spectively.

Consider the special case in which the source function g = 0. Again, if free nodes
are numbered first and the prescribed nodes last, we may write Eq. (6.64) as

I = 1

2

[
#f #p

] [Cff Cfp

Cpf Cpp

] [
#f

#p

]

− k2

2

[
#f #p

] [Tff Tfp
Tpf Tpp

] [
#f

#p

]
(6.66)

Setting
∂I

∂#f

equal to zero gives

[
Cff Cfp

] [#f

#p

]
− k2 [Tff Tfp

] [#f

#p

]
= 0 (6.67)

For TM modes, #p = 0 and hence

[
Cff − k2Tff

]
#f = 0 (6.68)

Premultiplying by T −1
ff gives

[
T −1
ff Cff − k2I

]
#f = 0 (6.69)

Letting

A = T −1
ff Cff , k2 = λ, X = #f (6.70a)
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we obtain the standard eigenproblem

(A− λI)X = 0 (6.70b)

where I is a unit matrix. Any standard procedure [7] (or see Appendix D) may
be used to obtain some or all of the eigenvalues λ1, λ2, . . . , λnf and eigenvectors
X1, X2, . . . , Xnf , where nf is the number of free nodes. The eigenvalues are always
real since C and T are symmetric.

Solution of the algebraic eigenvalue problems in Eq. (6.70) furnishes eigenvalues
and eigenvectors, which form good approximations to the eigenvalues and eigenfunc-
tions of the Helmholtz problem, i.e., the cuttoff wavelengths and field distribution
patterns of the various modes possible in a given waveguide.

The solution of the problem presented in this section, as summarized in Eq. (6.69),
can be viewed as the finite element solution of homogeneous waveguides. The idea
can be extended to handle inhomogeneous waveguide problems [8]–[11]. However,
in applying FEM to inhomogeneous problems, a serious difficulty is the appearance of
spurious, nonphysical solutions. Several techniques have been proposed to overcome
the difficulty [12]–[18].

Example 6.3
To apply the ideas presented in this section, we use the finite element analysis to

determine the lowest (or dominant) cutoff wavenumber kc of the TM11 mode in
waveguides with square (a× a) and rectangular (a× b) cross sections for which the
exact results are already known as

kc =
√
(mπ/a)2 + (nπ/b)2

where m = n = 1.
It may be instructive to try with hand calculation the case of a square waveguide

with 2 divisions in the x and y directions. In this case, there are 9 nodes, 8 triangular
elements, and 1 free node (nf = 1). Equation (6.68) becomes

C11 − k2T11 = 0

where C11 and T11 are obtained from Eqs. (6.34), (6.35), and (6.47) as

C11 = a2

2A
, T11 = A, A = a2

8

Hence

k2 = a2

2A2
= 32

a2
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or

ka = 5.656

which is about 27% off the exact solution. To improve the accuracy, we must use
more elements.

The computer program in Fig. 6.11 applies the ideas in this section to find kc. The
main program calls subroutine GRID (to be discussed in Section 6.5) to generate the
necessary input data from a given geometry. Ifnx andny are the number of divisions in
thex andy directions, the total number of elementsne = 2nxny . By simply specifying
the values of a, b, nx , and ny , the program determines kc using subroutines GRID,
INVERSE, and POWER or EIGEN. Subroutine INVERSE available in Appendix D
finds T −1

ff required in Eq. (6.70a). Either subroutine POWER or EIGEN calculates
the eigenvalues. EIGEN finds all the eigenvalues, while POWER only determines the
lowest eigenvalue; both subroutines are available in Appendix D. The results for the
square (a = b) and rectangular (b = 2a) waveguides are presented in Tables 6.5a
and 6.5b, respectively.

Table 6.5 (a) Lowest
Wavenumber for a Square
Waveguide (b = a)

nx ne kca % error
2 8 5.656 27.3
3 18 5.030 13.2
5 50 4.657 4.82
7 98 4.553 2.47
10 200 4.497 1.22
Exact: kca = 4.4429 , ny = nx

Table 6.5 (b) Lowest
Wavenumber for a Rectangular
Waveguide (b = 2a)
nx ne kca % error
2 16 4.092 16.5
4 64 3.659 4.17
6 144 3.578 1.87
8 256 3.549 1.04
Exact: kca = 3.5124 , ny = 2nx
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Figure 6.11
Computer program for Example 6.3 (Continued).
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Figure 6.11
(Cont.) Computer program for Example 6.3 (Continued).
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Figure 6.11
(Cont.) Computer program for Example 6.3.

6.5 Automatic Mesh Generation I — Rectangular Domains

One of the major difficulties encountered in the finite element analysis of con-
tinuum problems is the tedious and time-consuming effort required in data preparation.
Efficient finite element programs must have node and element generating schemes,
referred to collectively as mesh generators. Automatic mesh generation minimizes
the input data required to specify a problem. It not only reduces the time involved
in data preparation, it eliminates human errors introduced when data preparation
is performed manually. Combining the automatic mesh generation program with
computer graphics is particularly valuable since the output can be monitored visually.
Since some applications of the FEM to EM problems involve simple rectangular
domains, we consider the generation of simple meshes [19] here; automatic mesh
generator for arbitrary domains will be discussed in Section 6.6.

Consider a rectangular solution region of size a × b as in Fig. 6.12. Our goal is
to divide the region into rectangular elements, each of which is later divided into
two triangular elements. Suppose nx and ny are the number of divisions in x and y

directions, the total number of elements and nodes are, respectively, given by

ne = 2 nxny

nd = (nx + 1)
(
ny + 1

) 
(6.71)

Thus it is easy to figure out from Fig. 6.12 a systematic way of numbering the elements
and nodes. To obtain the global coordinates (x, y) for each node, we need an array
containing 9xi, i = 1, 2, . . . , nx and 9yj , j = 1, 2, . . . , ny , which are, respectively,
the distances between nodes in the x and y directions. If the order of node numbering
is from left to right along horizontal rows and from bottom to top along the vertical
rows, then the first node is the origin (0,0). The next node is obtained as x → x+9x1
while y = 0 remains unchanged. The following node has x → x +9x2, y = 0, and
so on until 9xi are exhausted. We start the second next horizontal row by starting
with x = 0, y → y +9y1 and increasing x until 9xi are exhausted. We repeat the
process until the last node (nx + 1)(ny + 1) is reached, i.e., when 9xi and 9yi are
exhausted simultaneously.

The procedure presented here allows for generating uniform and nonuniform
meshes. A mesh is uniform if all 9xi are equal and all 9yi are equal; it is nonuni-
form otherwise. A nonuniform mesh is preferred if it is known in advance that the
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Figure 6.12
Discretization of a rectangular region into a nonuniform mesh.

parameter of interest varies rapidly in some parts of the solution domain. This al-
lows a concentration of relatively small elements in the regions where the parameter
changes rapidly, particularly since these regions are often of greatest interest in the
solution. Without the preknowledge of the rapid change in the unknown parameter,
a uniform mesh can be used. In that case, we set

9x1 = 9x2 = · · · = hx

9y1 = 9y2 = · · · = hy (6.72)

where hx = a/nx and hy = b/ny .
In some cases, we also need a list of prescribed nodes. If we assume that all

boundary points have prescribed potentials, the number np of prescribed node is
given by

np = 2
(
nx + ny

)
(6.73)

A simple way to obtain the list of boundary points is to enumerate points on the
bottom, right, top, and left sides of the rectangular region in that order.

The ideas presented here are implemented in the subroutine GRID in Fig. 6.13.
The subroutine can be used for generating a uniform or nonuniform mesh out of a
given rectangular region. If a uniform mesh is desired, the required input parameters
are a, b, nx , and ny . If, on the other hand, a nonuniform mesh is required, we need
to supply nx, ny,9xi, i = 1, 2, . . . , nx , and 9yj , j = 1, 2, . . . , ny . The output
parameters are ne, nd, np, connectivity list, the global coordinates (x, y) of each
node, and the list of prescribed nodes. It is needless to say that subroutine GRID is
not useful for a nonrectangular solution region. See the program in Fig. 6.11 as an
example on how to use subroutine GRID. A more general program for discretizing a
solution region of any shape will be presented in the next section.
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Figure 6.13
Subroutine GRID (Continued).
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Figure 6.13
(Cont.) Subroutine GRID.

6.6 Automatic Mesh Generation II — Arbitrary Domains

As the solution regions become more complex than the ones considered in Sec-
tion 6.5, the task of developing mesh generators becomes more tedious. A number of
mesh generation algorithms (e.g., [21]–[33]) of varying degrees of automation have
been proposed for arbitrary solution domains. Reviews of various mesh generation
techniques can be found in [34, 35].

The basic steps involved in a mesh generation are as follows [36]:

• subdivide solution region into few quadrilateral blocks,

• separately subdivide each block into elements,
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• connect individual blocks.

Each step is explained as follows.

6.6.1 Definition of Blocks

The solution region is subdivided into quadrilateral blocks. Subdomains with dif-
ferent constitutive parameters (σ, µ, ε) must be represented by separate blocks. As
input data, we specify block topologies and the coordinates at eight points describing
each block. Each block is represented by an eight-node quadratic isoparametric ele-
ment. With natural coordinate system (ζ, η), the x and y coordinates are represented
as

x(ζ, η) =
8∑

i=1

αi(ζ, η) xi (6.74)

y(ζ, η) =
8∑

i=1

αi(ζ, η) yi (6.75)

where αi(ζ, η) is a shape function associated with node i, and (xi, yi) are the coordi-
nates of node i defining the boundary of the quadrilateral block as shown in Fig. 6.14.
The shape functions are expressed in terms of the quadratic or parabolic isoparametric
elements shown in Fig. 6.15. They are given by:

αi = 1

4
(1+ ζ ζi) (1+ ηηi) (ζ ζi + ηηi + 1) , i = 1, 3, 5, 7 (6.76)

for corner nodes,

αi = 1

2
ζ 2
i (1+ ζ ζi)

(
1− η2

)
+ 1

2
η2
i (1+ ηηi + 1)

(
1− ζ 2

)
, i = 2, 4, 6, 8 (6.77)

for midside nodes. Note the following properties of the shape functions:

(1) They satisfy the conditions

n∑
i=1

αi(ζ, η) = 1 (6.78a)

αi
(
ζj , ηj

) =
{

1, i = j

0, i �= j
(6.78b)

(2) They become quadratic along element edges (ζ = ±1, η = ±1).
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Figure 6.14
Typical quadrilateral block.

Figure 6.15
Eight-node Serendipity element.

6.6.2 Subdivision of Each Block

For each block, we specify N DIVX and N DIVY , the number of element sub-
divisions to be made in the ζ and η directions, respectively. Also, we specify the
weighting factors (Wζ )i and (Wη)i allowing for graded mesh within a block. In
specifying N DIVX,N DIVY,Wζ , and Wη care must be taken to ensure that the sub-
division along block interfaces (for adjacent blocks) are compatible. We initialize ζ

and η to a value of −1 so that the natural coordinates are incremented according to

ζi = ζi +
2
(
Wζ

)
i

WT
ζ · F

(6.79)

ηi = ηi +
2
(
Wη

)
i

WT
η · F

(6.80)
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where

WT
ζ =

N DIVX∑
j=1

(
Wζ

)
j

(6.81a)

WT
η =

N DIVX∑
j=1

(
Wη

)
j

(6.81b)

and

F =
{

1, for linear elements

2, for quadratic elements

Three element types are permitted: (a) linear four-node quadrilateral elements,
(b) linear three-node triangular elements, (c) quadratic eight-node isoparametric ele-
ments.

6.6.3 Connection of Individual Blocks

After subdividing each block and numbering its nodal points separately, it is nec-
essary to connect the blocks and have each node numbered uniquely. This is ac-
complished by comparing the coordinates of all nodal points and assigning the same
number to all nodes having identical coordinates. That is, we compare the coordi-
nates of node 1 with all other nodes, and then node 2 with other nodes, etc., until
all repeated nodes are eliminated. The listing of the FORTRAN code for automatic
mesh generation is shown in Fig. 6.16; it is essentially a modified version of the one
in Hinton and Owen [36]. The following example taken from [36] illustrates the
application of the code.

Example 6.4
Use the code in Fig. 6.16 to discretize the mesh in Fig. 6.17.

Solution
The input data for the mesh generation is presented in Table 6.6. The subroutine
INPUT reads the number of points (NPOIN) defining the mesh, the number of
blocks (NELEM), the element type (NNODE), the number of coordinate dimen-
sions (NDIME), the nodes defining each block, and the coordinates of each node in
the mesh. The subroutine GENERATE reads the number of divisions and weighting
factors along ζ and η directions for each block. It then subdivides the block into
quadrilateral elements. At this point, the whole input data shown in Table 6.6 have
been read. The subroutine TRIANGLE divides each four-node quadrilateral element
across the shorter diagonal. The subroutine OUTPUT provides the coordinates of
the nodes, element topologies, and material property numbers of the generated mesh.
For the input data in Table 6.6, the generated mesh with 200 nodes and 330 elements
is shown in Fig. 6.18.
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Figure 6.16
FORTRAN code for automatic mesh generation (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation. (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation. (Continued).
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Figure 6.16
(Cont.) FORTRAN code for automatic mesh generation.

Figure 6.17
Solution region of Example 6.4.
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Figure 6.18
The generated mesh corresponding to input data in Table 6.6.

6.7 Bandwidth Reduction

Since most of the matrices involved in FEM are symmetric, sparse, and banded,
we can minimize the storage requirements and the solution time by storing only the
elements involved in half bandwidth instead of storing the whole matrix. To take the
fullest advantage of the benefits from using a banded matrix solution technique, we
must make sure that the matrix bandwidth is as narrow as possible.

If we let d be the maximum difference between the lowest and the highest node
numbers of any single element in the mesh, we define the semi-bandwidth B (which
includes the diagonal term) of the coefficient matrix [C] as

B = (d + 1)f (6.82)

where f is the number of degrees of freedom (or number of parameters) at each node.
If, for example, we are interested in calculating the electric field intensity E for a
three-dimensional problem, then we need Ex,Ey , and Ez at each node, and f = 3
in this case. Assuming that there is only one parameter per node,

B = d + 1 (6.83)
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Table 6.6 Input Data for Automatic Mesh Generation for
the Solution Region in Fig. 6.17

30 6 3 2
1 1 2 3 5 8 7 6 4 1
2 6 7 8 12 15 14 13 11 1
3 6 11 13 17 21 24 26 16 1
4 8 19 28 25 23 18 15 12 1
5 21 22 23 25 28 27 26 24 1
6 8 9 10 20 30 29 28 19 2

1 0.0 0.0
2 2.5 0.0
3 5.0 0.0
4 0.0 2.5
5 5.0 2.5
6 0.0 5.0
7 2.5 5.0
8 5.0 5.0
9 6.5 5.0
10 8.0 5.0
11 0.7196 5.7196
12 4.2803 5.7196
13 1.4393 6.4393
14 2.5 6.0
15 3.5607 6.6493
16 0.0 7.5
17 1.0 7.5
18 4.0 7.5
19 5.0 7.5
20 8.0 7.5
21 1.4393 8.5607
22 2.5 9.0
23 3.5607 8.5607
24 0.7196 9.2805
25 4.2803 9.2805
26 0.0 10.0
27 2.5 10.0
28 2.5 10.0
29 6.5 10.0
30 8.0 10.0
1 7 5
1.0 1.0 1.0 1.0 1.0 1.0 1.0
2.0 1.0 1.0 0.5 0.5
2 7 4
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 0.75 0.5 0.25
3 4 6
1.0 0.75 0.5 0.25
1.0 1.0 1.0 1.0 1.0 1.0
4 6 4
1.0 1.0 2.0 2.0 2.0 2.0
1.0 0.75 0.5 0.25
5 6 4 1.0 1.0 1.0 1.0 1.0 1.0
0.25 0.5 0.75 1.0
6 5 6
1.0 1.0 2.0 2.0 2.0
1.0 1.0 2.0 2.0 2.0 2.0
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The semi-bandwidth, which does not include the diagonal term, is obtained from
Eq. (6.82) or (6.83) by subtracting one from the right-hand side, i.e., for f = 1,

B = d (6.84)

Throughout our discussion in this section, we will stick to the definition of semi-
bandwidth in Eq. (6.84). The total bandwidth may be obtained from Eq. (6.84) as
2B + 1.

The bandwidth of the global coefficient matrix depends on the node numbering.
Hence, to minimize the bandwidth, the node numbering should be selected to min-
imize d . Good node numbering is usually such that nodes with widely different
numbers are widely separated. To minimize d, we must number nodes across the
narrowest part of the region.

Consider, for the purpose of illustration, the mesh shown in Fig. 6.19. If the mesh
is numbered originally as in Fig. 6.19, we obtain de for each element e as

d1 = 2, d2 = 3, d3 = 4, d4 = 5, d5 = 6, d6 = 7 (6.85)

From this, we obtain

d = maximum de = 7

or

B = 7 (6.86)

Figure 6.19
Original mesh with B = 7.
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Alternatively, the semi-bandwidth may be determined from the coefficient matrix,
which is obtained by mere inspection of Fig. 6.19 as

B=7←−−−−−−−−−−−−−−→
1 2 3 4 5 6 7 8

[C] =

1
2
3
4
5
6
7
8




x x x

x x x x x

x x x x

x x x x

x x x

x x x x x

x x x x

x x x




(6.87)

where x indicates a possible nonzero term and blanks are zeros (i.e., Cij = 0, indicat-
ing no coupling between nodes i and j ). If the mesh is renumbered as in Fig. 6.20(a),

d1 = 4 = d2 = d3 = d4 = d5 = d6 (6.88)

and hence
d = maximum de = 4

or

B = 4 (6.89)

Figure 6.20
Renumbered nodes: (a) B = 4, (b) B = 2.

Finally, we may renumber the mesh as in Fig. 6.20(b). In this case

d1 = 2 = d2 = d3 = d4 = d5 = d6 (6.90)

and

d = maximum de = 2 (6.91)
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or

B = 2 (6.92)

The value B = 2 may also be obtained from the coefficient matrix for the mesh in
Fig. 6.20(b), namely,

B=2←−−−→
P Q

[C] =

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8




x x x

x x x x

x x x x x

x x x x

x x x x x

x x x x x

x x x x

x x x


 R

S

(6.93)

From Eq. (6.93), one immediately notices that [C] is symmetric and that terms are
clustered in a band about the diagonal. Hence [C] is sparse and banded so that only
the data within the area PQRS of the matrix need to be stored—a total of 21 terms
out of 64. This illustrates the savings in storage by a careful nodal numbering.

For a simple mesh, hand-labeling coupled with a careful inspection of the mesh (as
we have done so far) can lead to a minimum bandwidth. However, for a large mesh,
a hand-labeling technique becomes a tedious, time-consuming task, which in most
cases may not be successful. It is particularly desirable that an automatic relabeling
scheme is implemented within a mesh generation program. A number of algorithms
have been proposed for bandwidth reduction by automatic mesh renumbering [37]–
[40]. A simple, efficient algorithm is found in Collins [37].

6.8 Higher Order Elements

The finite elements we have used so far have been the linear type in that the shape
function is of the order one. A higher order element is one in which the shape function
or interpolation polynomial is of the order two or more.

The accuracy of a finite element solution can be improved by using finer mesh or
using higher order elements or both. A discussion on mesh refinement versus higher
order elements is given by Desai and Abel [2]; a motivation for using higher order
elements is given by Csendes in [41]. In general, fewer higher order elements are
needed to achieve the same degree of accuracy in the final results. The higher order
elements are particularly useful when the gradient of the field variable is expected
to vary rapidly. They have been applied with great success in solving EM-related
problems [4], [41]–[46].
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6.8.1 Pascal Triangle

Higher order triangular elements can be systematically developed with the aid of the
so-called Pascal triangle given in Fig. 6.21. The family of finite elements generated
in this manner with the distribution of nodes illustrated in Fig. 6.22. Note that in
higher order elements, some secondary (side and/or interior) nodes are introduced in
addition to the primary (corner) nodes so as to produce exactly the right number of
nodes required to define the shape function of that order. The Pascal triangle contains
terms of the basis functions of various degrees in variables x and y. An arbitrary
function #i(x, y) can be approximated in an element in terms of a complete nth
order polynomial as

#(x, y) =
m∑
i=1

αi#i (6.94)

where

m = 1

2
(n+ 1)(n+ 2) (6.95)

is the number of terms in complete polynomials (also the number of nodes in the
triangle). For example, for second order (n = 2) or quadratic (six-node) triangular
elements,

#e(x, y) = a1 + a2x + a3y + a4xy + a5x
2 + a6y

2 (6.96)

This equation has six coefficients, and hence the element must have six nodes. It
is also complete through the second order terms. A systematic derivation of the
interpolation function α for the higher order elements involves the use of the local
coordinates.

Figure 6.21
The Pascal Triangle. The first row is: (constant, n = 0), the second: (linear,
n = 1), the third: (quadratic, n = 2), the fourth: (cubic, n = 3), the fifth:
(quartic, n = 4).
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Figure 6.22
The Pascal triangle and the associated polynomial basis function for degreen = 1
to 4.

6.8.2 Local Coordinates

The triangular local coordinates (ξ1, ξ2, ξ3) are related to Cartesian coordinates
(x, y) as

x = ξ1x1 + ξ2x2 + ξ3x3 (6.97)

y = ξ1y1 + ξ2y2 + ξ3y3 (6.98)

The local coordinates are dimensionless with values ranging from 0 to 1. By
definition, ξi at any point within the triangle is the ratio of the perpendicular distance
from the point to the side opposite to vertex i to the length of the altitude drawn from
vertex i. Thus, from Fig. 6.23 the value of ξ1 at P, for example, is given by the ratio
of the perpendicular distance d from the side opposite vertex 1 to the altitude h of
that side, i.e.,

ξ1 = d

h
(6.99)

Alternatively, from Fig. 6.23, ξi at P can be defined as

ξi = Ai

A
(6.100)

so that

ξ1 + ξ2 + ξ3 = 1 (6.101)

since A1 + A2 + A3 = A. In view of Eq. (6.100), the local coordinates ξi are also
called area coordinates. The variation of (ξ1, ξ2, ξ3) inside an element is shown in
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Fig. 6.24. Although the coordinates ξ1, ξ2, and ξ3 are used to define a point P, only two
are independent since they must satisfy Eq. (6.101). The inverted form of Eqs. (6.97)
and (6.98) is

ξi = 1

2A
[ci + bix + aiy] (6.102)

where

ai = xk − xj ,
bi = yj − yk ,
ci = xjyk − xkyj
A = area of the triangle = 1

2
(b1a2 − b2a1) , (6.103)

and (i, j, k) is an even permutation of (1,2,3). (Notice that ai and bi are the same as
Qi and Pi in Eq. (6.34).) The differentiation and integration in local coordinates are
carried out using [47]:

∂f

∂ξ1
= a2

∂f

∂x
− b2

∂f

∂y
(6.104a)

∂f

∂ξ2
= −a1

∂f

∂x
+ b1

∂f

∂y
(6.104b)

∂f

∂x
= 1

2A

(
b1
∂f

∂ξ1
+ b2

∂f

∂ξ2

)
(6.104c)

∂f

∂y
= 1

2A

(
a1
∂f

∂ξ1
+ a2

∂f

∂ξ2

)
(6.104d)

∫∫
f dS = 2A

∫ 1

0

[∫ 1−ξ2

0
f (ξ1, ξ2) dξ1

]
dξ2 (6.104e)

∫∫
ξ i1ξ

j

2 ξ
k
3 dS =

i! j ! k!
(i + j + k + 2)!2A (6.104f)

dS = 2Adξ1 dξ2 (6.104g)

6.8.3 Shape Functions

We may now express the shape function for higher order elements in terms of local
coordinates. Sometimes, it is convenient to label each point in the finite elements in
Fig. 6.22 with three integers i, j , and k from which its local coordinates (ξ1, ξ2, ξ3)

can be found or vice versa. At each point Pijk

(ξ1, ξ2, ξ3) =
(
i

n
,
j

n
,
k

n

)
(6.105)
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Figure 6.23
Definition of local coordinates.

Figure 6.24
Variation of local coordinates.
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Hence if a value of �, say �ijk , is prescribed at each point Pijk , Eq. (6.94) can be
written as

�(ξ1, ξ2, ξ3) =
m∑
i=1

m−i∑
j=1

αijk (ξ1, ξ2, ξ3)�ijk (6.106)

where

α� = αijk = pi (ξ1) pj (ξ2) pk (ξ3) , � = 1, 2, . . . (6.107)

pr(ξ) =




1

r!
r−1∏
t=0

(nξ − t), r > 0

1, r = 0

(6.108)

and r ∈ (i, j, k). pr(ξ) may also be written as

pr(ξ) = (nξ − r + 1)

r
pr−1(ξ), r > 0 (6.109)

where p0(ξ) = 1.

The relationships between the subscripts q ∈ {1, 2, 3} on ξq, � ∈ {1, 2, . . . , m}
on α�, and r ∈ (i, j, k) on pr and Pijk in Eqs. (6.107) to (6.109) are illustrated in
Fig. 6.25 for n ranging from 1 to 4. Henceforth point Pijk will be written as Pn for
conciseness.

Figure 6.25
Distribution of nodes over triangles for n = 1 to 4. The triangles are in standard
position (Continued).
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Figure 6.25
(Cont.) Distribution of nodes over triangles for n = 1 to 4. The triangles are in
standard position.

Notice from Eq. (6.108) or Eq. (6.109) that

p0(ξ) = 1

p1(ξ) = nξ
p2(ξ) = 1

2
(nξ − 1)nξ

p3(ξ) = 1

6
(nξ − 2)(nξ − 1)nξ

p4(ξ) = 1

24
(nξ − 3)(nξ − 2)(nξ − 1)nξ, etc (6.110)

Substituting Eq. (6.110) into Eq. (6.107) gives the shape functions α� for nodes
� = 1, 2, . . . , m, as shown in Table 6.7 for n = 1 to 4. Observe that each α� takes
the value of 1 at node � and value of 0 at all other nodes in the triangle. This is easily
verified using Eq. (6.105) in conjunction with Fig. 6.25.

6.8.4 Fundamental Matrices

The fundamental matrices [T ] and [Q] for triangular elements can be derived using
the shape functions in Table 6.7. (For simplicity, the brackets [ ] denoting a matrix
quantity will be dropped in the remaining part of this section.) In Eq. (6.46), the T
matrix is defined as

Tij =
∫∫

αiαj dS (6.46)

From Table 6.7, we substitute α� in Eq. (6.46) and apply Eqs. (6.104f) and (6.104g)
to obtain elements of T . For example, for n = 1,

Tij = 2A
∫ 1

0

∫ 1−ξ2

0
ξiξj dξ1 dξ2
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Table 6.7 Polynomial Basis Function α�(ξ1, ξ2, ξ3, ξ4) for First-, Second-,
Third-, and Fourth-Order

n = 1 n = 2 n = 3 n = 4

α1 = ξ1 α1 = ξ1(2ξ1 − 1) α1 =
1

2
ξ1(3ξ1 − 2)(3ξ1 − 1) α1 =

1

6
ξ1(4ξ1 − 3)(4ξ1 − 2)(4ξ1 − 1)

α2 = ξ2 α2 = 4ξ1ξ2 α2 =
9

2
ξ1(3ξ1 − 1)ξ2 α2 =

8

3
ξ1(4ξ1 − 2)(4ξ1 − 1)ξ2

α3 = ξ3 α3 = 4ξ1ξ3 α3 =
9

2
ξ1(3ξ1 − 1)ξ3 α3 =

8

3
ξ1(4ξ1 − 2)(4ξ1 − 1)ξ3

α4 = ξ2(2ξ2 − 1) α4 =
9

2
ξ1(3ξ2 − 1)ξ2 α4 = 4ξ1(4ξ1 − 1)(4ξ2 − 1)ξ2

α5 = 4ξ2ξ3 α5 = 27ξ1ξ2ξ3 α5 = 32ξ1(4ξ1 − 1)ξ2ξ3

α6 = ξ3(2ξ3 − 1) α6 =
9

2
ξ1(3ξ3 − 1)ξ3 α6 = 4ξ1(4ξ1 − 1)(4ξ3 − 1)ξ3

α7 = 1

2
ξ2(3ξ2 − 2)(3ξ2 − 1) α7 = 8

3
ξ1(4ξ2 − 2)(4ξ2 − 1)ξ2

α8 =
9

2
ξ2(3ξ2 − 1)ξ3 α8 = 32ξ1(4ξ2 − 1)ξ2ξ3

α9 =
9

2
ξ2(3ξ3 − 1)ξ3 α9 = 32ξ1ξ2(4ξ3 − 1)ξ3

α10 =
1

2
ξ3(3ξ3 − 2)(3ξ3 − 1) α10 =

8

3
ξ1(4ξ3 − 2)(4ξ3 − 1)ξ3

α11 =
1

6
ξ2(4ξ2 − 3)(4ξ2 − 2)(4ξ2 − 1)

α12 =
8

3
ξ2(4ξ2 − 2)(4ξ2 − 1)ξ3

α13 = 4ξ2(4ξ2 − 1)(4ξ3 − 1)ξ3

α14 =
8

3
ξ2(4ξ3 − 2)(4ξ3 − 1)ξ3

α15 =
1

6
ξ3(4ξ3 − 3)(4ξ3 − 2)(4ξ3 − 1)

When i 
= j ,

Tij = 2A(1!)(1!)(0!)
4! = A

12
, (6.111a)

when i = j ,

Tij = 2A(2!)
4! = A

6
(6.111b)

Hence

T = A

12


2 1 1

1 2 1
1 1 2


 (6.112)

By following the same procedure, higher order T matrices can be obtained. The T
matrices for orders up to n = 4 are tabulated in Table 6.8 where the factorA, the area
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of the element, has been suppressed. The actual matrix elements are obtained from
Table 6.8 by multiplying the tabulated numbers by A and dividing by the indicated
common denominator. The following properties of the T matrix are noteworthy:

(a) T is symmetric with positive elements;

(b) elements of T all add up to the area of the triangle, i.e.,
m∑
i

m∑
j

Tij = A, since

by definition
m∑
�=1

α� = 1 at any point within the element;

(c) elements for which the two triple subscripts form similar permutations are
equal, i.e., Tijk,prq = Tikj,prq = Tkij,rpq = Tkji,rqp = Tjki,qrp = Tjik,qpr ;
this should be obvious from Eqs. (6.46) and (6.107).

These properties are not only useful in checking the matrix, they have proved useful
in saving computer time and storage. It is interesting to know that the properties are
independent of coordinate system [46].

Table 6.8 Table of T Matrix for n = 1 to 4 (Continued)
n = 1 Common denominator: 12

2 1 1
1 2 1
1 1 2

n = 2 Common denominator: 180
6 0 0 −1 −4 −1
0 32 16 0 16 −4
0 16 32 −4 16 0
−1 0 −4 6 0 −1
−4 16 16 0 32 0
−1 −4 0 −1 0 6

n = 3 Common denominator: 6720

76 18 18 0 36 0 11 27 27 11
18 540 270 −189 162 −135 0 −135 −54 27
18 270 540 −135 162 −189 27 −54 −135 0
0 −189 −135 540 162 −54 18 270 −135 27

36 162 162 162 1944 162 36 162 162 36
0 −135 −189 −54 162 540 27 −135 270 18

11 0 27 18 36 27 76 18 0 11
27 −135 −54 270 162 −135 18 540 −189 0
27 −54 −135 −135 162 270 0 −189 540 18
11 27 0 27 36 18 11 0 18 76
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Table 6.8 (Cont.) Table of T Matrix for n = 1 to 4
n = 4 Common denominator: 56700

290 160 160 −80 160 −80 0 −160 −160 0 −27 −112 −12 −112 −27
160 2560 1280 −1280 1280 −960 768 256 −256 512 0 512 64 256 −112
160 1280 2560 −960 1280 −1280 512 −256 256 768 −112 256 64 512 0
−80 −1280 −960 3168 384 48 −1280 384 −768 64 −80 −960 48 64 −12
160 1280 1280 384 10752 384 256 −1536 −1536 256 −160 −256 −768 −256 −160
−80 −960 −1280 48 384 3168 64 −768 384 −1280 −12 64 48 −960 −80

0 768 512 −1280 256 64 2560 1280 −256 256 160 1280 −960 512 −112
−160 256 −256 384 −1536 −768 1280 10752 −1536 −256 160 1280 384 256 −160
−160 −256 256 −768 −1536 384 −256 −1536 10752 1280 −160 256 384 1280 160

0 512 768 64 256 −1280 256 −256 1280 2560 −112 512 −960 1280 160
−27 0 −112 −80 −160 −12 160 160 −160 −112 290 160 −80 0 −27
−112 512 256 −960 −256 64 1280 1280 256 512 160 2560 −1280 768 0
−12 64 64 48 −768 48 −960 384 384 −960 −80 −1280 3168 −1280 −80
−112 256 512 64 −256 −960 512 256 1280 1280 0 768 −1280 2560 160
−27 −112 0 −12 −160 −80 −112 −160 160 160 −27 0 −80 160 290
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In Eq. (6.14) or Eq. (6.45), elements of [C] matrix are defined by

Cij =
∫∫ (

∂αi

∂x

∂αj

∂x
+ ∂αi
∂y

∂αj

∂y

)
dS (6.113)

By applying Eqs. (6.104a) to (6.104d) to Eq. (6.113), it can be shown that [4, 43]

Cij = 1

2A

3∑
q=1

cot θq

∫∫ (
∂αi

∂ξq+1
− ∂αi

∂ξq−1

)(
∂αj

∂ξq+1
− ∂αj

∂ξq−1

)
dS

or

Cij =
3∑
q=1

Q
(q)
ij cot θq (6.114)

where θq is the included angle of vertex q ∈ {1, 2, 3} of the triangle and

Q
(q)
ij =

∫∫ (
∂αi

∂ξq+1
− ∂αi

∂ξq−1

)(
∂αj

∂ξq+1
− ∂αj

∂ξq−1

)
dξ1 dξ2 (6.115)

We notice that matrix C depends on the triangle shape, whereas the matrices Q(q)

do not. The Q(1) matrices for n = 1 to 4 are tabulated in Table 6.9. The following
properties of Q matrices should be noted:

(a) they are symmetric;

(b) the row and column sums of any Q matrix are zero, i.e.,
m∑
i=1

Q
(q)
ij = 0 =

m∑
j=1

Q
(q)
ij so that the C matrix is singular.

Q(2) and Q(3) are easily obtained from Q(1) by row and column permutations so
that the matrix C for any triangular element is constructed easily if Q(1) is known.
One approach [48] involves using a rotation matrix R similar to that in Silvester and
Ferrari [4], which is essentially a unit matrix with elements rearranged to correspond
to one rotation of the triangle about its centroid in a counterclockwise direction. For
example, for n = 1, the rotation matrix is basically derived from Fig. 6.26 as

R =

0 0 1

1 0 0
0 1 0


 (6.116)

where Rij = 1 node i is replaced by node j after one counterclockwise rotation, or
Rij = 0 otherwise. Table 6.10 presents the R matrices for n = 1 to 4. Note that each
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Table 6.9 Table of Q Matrices for n = 1 to 4 (Continued)
n = 1 Common denominator: 2 (

0 0 0
0 1 −1
0 −1 1

)

n = 2 Common denominator: 6


0 0 0 0 0 0
0 8 −8 0 0 0
0 −8 8 0 0 0
0 0 0 3 −4 1
0 0 0 −4 8 −4
0 0 0 1 −4 3




n = 3 Common denominator: 80


0 0 0 0 0 0 0 0 0 0
0 135 −135 −27 0 27 3 0 0 −3
0 −135 135 27 0 −27 −3 0 0 3
0 −27 27 135 −162 27 3 0 0 −3
0 0 0 −162 324 −162 0 0 0 0
0 27 −27 27 −162 135 −3 0 0 3
0 3 −3 3 0 −3 34 −54 27 −7
0 0 0 0 0 0 −54 135 −108 27
0 0 0 0 0 0 27 −108 135 −54
0 −3 3 −3 0 3 −7 27 −54 34




Figure 6.26
One counterclockwise rotation of the triangle in (a) gives the triangle in (b).

row or column of R has only one nonzero element since R is essentially a unit matrix
with rearranged elements.

Once the R is known, we obtain

Q(2) = RQ(1) Rt (6.117a)

Q(3) = RQ(2) Rt (6.117b)

where Rt is the transpose of R.
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Table 6.9 (Cont.) Table of Q Matrices for n = 1 to 4
n = 4 Common denominator: 1890

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3968 −3968 −1440 0 1440 640 0 0 −640 −80 0 0 0 80
0 −3968 3968 1440 0 −1440 −640 0 0 640 80 0 0 0 −80
0 −1440 1440 4632 −5376 744 −1248 768 768 −288 80 −128 96 −128 80
0 0 0 −5376 10752 −5376 1536 −1536 −1536 1536 −160 256 −192 256 −160
0 1440 −1440 744 −5376 4632 −288 768 768 −1248 80 −128 96 −128 80
0 640 −640 −1248 1536 −288 3456 −4608 1536 −384 240 −256 192 −256 80
0 0 0 768 −1536 768 −4608 10752 −7680 1536 −160 256 −192 256 −160
0 0 0 768 −1536 768 1536 −7680 10752 −4608 −160 256 −192 256 −160
0 −640 640 −288 1536 −1248 −384 1536 −4608 3456 80 −256 192 −256 240
0 −80 80 80 −160 80 240 −160 −160 80 705 −1232 884 −464 107
0 0 0 −128 256 −128 −256 256 256 −256 −1232 3456 −3680 1920 −464
0 0 0 96 −192 96 192 −192 −192 192 884 −3680 5592 −3680 884
0 0 0 −128 256 −128 −256 256 256 −256 −464 1920 −3680 3456 −1232
0 80 −80 80 −160 80 80 −160 −160 240 107 −464 884 −1232 705
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Table 6.10 R Matrix for n = 1 to 4

n = 1 [
0 0 1
1 0 0
0 1 0

]

n = 2 


0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




n = 3 


0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0




n = 4 


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Example 6.5
For n = 2, calculate Q(1) and obtain Q(2) from Q(1) using Eq. (6.117a).

Solution
By definition,

Q
(1)
ij =

∫∫ (
∂αi

∂ξ2
− ∂αi
∂ξ3

)(
∂αj

∂ξ2
− ∂αj
∂ξ3

)
dξ1 dξ2

For n = 2, i, j = 1, 2, . . . , 6, and αi are given in terms of the local coordinates in
Table 6.7. Since Q(1) is symmetric, only some of the elements need be calculated.
Substituting for α� from Table 6.7 and applying Eqs. (6.104e) and (6.104f), we obtain

Q1j = 0, j = 1 to 6 ,

Qi1 = 0, i = 1 to 6 ,

Q22 = 1

2A

∫∫
(4ξ1)

2 dξ1ξ2 = 8

6
,

Q23 = 1

2A

∫∫
(4ξ1) (−4ξ1) dξ1ξ2 = −8

6
,

Q24 = 1

2A

∫∫
(4ξ1) (4ξ1 − 1) dξ1ξ2 = 0 = Q26 ,

Q25 = 1

2A

∫∫
(4ξ1) (4ξ3 − 4ξ2) dξ1ξ2 = 0 ,

Q33 = 1

2A

∫∫
(−4ξ1)

2 dξ1ξ2 = 8

6
,

Q34 = 1

2A

∫∫
(−4ξ1) (4ξ2 − 1) dξ1ξ2 = 0 = Q36 ,

Q35 = 1

2A

∫∫
(−4ξ1) (4ξ3 − 4ξ2) dξ1ξ2 = 0 ,

Q44 = 1

2A

∫∫
(4ξ2 − 1)2 dξ1ξ2 = 3

6
,

Q45 = 1

2A

∫∫
(4ξ2 − 1) (4ξ3 − 4ξ2) dξ1ξ2 = −4

6
,

Q46 = 1

2A

∫∫
(4ξ2 − 1) (4ξ3 − 1) (−1) dξ1ξ2 = 1

6
,

Q55 = 1

2A

∫∫
(4ξ3 − 4ξ2)

2 dξ1ξ2 = 8

6
,

Q56 = 1

2A

∫∫
(4ξ3 − 4ξ2) (−1) (4ξ3 − 1) dξ1ξ2 = −4

6
,

Q66 = 1

2A

∫∫
(−1) (4ξ3 − 1)2 dξ1ξ2 = 3

6
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Hence

Q(1) = 1

6




0 0 0 0 0 0
0 8 −8 0 0 0
0 −8 8 0 0 0
0 0 0 3 −4 1
0 0 0 −4 8 −4
0 0 0 1 −4 3




We now obtain Q(2) from

Q(2) = RQ(1)Rt

= 1

6
R




0 0 0 0 0 0
0 8 −8 0 0 0
0 −8 8 0 0 0
0 0 0 3 −4 1
0 0 0 −4 8 −4
0 0 0 1 −4 3







0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0




= 1

6




0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0







0 0 0 0 0 0
0 −8 0 0 8 0
0 8 0 0 −8 0
1 0 −4 0 0 3
−4 0 8 0 0 −4
3 0 4 0 0 1




Q(2) = 1

6




3 0 −4 0 0 1
0 8 0 0 −8 0
−4 0 8 0 0 −4
0 0 0 0 0 0
0 −8 0 0 8 0
1 0 −4 0 0 3




6.9 Three-Dimensional Elements

The finite element techniques developed in the previous sections for two-dimen-
sional elements can be extended to three-dimensional elements. One would expect
three-dimensional problems to require a large total number of elements to achieve
an accurate result and demand a large storage capacity and computational time. For
the sake of completeness, we will discuss the finite element analysis of Helmholtz’s
equation in three dimensions, namely,

∇2�+ k2� = g (6.118)

We first divide the solution region into tetrahedral or hexahedral (rectangular prism)
elements as in Fig. 6.27. Assuming a four-node tetrahedral element, the function �
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is represented within the element by

�e = a + bx + cy + dz (6.119)

The same applies to the function g. Since Eq. (6.119) must be satisfied at the four
nodes of the tetrahedral elements,

�ei = a + bxi + cyi + dzi, i = 1, . . . , 4 (6.120)

Figure 6.27
Three-dimensional elements: (a) Four-node or linear-order tetrahedral,
(b) eight-node or linear-order hexahedral.

Thus we have four simultaneous equations (similar to Eq. (6.5)) from which the
coefficients a, b, c, and d can be determined. The determinant of the system of
equations is

det =

∣∣∣∣∣∣∣∣
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
= 6v , (6.121)

where v is the volume of the tetrahedron. By finding a, b, c, and d, we can write

�e =
4∑
i=1

αi(x, y)�ei (6.122)

where

α1 = 1

6v

∣∣∣∣∣∣∣∣
1 x y z

1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, (6.123a)

α2 = 1

6v

∣∣∣∣∣∣∣∣
1 x1 y1 z1
1 x y z

1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, (6.123b)

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2001 by CRC PRESS LLC 



with α3 and α4 having similar expressions. For higher order approximation, the
matrices for αs become large in size and we resort to local coordinates. Another
motivation for using local coordinates is the existence of integration equations which
simplify the evaluation of the fundamental matrices T and Q.

For the tetrahedral element, the local coordinates are ξ1, ξ2, ξ3, and ξ4, each per-
pendicular to a side. They are defined at a given point as the ratio of the distance
from that point to the appropriate apex to the perpendicular distance from the side to
the opposite apex. They can also be interpreted as volume ratios, i.e., at a point P

ξi = vi

v
(6.124)

where vi is the volume bound by P and face i. It is evident that

4∑
i=1

ξi = 1 (6.125a)

or

ξ4 = 1− ξ1 − ξ2 − ξ3 (6.125b)

The following properties are useful in evaluating integration involving local coordi-
nates [47]:

dv = 6v dξ1 dξ2 dξ3 , (6.126a)∫∫∫
f dv = 6v

∫ 1

0

[∫ 1−ξ3

0

(∫ 1−ξ2−ξ3

0
f dξ1

)
dξ2

]
dξ3 , (6.126b)

∫∫∫
ξ i1ξ

j

2 ξ
k
3 ξ

�
4 dv =

i!j !k!�!
(i + j + k + �+ 3)!6v (6.126c)

In terms of the local coordinates, an arbitrary function�(x, y) can be approximated
within an element in terms of a complete nth order polynomial as

�e(x, y) =
m∑
i=1

αi(x, y)�ei (6.127)

where m = 1

6
(n + 1)(n + 2)(n + 3) is the number of nodes in the tetrahedron or

the number of terms in the polynomial. The terms in a complete three-dimensional
polynomial may be arrayed as shown in Fig. 6.28.

Each point in the tetrahedral element is represented by four integers i, j, k, and �
which can be used to determine the local coordinates (ξ1, ξ2, ξ3, ξ4). That is at Pijk�,

(ξ1, ξ2, ξ3, ξ4) =
(
i

n
,
j

n
,
k

n
,
�

n

)
(6.128)
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Figure 6.28
Pascal tetrahedron and associated array of terms.

Hence at each node,

αq = αijk� = pi (ξ1) pj (ξ2) pk (ξ3) p� (ξ4) , (6.129)

where q = 1, 2, . . . , m and pr is defined in Eq. (6.108) or (6.109). The relationship
between the node numbers q and ijk� is illustrated in Fig. 6.29 for the second order
tetrahedron (n = 2). The shape functions obtained by substituting Eq. (6.108) into
Eq. (6.129) are presented in Table 6.11 for n = 1 to 3.

Figure 6.29
Numbering scheme for second-order tetrahedron.

The expressions derived from the variational principle for the two-dimensional
problems in Sections 6.2 to 6.4 still hold except that the fundamental matrices [T ]
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Table 6.11 Shape Functions αq(ξ1, ξ2, ξ3, ξ4) for n = 1 to 3

n = 1 n = 2 n = 3

α1 = ξ1 α1 = ξ1(2ξ2 − 1) α1 = 1

2
ξ1(3ξ1 − 2)(3ξ1 − 1)

α2 = ξ2 α2 = 4ξ1ξ2 α2 = 9

2
ξ1(3ξ1 − 1)ξ2

α3 = ξ3 α3 = 4ξ1ξ3 α3 = 9

2
ξ1(3ξ1 − 1)ξ3

α4 = ξ4 α4 = 4ξ1ξ4 α4 = 9

2
ξ1(3ξ1 − 1)ξ4

α5 = ξ2(2ξ2 − 1) α5 = 9

2
ξ1(3ξ3 − 1)ξ2

α6 = 4ξ2ξ3 α6 = 27ξ1ξ2ξ3

α7 = 4ξ2ξ4 α7 = 27ξ1ξ2ξ4

α8 = ξ2(2ξ3 − 1) α8 = 9

2
ξ1(3ξ3 − 1)ξ3

α9 = 4ξ3ξ4 α9 = 27ξ1ξ3ξ4

α10 = ξ4(2ξ4 − 1) α10 = 9

2
ξ1(3ξ4 − 1)ξ4

α11 = 1

2
ξ2(3ξ2 − 1)(3ξ2 − 2)

α12 = 9

2
ξ2(3ξ2 − 1)ξ3

α13 = 9

2
ξ2(3ξ2 − 1)ξ4

α14 = 9

2
ξ2(3ξ3 − 1)ξ3

α15 = 27ξ2ξ3ξ4

α16 = 9

2
ξ2(3ξ3 − 1)ξ3

α17 = 1

2
ξ3(3ξ3 − 1)(3ξ3 − 2)

α18 = 9

2
ξ3(3ξ3 − 1)ξ4

α19 = 9

2
ξ3(3ξ4 − 1)ξ4

α20 = 1

2
ξ4(3ξ4 − 1)(3ξ4 − 2)
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and [Q] now involve triple integration. For Helmholtz equation (6.56), for example,
Eq. (6.68) applies, namely, [

Cff − k2Tff

]
�f = 0 (6.130)

except that

C
(e)
ij =

∫
v

∇αi · ∇αj dv

=
∫
v

(
∂αi

∂x

∂αj

∂x
+ ∂αi
∂y

∂αj

∂y
+ ∂αi
∂z

∂αj

∂z

)
dv , (6.131)

T
(e)
ij =

∫
v

αiαj dv = v
∫∫∫

αiαj dξ1 dξ2 dξ3 (6.132)

For further discussion on three-dimensional elements, one should consult Silvester
and Ferrari [4]. Applications of three-dimensional elements to EM-related problems
can be found in [49]–[53].

6.10 Finite Element Methods for Exterior Problems

Thus far in this chapter, the FEM has been presented for solving interior problems.
To apply the FEM to exterior or unbounded problems such as open-type transmission
lines (e.g., microstrip), scattering, and radiation problems poses certain difficulties.
To overcome these difficulties, several approaches [54]–[82] have been proposed, all
of which have strengths and weaknesses. We will consider three common approaches:
the infinite element method, the boundary element method, and absorbing boundary
condition.

6.10.1 Infinite Element Method

Consider the solution region shown in Fig. 6.30(a). We divide the entire domain
into a near field (n.f.) region, which is bounded, and a far field (f.f.) region, which is
unbounded. The n.f. region is divided into finite triangular elements as usual, while
the f.f. region is divided into infinite elements. Each infinite elements shares two
nodes with a finite element. Here we are mainly concerned with the infinite elements.

Consider the infinite element in Fig. 6.30(b) with nodes 1 and 2 and radial sides
intersecting at point (xo, yo). We relate triangular polar coordinates (ρ, ξ) to the
global Cartesian coordinates (x, y) as [62]

x = xo + ρ [(x1 − xo)+ ξ (x2 − x1)]

y = yo + ρ [(y1 − yo)+ ξ (y2 − y1)] (6.133)
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Figure 6.30
(a) Division of solution region into finite and infinite elements; (b) typical infinite
element.

where 1 ≤ ρ < ∞, 0 ≤ ξ ≤ 1. The potential distribution within the element is
approximated by a linear variation as

V = 1

ρ
[V1(1− ξ)+ V2ξ ]

or

V =
2∑
i=1

αiVi (6.134)

where V1 and V2 are potentials at nodes 1 and 2 of the infinite elements, α1 and α2
are the interpolation or shape functions, i.e.,

α1 = 1− ξ
ρ

, α2 = ξ

ρ
(6.135)

The infinite element is compatible with the ordinary first order finite element and
satisfies the boundary condition at infinity. With the shape functions in Eq. (6.135), we
can obtain the [C(e)] and [T (e)]matrices. We obtain solution for the exterior problem
by using a standard finite element program with the [C(e)] and [T (e)] matrices of the
infinite elements added to the [C] and [T ] matrices of the n.f. region.
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6.10.2 Boundary Element Method

A comparison between the finite element method (FEM) and the method of mo-
ments (MOM) is shown in Table 6.12. From the table, it is evident that the two
methods have properties that complement each other. In view of this, hybrid methods
have been proposed. These methods allow the use of both MOM and FEM with the
aim of exploiting the strong points in each method.

Table 6.12 Comparison Between Method of Moments and
Finite Element Method [83]

Method of Moments Finite Element Method

Conceptually easy Conceptually involved
Requires problem-dependent Avoids difficulties associated with

Green’s functions singularity of Green’s functions
Few equations;O(n) for 2-D, Many equations;O(n2) for 2-D,
O(n2) for 3-D O(n3) for 3-D

Only boundary is discretized Entire domain is discretized
Open boundary easy Open boundary difficult
Fields by integration Fields by differentiation
Good representation of Good representation of

far-field condition boundary conditions
Full matrices result Sparse matrices result
Nonlinearity, inhomogeneity Nonlinearity, inhomogeneity

difficult easy

One of these hybrid methods is the so-called boundary element method (BEM).
It is a finite element approach for handling exterior problems [68]–[80]. It basically
involves obtaining the integral equation formulation of the boundary value prob-
lem [84], and solving this by a discretization procedure similar to that used in regular
finite element analysis. Since the BEM is based on the boundary integral equivalent
to the governing differential equation, only the surface of the problem domain needs
to be modeled. Thus the dimension of the problem is reduced by one as in MOM. For
2-D problems, the boundary elements are taken to be straight line segments, whereas
for 3-D problems, they are taken as triangular elements. Thus the shape or interpola-
tion functions corresponding to subsectional bases in the MOM are used in the finite
element analysis.

6.10.3 Absorbing Boundary Conditions

To apply the finite element approach to open region problems such as for scattering
or radiation, an artificial boundary is introduced in order to bound the region and limit
the number of unknowns to a manageable size. One would expect that as the boundary
approaches infinity, the approximate solution tends to the exact one. But the closer the
boundary to the radiating or scattering object, the less computer memory is required.
To avoid the error caused by this truncation, an absorbing boundary condition (ABC)
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is imposed on the artificial boundary S, as typically portrayed in Fig. 6.31. The ABC
minimizes the nonphysical reflections from the boundary. Several ABCs have been
proposed [85]–[91]. The major challenge of these ABCs is to bring the truncation
boundary as close as possible to the object without sacrificing accuracy and to absorb
the outgoing waves with little or no reflection. A popular approach is the PML-based
ABC discussed in Section 3.8.3 for FD-TD. The finite element technique is used in
enforcing the condition as a tool for mesh truncation [87].

Figure 6.31
A radiating (or scattering) object surrounded by an absorbing boundary.

Another popular ABC derived Bayliss, Gunzburger, and Turkel (BGT) employs
asymptotic analysis [91]. For example, for the solution of a three-dimensional prob-
lem, an expansion of the scalar Helmholtz equation is [90]:

�(r, θ, φ) = e−jkr

kr

∞∑
i=0

Fi(θ, φ)

(kr)i
(6.136)

The sequence of BGT operators is obtained by the recursion relation

B1 =
(
∂

∂r
+ jk + 1

r

)

Bm =
(
∂

∂r
+ jk + 2m− 1

r

)
Bm−1 , m = 2, 3, . . . (6.137)

Since � satisfies the higher-order radiation condition

Bm� = O
(

1/r2m+1
)

(6.138)
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imposing the mth-order boundary condition

Bm� = 0 on S (6.139)

will compel the solution� to match the first 2m terms of the expansion in Eq. (6.136).
Equation (6.139) along with other appropriate equations is solved for�using the finite
element method.

6.11 Concluding Remarks

An introduction to the basic concepts and applications of the finite element method
has been presented. It is by no means an exhaustive exposition of the subject. How-
ever, we have given the flavor of the way in which the ideas may be developed; the
interested reader may build on this by consulting the references. Several introductory
texts have been published on FEM. Although most of these texts are written for civil or
mechanical engineers, the texts by Silvester and Ferrari [4], Chari and Silvester [41],
Steele [92], Hoole [93], and Itoh [94] are for electrical engineers.

Due to its flexibility and versatility, the finite element method has become a
powerful tool throughout engineering disciplines. It has been applied with great
success to numerous EM-related problems. Such applications are:

• transmission line problems [95]–[97],

• optical and microwave waveguide problems [8]–[17], [92]–[103],

• electric machines [41], [104]–[106],

• scattering problems [71, 72, 75, 107, 108],

• human exposition to EM radiation [109]–[112], and

• others [113]–[116].

Applications of the FEM to time-dependent phenomena can be found in [108],
[117]–[126].

For other issues on FEM not covered in this chapter, one is referred to introductory
texts on FEM such as [2, 4, 36, 41, 47], [92]–[94], [126]–[133]. The issue of edge
elements and absorbing boundary are covered in [126]. Estimating error in finite
element solution is discussed in [52, 124, 125]. The reader may benefit from the
numerous finite element codes that are commercially available. An extensive de-
scription of these systems and their capabilities can be found in [127, 134]. Although
the codes were developed for one field of engineering or the other, they can be applied
to problems in a different field with little or no modification.
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Problems

6.1 For the triangular elements in Fig. 6.32, determine the element coefficient
matrices.

Figure 6.32
For Problem 6.1.

6.2 Find the coefficient matrix for the two-element mesh of Fig. 6.33. Given that
V2 = 10 and V4 = −10, determine V1 and V3.

6.3 Determine the shape functions α1, α2, and α3 for the element in Fig. 6.34.

6.4 Consider the mesh shown in Fig. 6.35. The shaded region is conducting and
has no finite elements. Calculate the global elements C3,10 and C3,3.

6.5 With reference to the finite element in Fig. 6.36, calculate the energy per unit
length associated with the element.
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Figure 6.33
For Problem 6.2.

Figure 6.34
For Problem 6.3.

Figure 6.35
For Problem 6.4.
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Figure 6.36
For Problem 6.5.

6.6 Consider the element whose sides are parallel to the x and y axis, as shown
in Fig. 6.37. Verify that the potential distribution within the elements can be
expressed as

V (x, y) = α1V1 + α2V2 + α3V3 + α4V4

whereVi are the nodal potentials andαi are local interpolating functions defined
as

α1 = (x − x2) (y − y4)

(x1 − x2) (y1 − y4)

α2 = (x − x1) (y − y3)

(x2 − x1) (y2 − y3)

α3 = (x − x4) (y − y2)

(x3 − x4) (y3 − y2)

α4 = (x − x3) (y − y1)

(x4 − x3) (y4 − y1)

6.7 The cross section of an infinitely long rectangular trough is shown in Fig. 6.38;
develop a program using FEM to find the potential at the center of the cross
section. Take εr = 4.5.

6.8 Solve the problem in Example 3.3 using the finite element method.

6.9 Modify the program in Fig. 6.10 to calculate the electric field intensity E at any
point in the solution region.

6.10 The program in Fig. 6.10 applies the iteration method to determine the potential
at the free nodes. Modify the program and use the band matrix method to
determine the potential. Test the program using the data in Example 6.2.

6.11 A grounded rectangular pipe with the cross section in Fig. 6.39 is half-filled
with hydrocarbons (ε = 2.5εo, ρo = 10−5 C/m3). Use FEM to determine the
potential along the liquid-air interface. Plot the potential versus x.

6.12 Solve the problem in Example 3.4 using the finite element method.
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Figure 6.37
For Problem 6.6.

Figure 6.38
For Problem 6.7.

6.13 The cross section of an isosceles right-triangular waveguide is discretized as in
Fig. 6.40. Determine the first 10 TM cutoff wavelengths of the guide.

6.14 Using FEM, determine the first 10 cutoff wavelengths of a rectangular waveg-
uide of cross section 2 cm by 1 cm. Compare your results with exact solution.
Assume the guide is air-filled.

6.15 Use the mesh generation program in Fig. 6.16 to subdivide the solution regions
in Fig. 6.41. Subdivide into as many triangular elements as you choose.
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Figure 6.39
For Problem 6.11.

Figure 6.40
For Problem 6.13.

6.16 Determine the semi-bandwidth of the mesh shown in Fig. 6.42. Renumber the
mesh so as to minimize the bandwidth.

6.17 Find the semi-bandwidth B of the mesh in Fig. 6.43. Renumber the mesh to
minimize B and determine the new value of B.

6.18 Rework Problem 3.18 using the FEM.

Hint: After calculatingV at all free nodes with ε lumped withCij , use Eq. (6.19)
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Figure 6.41
For Problem 6.15.

Figure 6.42
For Problem 6.16.

to calculate W , i.e.,

W = 1

2
[V ]t [C][V ]

Then find the capacitance from

C = 2W

V 2
d

where Vd is the potential difference between inner and outer conductors.
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Figure 6.43
For Problem 6.17.

6.19 Verify the interpolation functions for the six-node quadratic triangular element.

6.20 Using the area coordinates (ξ1, ξ2, ξ3) for the triangular element in Fig. 6.3,
evaluate:

(a)
∫
S
x dS,

(b)
∫
S
x dS,

(c)
∫
S
xy dS

6.21 Evaluate the following integrals:

(a)
∫
S
α3

2 dS,

(b)
∫
S
α1α5 dS,

(c)
∫
S
α1α2α3 dS

6.22 Evaluate the shape functions α1, . . . , α6 for the second-order elements in
Fig. 6.44.

6.23 Derive matrix T for n = 2.

6.24 By hand calculation, obtain Q(2) and Q(3) for n = 1 and n = 2.

6.25 The D(q) matrix is an auxilliary matrix used along with the T matrix to derive
other fundamental matrices. An element of D is defined in [43] as the partial
derivative of αi with respect to ξq evaluated at node Pj , i.e.,

D
(q)
ij =

∂αi

∂ξq

∣∣∣∣
Pi

, i, j = 1, 2, . . . , m

where q ∈ {1, 2, 3}. For n = 1 and 2, deriveD(1). FromD(1), deriveD(2) and
D(3).
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Figure 6.44
For Problem 6.22.

6.26 (a) The matrix K(pq) can be defined as

K
(pq)
ij =

∫∫
∂αi

∂ξp

∂αj

∂ξq
dS

where p, q = 1, 2, 3. Using the D(q) matrix of the previous problem,
show that

K(pq) = D(p)TD(q)t

where t denotes transposition.

(b) Show that the Q(q) matrix can be written as

Q(q) =
[
D(q+1) −D(q−1)

]
T
[
D(q+1) −D(q−1)

]t
Use this formula to derive Q(1) for n = 1 and 2.

6.27 Verify the interpolation function for the 10-node tetrahedral element.

6.28 Using the volume coordinates for a tetrahedron, evaluate∫
z2 dv

Assume that the origin is located at the centroid of the tetrahedron.

6.29 Obtain the T matrix for the first-order tetrahedral element.

6.30 For the tetrahedral cell, obtain the matrix M whose elements are defined by

Mij = 1

v

∫
v

ξiξj dv
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6.31 For the two-dimensional problem, the BGI sequence of operators are defined
by the recurrence relation

Bm =
(
∂

∂ρ
+ jk + 4m− 3

2ρ

)
Bm−1

where Bo = 1. Obtain B1 and B2.
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