
Linear Programming

• Linear programming is the simplest form of constrained optimization because the 

objective function is linear. 

• This implies that the minimum must lie on the boundary of the feasible region. 

• We can specify a linear programming problem in so-called normal form as:

maximize
x

f cTx=

subject to: Ax b=

x 0≥

where x R
n∈  is the vector of decision variables,

b R
m∈  is a vector of constants which define the objective function f x( ) ,

A R
m n×∈  is an m n×  matrix with rank A( ) m n≤= .

•  x 0≥  constrains each of the decision variables to be positive;

• Ax b=  constrains x  to one of the possibly infinite solutions to the linear system 

of equations.

• The x  which satisfy both of these equations define the feasible region from 

which we must choose x  in order to maximize f x( ) .

• If m n= , then only one feasible solution x A 1– b=  exists.



• If one also has inequality constraints given by

ai
Tx bi≤

then one can introduce “slack variables” such that:

ai
Tx xn 1++ bi=

xn 1+ 0≥

This will add one more row to the matrix A , that is ai
T  

one more element b  to the vector b , and  

one more decision variable xn 1+  to the vector of decision variables x .

• In this way we can always convert a linear program with inequality constraints 

into normal form by the addition of slack variables.

• Also, if we were interested in the

minimization of f x( )

instead, then we could

maximize f x( )–

That is, we would substitute c′ c–=



Example: 

Consider a factory in which there are three machines which we will denote as: 

M1 M2 M3, ,  and which are used to make two products, P1 P2, . For each unit of 

P1  made, machines M1 M2,  and M3  have to be run for 5, 3, and 4 minutes 

respectively. For each unit of P2  the numbers are 1, 4, and 3 minutes. Every unit 

of P1  produces a net profit of $30.00 while every unit of P2  produces $20.00 of 

profit. We want to determine which production plan will give us the most profit?

Solution: 

Suppose we produce x1  units of P1  and x2  units of P2  per hour. 

Then the profit we want to maximize can be written as

maximize
x

F 30x1 20x2+=

The constraints are that we cannot use any particular machine for more than 60 

minutes per hour, that is: 

5x1 x2 60≤+ (M1)

3x1 4x2 60≤+ (M2)

4x1 3x2 60≤+ (M3)

x1 0≥

x2 0≥

We can now solve the problem graphically by first sketching the feasibility 

region in the x1 x2,( )  plane.



• The feasibility region is shown shaded in the figure.

• The level or contour lines for the objective functions are straight lines.

• The maximum value will be attained at one of the corners of the boundary of the 

feasible region.

• The maximum of the objective function is attained at point B where its value is 

F = 436.36. Found at the point where the two lines, labelled M1 and M3 

intersect.

 
5x1 x2+ 60=

4x1 3x2+ 60=

from which we get x∗ 10.9 5.5,( )= .
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Graphical sketch of the problem.

• This same problem can be written in normal form by introducing three slack 

variables x3 x4 x5, ,  (i.e. one for every inequality constraint).

• Then we have:

maximize
x

F 30x1 20x2+=

subject to the new equality constrains:

5x1 x2 x3+ + 60=

3x1 4x2 x4+ + 60=

4x1 3x2 x5+ + 60=⎩
⎪
⎨
⎪
⎧

xi 0≥ , i 1 … 5, ,=

• The three equality constraints define a 2-D subspace of the 5-D space of the 

problem (i.e. 5 - 3 = 2).

Therefore, picking values for 2 of the variables, or coordinates, uniquely 

determines the remaining ones.

• Each side of the feasible region in the original problem with the inequality 

constraints has an equation of the form xi 0= . Specifically:

x1 0=  (left side) x2 0=  (bottom)

x3 0=  M1( ) x4 0=  M2( ) x5 0=  M3( )



• Since a vertex of the boundary of the feasible region is the intersection of two 

sides, therefore two of the variables are zero at a vertex point.

• The vertices in the figure are defined as follows:

vertex 0: x1 x2 0= =

vertex A: x2 x3 0= =

vertex B: x3 x5 0= =

vertex C: x4 x5 0= =

vertex D: x1 x4 0= =

The vertex labeled X is defined by setting the two variables: x3 x4 0= =  but it 

is not a feasible point.

• We can generalize these ideas by again considering a general linear programming 

problem written in normal form

maximize
x

f cTx= , x R
n∈ , c R

n∈

subject to: Ax b= , A R
m n×∈ , b R

m∈

x 0≥



• The m equations, Ax b= , define an n m–( )  dimensional subspace in the n  

dimensional space of the coordinates x .

• This implies that n m–( )  coordinates may be chosen arbitrarily and these 

determine the remaining m coordinates.

• A point satisfying the equations Ax b=  and x 0≥  is called a feasible point or 

feasible vector. The feasible vectors define a “polyhedron” in the n m–( )  

dimensional space.

• If n m–( )  of the n  coordinates of a feasible vector are zero, then the vector is 

called a basic feasible vector. 

(These correspond to the vertices of the n m–( ) -dimensional polyhedron).

• If more than n m–( )  coordinates are zero at a feasible vector, then the vector is 

called a degenerate feasible vector.

• The optimal feasible vector (optimal solution) is the feasible vector at which the 

function takes on the largest possible value in the feasible region.

There may exist more than one optimal feasible vector; this is the case when the 

level lines of the function are parallel to one of the sides of the polyhedron. 

This implies that some optimal solution is not basic (i.e. not a vertex).



Theorem: 

Some optimal feasible vector is also a basic feasible vector - i.e. at least n m–  of 

its coordinates are zero. (Geometrically, this means that an optimal feasible 

vector exists at one of the vertices of the polyhedron). The column vectors of the 

equation Ax b=  corresponding to the non-zero coordinates are linearly 

independent. 

• Using this theorem, we can search for the optimal basic feasible vector by trying 

all the

n
n m–⎝ ⎠

⎛ ⎞ n!
n m–( )!m!

--------------------------=

combination of choosing n m–( )  coordinates out of n  to be zero.

This is very inefficient!



Simplex Method

• A more efficient method is to use what is called the simplex method. 

It is an iterative search technique which, starting at one vertex, moves the search 

along the lines defining the polyhedron to another vertex only if the function 

increases at that new vertex. If no movement can be made, then the algorithm 

stops.

• We explain the method by example. Consider the previous example in normal 

form:

maximize
x

F 30x1 20x2+= , x R
5∈

subject to:

5x1 x2 x3+ + 60=

3x1 4x2 x4+ + 60=

4x1 3x2 x5+ + 60=⎩
⎪
⎨
⎪
⎧

xi 0≥ , i 1 … 5, ,=

Step I: Look for a basic feasible vector at which to begin the search. 

We do this by choosing n m–( ) right-hand variables which will be given a value 

of zero and m  left-hand variables whose value we will calculate using only the 

right-hand variables. 

We also express the objective function using only the right-hand variables.



In our example, we have:

x3 60 5x1 x2––=

x4 60 3x1– 4x2–=

x5 60 4x1– 3x2–=

f 30x1 20x2+=

Here we have chosen x1 x2 0= =  and we note that at this point x3 0≥ , 

x4 0≥ , x5 0≥ .

If these inequalities were not satisfied then we would have to choose a another

vertex.

Here, x1 x2 0 x3⇒ x4 x5 60 0>= = = = =  which means that we have a 

feasible point.

Step II: Check the following maximum criterion.

If none of the coefficients in the expression of f  as a function of the present 

right-hand variables is positive, then the maximum criterion is satisfied.

If any of the coefficients are positive, then increasing the right hand variable 

associated with that co-efficient increases f x( )  which means that the maximum 

has not been found.

If the coefficients are negative, this implies that the value of the function cannot 

be increased since the variables must remain positive, xi 0≥ .



Step III: If maximum criterion is not fulfilled, determine the right hand variable 

which, when increased produces the greatest increase in f x( )  while keeping all

the left hand variables 0≥ .

For our example both right-hand variables x1 x2,  have positive coefficients. 

Looking at the first three equations and varying x1  and leaving x2 0=  we 

have:

x3 0≥  if ∆x1
60
5

------≤ 12=  

x4 0≥  if x1∆ 60
3
------≤ 20=  

x5 0≥  if x1∆ 60
4
------≤ 15=

Thus, we can not increase x1  more than x1∆ 12= . Varying x2  while keeping 

x1 0=

x3 0≥  if x2∆ 60≤

x4 0≥  if x2∆ 60
4
------≤ 15=

x5 0≥  if x2∆ 60
3
------≤ 20=

therefore we cannot increase x2  more than x2∆ 15= .



• This procedure can be shortened as follows: identify the right-hand variable in 

the equality constraint equations which has a positive coefficient in f x( )  and is 

allowed to increase the least.

x3 60 5x1– x2– x1∆⇒+ 60
5
------ 12= = = f∆ 30( ) 12( ) 360= =

x4 60 3x1– 4x2 x2∆⇒– 60
4
------ 15= = =  f∆ 20( ) 15( ) 300= =

x5 60 4x1– 3x2–=

f 30x1 20x2+=

• Therefore, changing x1  by x1∆ 12=  will give x3 0=  and produce the biggest 

increase in f .

• This variable will now be the new right-hand variable which implies that we have 

moved to a new vertex.

Step IV: Exchange the right-hand variable, say xR , which gave the greatest value 

for f∆  with the left-hand variable in the constraint equation where xR  is 

identified.



Back to our example, we have

x1
60 x3– x2–

5
----------------------------=

which we substitute into the remaining equations:

x1 12 1
5
---– x2

1
5
---– x3+ +=

x4 60 3( ) 12( )– 3
5
---x2

3
5
---x3 4x2–+ +=

x5 60 4 12( )– 4
5
---x2 x3 3x2–+ +=

f 30 12 1
5
---x2– 1

5
---–⎝ ⎠

⎛ ⎞ x3 20x2+=

• Now repeat steps II, III, and IV until the maximum criterion is satisfied.

• Continuing with our example, we have

x1 12 1
5
---x2– 1

5
---– x3+=

x4 24 17
5
------x2– 3

5
---x3+=

x5 12 11
5
------x2– 4

5
---x3+=  x2∆ 60

11
------=  f∆ 14( ) 60( )

11
---------------------- 840

11
---------= =

f 360 14x2 6x3–+=

Note, we only need to check x2  since the coefficient of x3  is negative. Now 

exchange x5  with x2 :



x2
5

11
------ 12 4

5
---x3 x5–+⎝ ⎠

⎛ ⎞ 60 4x3 5x5–+

11
------------------------------------= =

x4 24 17
5
------

60 4x3 5x5–+

11
------------------------------------– 3

5
---x3+

60 7x3– 17x5+

11
---------------------------------------= =

x1
120 3x3– x5+

11
-----------------------------------=

f
4800 10x3– 70x5–

11
-----------------------------------------------=

• Since none of the coefficients of the new right-hand variables in f x( )  are 

positive, this implies that the maximum criterion is fulfilled, which implies

 fmax
4 800,

11
---------------=

x∗ 120
11

--------- 60
11
------ 0 60

11
------ 0, , , ,⎝ ⎠

⎛ ⎞=

which is the vertex labeled B in our figure.



Some Special Cases

Degenerate feasible vector

• Recall that at a degenerate feasible vector, more than n m–  of its coordinates are 

zero.

• Consider the following example:

maximize f 2x1 2x2 3x3+ +=

subject to: x1 x3+ 1≤

x2 x3+ 1≤

xi 0≥ i 1 2 3, ,=

• The feasible region is  pyramid shown and is defined by 5 vertices labelled 0, A, 

B, C and D.

A

D

B
C

(0, 1, 0)

(1, 1, 0)
(1, 0, 0)

0
(0, 0, 0)

(0, 0, 1)

x3

x2

x2 x3+ 1=

x1 x3+ 1=

x5 0=

x4 0=

x1

Feasible region is inside a pyramid in three dimensional space.



• We now introduce the slack variables x4 x5,  which in normal form gives us 5 

variables and 2 equality constraints. 

Therefore we have

n 5=

m 2= ⎭
⎬
⎫
n m– 3=

degrees of freedom. 

• The equality constraints become

x1 x3 x4+ + 1=

x2 x3 x5+ + 1=

Therefore, setting x4 0=  implies that x1 x3+ 1=  which is the plane defined 

by the vertices ABC.

Setting x5 0=  means that x2 x3+ 1=  and this represents the plane defined by 

the vertices ABD.

• The vertices are defined as follows:

at vertex 0: x1 x2 x3 0= = =

at vertex A: x1 x2 x4 x5 0= = = =  (degenerate)

at vertex B: x3 x4 x5 0= = =

at vertex C: x2 x3 x4 0= = =

at vertex D: x1 x3 x5 0= = =



• Consider the initial basic feasible vector x1 x2 x3 0= = =  which implies the 

origin. If we choose these as the right-hand variables, we have

x4 1= x1 x3––  x1∆ 1 f∆, 2= =  x3∆ 1 f∆, 3= =

x5 1 x2– x3–=  x2∆ 1 f∆, 2= =  x3∆ 1 f∆, 3= =

f 2x1 2x2 3x3+ +=  

Now x3  gives us the largest increase in f  but it can be interchanged with either 

x4  or x5  since either interchange allows us to increase f  by the same amount. 

• Say we choose to interchange x3  with x4 . Then x1 x2 x4, ,( )  will be the new 

right-hand variables which implies that we are at the vertex labelled A.

• Algebraically, we have

x3 1 x1– x4–=  

x5 1 x2– 1 x1– x4–( )– x1 x2– x4+= =  x2∆ 0 f∆, 0= =

f 2x1 2x2 3 1 x1– x4–( )+ + 3 x1– 2x2 3x4–+= =

in which only x2  has a positive coefficient, but we are not allowed to increase 

x2  at all.

• Therefore we exchange x2  and x5  and x1 x4 x5, ,( )  become the new right-hand 

variables, but we are still at vertex A. This is because point A is a degenerate 

feasible vector: 0 0 1 0 0, , , ,( ) .



• We now have:

x2 x1= x4 x5–+  

x3 1 x1– x4–=  x1∆ 1 f∆, 1= =

f 3 x1– 2 x1 x4 x5–+( ) 3x4–+ 3 x1 x4– 2x5–+= =

and we exchange x1  and x3  making x3 x4 x5, ,( )  the new right-hand variables 

which implies that we are now at vertex B.

• This gives us the algebraic system:

x1 1 x3– x4–=

x2 1 x3– x4– x4 x5–+ 1 x3– x5–= =

f 3 1 x3– x4– x4– 2x5–+ 4 x3– 2x4– 2x5–= =

and since all the coefficients are negative the maximum criterion is fulfilled.

• We see that the optimal solution is given by

x∗ 1 1 0 0 0, , , ,( )=

for which we have fmax 4= .

• Thus, we have seen that once we reach a degenerate feasible vector, it may take 

more than one exchange of right-hand variables to left-hand variables in order to 

reach another basic feasible vector.



Difficulty in Finding Starting Points

• A second difficulty may arise when the origin is not feasible. Now we may not 

know how to find a basic feasible vector as a starting point. We demonstrate how 

to overcome this difficulty by example.

Example: Consider the following problem:

maximize f x1 x2–=

subject to: 2x1 x2+ 2–≤–

x1 2x2– 2≤

x1 x2+ 5≤

xi 0≥ i 1 2,=

The graph of this problem is shown below.

A
B

C

D

x2

x1

2x1– x2+ 2–=

x1 x2+ 5= x5 0=( )

x1 2x2– 2= x4 0=( )

x3 0=( )

Feasible region is polygon enclosed by ABCD



• Introducing the slack variables x3 x4 x5, ,  we see that n 5= , m 3=  and 

therefore we have n m– 2=  degrees of freedom (i.e. 2 right-hand variables). In 

normal form the problem is written as:

f x1 x2–=

2x1– x2 x3+ + 2–=

x1 2x2– x4+ 2=

x1 x2 x5+ + 5=

xi 0≥ i 1 2 3 4 5, , , ,=( )

Now we notice that the origin x1 0= , x2 0=  is not feasible!

• A general technique to find a starting point is the introduction of a new artificial 

variable. Notice that if we tried to use the origin as the first basic feasible vector 

then we would get the system

x3 2– 2x1 x2–+=

x4 2 x1– 2x2+=

x5 5 x1– x2–=

and since the right-hand variables are set to zero, that is x1 x2 0= = , we 

would have x3 2– 0<=  which violates the xi 0≥  constraint.



• We now introduce the artificial variable x6 0≥  in the offending equation. The 

number of equations remains the same but the number of variables has increased 

by 1, therefore we can set n 1+( ) m– n m–( ) 1+=  variables equal to zero. We 

add the artificial variable to the equation

x3 2– 2x1 x2– x6+ +=

and move the new variable to the left

x6 2 2x1– x2 x3+ +=

• Now choosing x1 x2 x3, ,( )  as the right-hand variables, we will have x6 0≥  

which is feasible. In the final solution we require that x6 0=  and this will imply 

that 2– 2x1 x2–+ x3= . To ensure this we modify the objective function as:

f̂ x1 x2– Mx6–=

where M  is a very large positive number.

• Therefore, in order to maximize this, we require x6 0→ , and in terms of the 

right-hand variables:

x6 2 2x1– x2 x3+ +=  x1∆ 1 f∆, 1 2M+= =

x4 2 x1– 2x2+=

x5 5 x1– x2–=

f̂ x1 x2– M 2 2x1– x2 x3+ +( )– 1 2M+( )x1 1 M+( )x2 Mx3– 2M––= =



• Now we see that only the variable x1  has a positive coefficient. We exchange x1  

and x6  and get

x1
2 x2 x3 x6–+ +

2
--------------------------------------=

x4 2 1 1
2
---x2

1
2
---x3

1
2
---x6–+ + 2x2+– 1 3

2
---x2

1
2
---x3– 1

2
---x6+ += =

x5 5 1 1
2
---x2

1
2
---x3

1
2
---x6–+ +– x2– 4 3

2
---x2– 1

2
---x3– 1

2
---x6+= =

f̂ 1 2M+( ) 1 1
2
---x2

1
2
---x3

1
2
---x6–+ + 1 M+( )x2– Mx3– 2M–=

1 1
2
---x2– 1

2
---x3

1
2
---x6– Mx6–+=

• Now since x6  has become the right hand variable, it can be set to zero and 

removed. The new right-hand variables are x2  and x3  which implies point A. We 

have

x1 1
x2
2
-----

x3
2
-----+ +=

x4 1 3
2
---x2

1
2
---x3–+=  x3∆ 2 f∆, 1= =

x5 4 3
2
---x2– 1

2
---x3–=

f 1 1
2
---x2– 1

2
---x3+=



• We exchange x3  and x4 : right hand variables x2 x4,  which implies Point B.

x3 2 3x2 2x4–+=

x1 1 1
2
---x2

1
2
--- 2 3x2 2x4–+[ ]+ + 2 2x2 x4–+= =

x5 4 3
2
---x2– 1

2
--- 2 3x2 2x4–+[ ]– 3 3x2– x4+= =  x2∆ 1 f∆, 1= =

f 1 1
2
---x2– 1

2
--- 2 3x2 2x4–+[ ]+ 2 x2 x4–+= =

• We exchange x2  and x5  and the right-hand variables become x4 x5,  which 

implies point C.

x2 1 1
3
---x4– 1

3
---x5–=

x3 2 3 1 1
3
---x4– 1

3
---x5– 2x4–+ 5 3x4– x5–= =

x1 2 2 1 1
3
---x4– 1

3
---x5– x4–+ 4 5

3
---x4– 2

3
---x5–= =

f 2 1 1
3
---x4– 1

3
---x5– x4–+ 3 4

3
---x4– 1

3
---x5–= =

• Since all the coefficients are negative, the maximum criterion is satisfied and we 

have 

fmax 3=  at 4 1 5 0 0, , , ,( )

which is point C.



Multiple Optimal Solutions:

• If the level lines of the objective function are parallel to one of the sides of the 

feasible region, then a multiple optimal solution will occur along that side. Of 

course, there is still only one value for fmax  and fmin .

• This condition will manifest itself algebraically by the absence of one or more of 

the right-hand variables in the final form of the objective function.



Example: Optimal Utilization of a Communications Network

• It is quite remarkable to find such a large number of applications which can be 

formulated as a linear program. 

• Consider a communications network in which we have:

1) N stations in which messages are sent, relayed, and received;

2) a set of links connecting the stations over which the messages travel; and

3) a set of messages.

• The following notation and terminology is now used:

T is the interval of time over which messages are sent, received and relayed.

aij  are the demand coefficients which represent the number of messages 

originating at station i per time T and destined for another station j.

cij  is the capacity of the direct link from station i to j during period T.

si  is the switching capacity at station i during the time interval T. (i.e. number of 

messages entering and leaving the ith  node during T cannot exceed si .

xijk  is the number of messages sent from station i (not necessarily originating at 

i) over one link to another station j during T and destined for k i≠ .

xiik 0= ik∀  combinations

xiji 0= ij∀  combinations

P1  is the ratio of the number of delivered messages to the number of originating 

messages during T.

• The optimal routing or utilization problem tries to optimize P1



Therefore we can write the objective function as

maximize
x

P1

xijj
i j,
∑

aij
i j,
∑
---------------=

where xijj  is the number of messages which have been delivered.

• We have an inequality constraint related to the demand for messages

ximj
m
∑ xmij

m
∑– aij≤ i j,∀ i j≠

where ximj  are the messages sent from i to m and destined for j and xmij  are the 

messages sent from m to i and destined for j.

The first term on the left of the inequality represents the total number of 

messages sent out from i and destined for j.

The second term represents the total number of messages coming into i destined 

for j from all other nodes.



• The total number of messages sent out from i and destined for j must be less than 

the total number of messages originating at i plus the messages using i as an 

intermediate node with j as the destination node.

aij

ximj
m
∑

xmij
m
∑

i

destination node

j
rest of network

Demand limitation constraint.

• The next set of inequalities are related to link capacity:

xijk
k
∑ cij≤ i j,∀ i j≠

• switching centre capacity for messages leaving node i:

xijk
j k,
∑ si≤ i∀

• and switching centre capacity for messages entering node i:

xkij
j k,
∑ si≤ i∀ .



2 1

3

S1 (capacity of station 1)

demand coefficients
a12

a13⎩ ⎭
⎨ ⎬
⎧ ⎫

C31
(link capacity)

S3

S2

C23
C13

C13

C21

(capacity of station 3)

a21

a23⎩ ⎭
⎨ ⎬
⎧ ⎫

C32

a31

a32⎩ ⎭
⎨ ⎬
⎧ ⎫

Example network with three nodes.

• The linear program associated with this network can be written as

maximize
x

P1
x122 x133 x211 x233 x311 x322+ + + + +

a12 a13 a21 a23 a31 a32+ + + + +
-----------------------------------------------------------------------------------------------=

subject to the demand constraints:

x122 x132 x312–+ a12≤

x123 x133 x213–+ a13≤

x231 x211 x321–+ a21≤

x233 x213 x123–+ a23≤

x311 x321 x231–+ a31≤

x312 x322 x132–+ a32≤



• the link capacity constraints:

x122 x123+ C12≤

x132 x133+ C13≤

x211 x213+ C21≤

x231 x233+ C23≤

x311 x312+ C31≤

x321 x322+ C32≤

• switch capacity constraints for messages leaving each node

x122 x123 x132 x133+ + + S1≤

x211 x213 x231 x233+ + + S2≤

x311 x312 x321 x322+ + + S3≤

• and switch capacity constraints for messages entering each node

x211 x213 x311 x312+ + + S1≤

x122 x123 x321 x322+ + + S2≤

• The message demands, aij , may change depending on the time period (business 

hours, night time, etc.) therefore, the decision on how to choose xijk  so as to 

maximize P1  may have to be determined many times a day from estimates of the 

demands.



2 1

3

S1 5=
a12 2=

a13 1=⎩ ⎭
⎨ ⎬
⎧ ⎫

C31 2=

S3 6=

S2 4=

C23 2=

C13 3=

C12 3=

C21 1=

a21 1=

a23 2=⎩ ⎭
⎨ ⎬
⎧ ⎫

C32 2=

a31 2=

a32 2=⎩ ⎭
⎨ ⎬
⎧ ⎫

Specific network with three nodes.

• The variables are: 

x

x122 x132 x123 x133
x211 x231 x233 x213
x311 x321 x322 x312

=

and the linear program is written as

maximize
x

P1
x122 x133 x211 x233 x311 x322+ + + + +

a12 a13 a21 a23 a31 a32+ + + + +
-----------------------------------------------------------------------------------------------=

that is

maximize
x

P1
1
10
------ x122 x133 x211 x233 x311 x322+ + + + +( )=



• The next equations are the demand limitation constraints:

i 1= , j 2= , x122 x132+ x312– 2≤

i 1= , j 3= , x123 x133+ x213– 1≤

i 2= , j 1= , x211 x231+ x321– 1≤

i 2= , j 3= , x213 x233+ x123– 2≤

i 3= , j 1= , x311 x321+ x231– 2≤

i 3= , j 2= , x312 x322+ x132– 2≤

the link capacity constraints

x122 x123+ C12≤ 3=

x132 x133+ C13≤ 3=

x211 x213+ C21≤ 1=

x231 x233+ C23≤ 2=

x311 x312+ C31≤ 2=

x321 x322+ C32≤ 2=

the switch capacity constraints for messages leaving each node

x122 x123 x132 x133+ + + S1≤ 5=

x211 x213 x231 x233+ + + S2≤ 4=

x311 x312 x321 x322+ + + S3≤ 6=

and the switch capacity constraints for messages entering each node

x211 x213 x311 x312+ + + S1≤ 5=

x122 x123 x321 x322+ + + S2≤ 4=

x131 x132 x231 x233+ + + S3≤ 6=



Another Look at Basic Solutions

• Recall that a linear program can be written in normal or standard form.

minimize
x

f cTx= , x R
n∈ , c R

n∈

subject to: Ax b= , A R
m n×∈ , b R

m∈

x 0≥

with m n< , rank A m= , and b 0≥ . Now consider the equality constraints 

Ax b= .

• Let B  be an mxm matrix whose columns are linearly independent, and re-write:

A B D,[ ]=

where D is a m m n–( )×  matrix. Since the matrix B  is non-singular we can 

write

BxB b= , xB R
m∈

and 

xB B 1– b= .

• If we let

x xB
0

=

then x  is a solution of Ax b= . We now make the following definitions:



Definitions

• x xB 0
T

= R
n∈  is a basic solution of Ax b=  with respect to the basis B . The 

components of xB  are called basic variables, (or left hand variables). The 

columns of B  are called basic columns.

• if some basic variables of a basic solution are zero then the solution is called a 

degenerate basic solution.

• if x  satisfies Ax b=  and x 0≥  then x  is called a feasible solution.

• if a feasible solution is also basic it is called a basic feasible solution.

• if a basic feasible solution is also degenerate then we call it a degenerate basic 

feasible solution.

Consider the problem defined by

A 2 3 1– 1–
4 1 1 2–

= , b 1–
9

=

and form the augmented matrix A b,[ ] :

A b,[ ] 2 3 1– 1– 1–
4 1 1 2– 9

=

we now perform elementary row operations to get

1 0 2 5⁄ 1– 2⁄ 14 5⁄
0 1 3– 5⁄ 0 11– 5⁄

.



• This implies that the general solution can be written with two parameters, 

s t R∈, , as

x1
14
5

------= 2
5
---s– 1

2
---t+

x2
11
5

------– 3
5
---s+=

x3 s=

x4 t=

x

14 5⁄
11– 5⁄

0
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

s

2– 5⁄
3 5⁄

1
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+= t

1 2⁄
0
0
1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

• Note that x v h+=  where

v

14 5⁄
11– 5⁄

0
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= h s

2– 5⁄
3 5⁄

1
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= t

1 2⁄
0
0
1⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

with Av b= , Ah 0= . We say that h  is in the null space of A . We now can set 

the parameters so as to make any two elements of x  equal to 0. There are six 

ways we can do this.



1) If we choose s t 0= =  then we have x3 x4 0= =  which implies the basis is 

B a1 a2,[ ]=  which is the same as solving:

2 3
4 1

x1
x2

1–
9

=
x1
x2

⇒ 14 5⁄
11– 5⁄

=

which is a basic solution, but since x2 0<  this is not a basic feasible solution.

2) If we choose s  and t  such as to set x2 x4 0= =  then this implies that the basis 

is B a1 a3,[ ]=  which is the same as solving:

2 1–
4 1

x1
x3

1–
9

=
x1
x3

⇒ 4 3⁄
11 3⁄

=

which is a basic feasible solution.

3) If we choose s  and t  such as to set x2 x3 0= =  then this implies that

B a1 a4
2 1–
4 2–

= =

which is singular and therefore B  is not a basis.

4) If we choose s  and t  such as to set x1 x4 0 B⇒ a2 a3,= = =  then we get 

x

0
2
7
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

which is basic feasible.



5) If we choose s  and t  such as to set x1 x3 0 B⇒ a2 a4,[ ]= = = , then we get

x

0
11– 5⁄

0
28– 5⁄⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

which is basic but not feasible.

6) If we choose s  and t  such as to set x1 x2 0 B⇒ a3 a4,[ ]= = = , then we get

x

0
0

11 3⁄
8– 3⁄⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

which is basic but not feasible.

• Notice that the number of ways we can choose 2 elements of x  to be zero given 

that it has 4 elements is 4
2⎝ ⎠

⎛ ⎞ 4!
2!2!
---------- 6= =  choices; or more generally 

n
n m–⎝ ⎠

⎛ ⎞ n
m⎝ ⎠

⎛ ⎞= .

Definitions

• any x  which minimizes the objective function cTx  and satisfies the constraints 

Ax b= , A R
m n×∈  and x 0≥  is said to be an optimal feasible solution.

• an optimal feasible solution which is basic is said to be an optimal basic feasible 

solution.



• Theorem: fundamental theorem of linear program.

given a linear program in standard form:

• if there exists a feasible solution, then there exists is a basic feasible solution.

• if there exists an optimal feasible solution, then there exists an optimal basic 

feasible solution.


	Linear Programming
	. Linear programming is the simplest form of constrained optimization because the objective function is linear.
	. This implies that the minimum must lie on the boundary of the feasible region.
	. We can specify a linear programming problem in so-called normal form as:
	subject to:

	where is the vector of decision variables,
	is a vector of constants which define the objective function ,
	is an matrix with .
	. constrains each of the decision variables to be positive;
	. constrains to one of the possibly infinite solutions to the linear system of equations.
	. The which satisfy both of these equations define the feasible region from which we must choose in order to maximize .
	. If , then only one feasible solution exists.
	. If one also has inequality constraints given by

	then one can introduce “slack variables” such that:
	This will add one more row to the matrix , that is one more element to the vector , and one more decision variable to the vector of decision variables .
	. In this way we can always convert a linear program with inequality constraints into normal form by the addition of slack variables.
	. Also, if we were interested in the
	minimization of

	instead, then we could
	maximize

	That is, we would substitute
	Example:

	Consider a factory in which there are three machines which we will denote as: and which are used to make two products, . For eac...
	Solution:

	Suppose we produce units of and units of per hour. Then the profit we want to maximize can be written as
	The constraints are that we cannot use any particular machine for more than 60 minutes per hour, that is:
	(M1)
	(M2)
	(M3)

	We can now solve the problem graphically by first sketching the feasibility region in the plane.
	. The feasibility region is shown shaded in the figure.
	. The level or contour lines for the objective functions are straight lines.
	. The maximum value will be attained at one of the corners of the boundary of the feasible region.
	. The maximum of the objective function is attained at point B where its value is F = 436.36. Found at the point where the two lines, labelled M1 and M3 intersect.

	from which we get .
	Graphical sketch of the problem.
	. This same problem can be written in normal form by introducing three slack variables (i.e. one for every inequality constraint).
	. Then we have:


	subject to the new equality constrains:
	,
	. The three equality constraints define a 2-D subspace of the 5-D space of the problem (i.e. 5 - 3 = 2).


	Therefore, picking values for 2 of the variables, or coordinates, uniquely determines the remaining ones.
	. Each side of the feasible region in the original problem with the inequality constraints has an equation of the form . Specifically:
	(left side) (bottom)
	. Since a vertex of the boundary of the feasible region is the intersection of two sides, therefore two of the variables are zero at a vertex point.
	. The vertices in the figure are defined as follows:

	vertex 0:
	vertex A:
	vertex B:
	vertex C:
	vertex D:

	The vertex labeled X is defined by setting the two variables: but it is not a feasible point.
	. We can generalize these ideas by again considering a general linear programming problem written in normal form
	, ,
	subject to: , ,
	. The equations, , define an dimensional subspace in the dimensional space of the coordinates .
	. This implies that coordinates may be chosen arbitrarily and these determine the remaining coordinates.
	. A point satisfying the equations and is called a feasible point or feasible vector. The feasible vectors define a “polyhedron” in the dimensional space.
	. If of the coordinates of a feasible vector are zero, then the vector is called a basic feasible vector. (These correspond to the vertices of the -dimensional polyhedron).
	. If more than coordinates are zero at a feasible vector, then the vector is called a degenerate feasible vector.
	. The optimal feasible vector (optimal solution) is the feasible vector at which the function takes on the largest possible value in the feasible region.


	There may exist more than one optimal feasible vector; this is the case when the level lines of the function are parallel to one of the sides of the polyhedron. This implies that some optimal solution is not basic (i.e. not a vertex).
	Theorem:

	Some optimal feasible vector is also a basic feasible vector - i.e. at least of its coordinates are zero. (Geometrically, this m...
	. Using this theorem, we can search for the optimal basic feasible vector by trying all the

	combination of choosing coordinates out of to be zero.
	This is very inefficient!
	Simplex Method
	. A more efficient method is to use what is called the simplex method. It is an iterative search technique which, starting at on...
	. We explain the method by example. Consider the previous example in normal form:
	,
	subject to:
	,

	Step I: Look for a basic feasible vector at which to begin the search. We do this by choosing right-hand variables which will be...

	In our example, we have:
	Here we have chosen and we note that at this point , , .
	If these inequalities were not satisfied then we would have to choose a another vertex.
	Here, which means that we have a feasible point.
	Step II: Check the following maximum criterion.

	If none of the coefficients in the expression of as a function of the present right-hand variables is positive, then the maximum criterion is satisfied.
	If any of the coefficients are positive, then increasing the right hand variable associated with that co-efficient increases which means that the maximum has not been found.
	If the coefficients are negative, this implies that the value of the function cannot be increased since the variables must remain positive, .
	Step III: If maximum criterion is not fulfilled, determine the right hand variable which, when increased produces the greatest increase in while keeping all the left hand variables .

	For our example both right-hand variables have positive coefficients. Looking at the first three equations and varying and leaving we have:
	if
	if
	if

	Thus, we can not increase more than . Varying while keeping
	if
	if
	if

	therefore we cannot increase more than .
	. This procedure can be shortened as follows: identify the right-hand variable in the equality constraint equations which has a positive coefficient in and is allowed to increase the least.
	. Therefore, changing by will give and produce the biggest increase in .
	. This variable will now be the new right-hand variable which implies that we have moved to a new vertex.
	Step IV: Exchange the right-hand variable, say , which gave the greatest value for with the left-hand variable in the constraint equation where is identified.

	Back to our example, we have
	which we substitute into the remaining equations:
	. Now repeat steps II, III, and IV until the maximum criterion is satisfied.
	. Continuing with our example, we have

	Note, we only need to check since the coefficient of is negative. Now exchange with :
	. Since none of the coefficients of the new right-hand variables in are positive, this implies that the maximum criterion is fulfilled, which implies

	which is the vertex labeled B in our figure.
	Some Special Cases
	Degenerate feasible vector
	. Recall that at a degenerate feasible vector, more than of its coordinates are zero.
	. Consider the following example:
	maximize
	subject to:
	. The feasible region is pyramid shown and is defined by 5 vertices labelled 0, A, B, C and D.

	Feasible region is inside a pyramid in three dimensional space.
	. We now introduce the slack variables which in normal form gives us 5 variables and 2 equality constraints.



	Therefore we have
	degrees of freedom.
	. The equality constraints become

	Therefore, setting implies that which is the plane defined by the vertices ABC.
	Setting means that and this represents the plane defined by the vertices ABD.
	. The vertices are defined as follows:
	at vertex 0:
	at vertex A: (degenerate)
	at vertex B:
	at vertex C:
	at vertex D:
	. Consider the initial basic feasible vector which implies the origin. If we choose these as the right-hand variables, we have


	Now gives us the largest increase in but it can be interchanged with either or since either interchange allows us to increase by the same amount.
	. Say we choose to interchange with . Then will be the new right-hand variables which implies that we are at the vertex labelled A.
	. Algebraically, we have

	in which only has a positive coefficient, but we are not allowed to increase at all.
	. Therefore we exchange and and become the new right-hand variables, but we are still at vertex A. This is because point A is a degenerate feasible vector: .
	. We now have:

	and we exchange and making the new right-hand variables which implies that we are now at vertex B.
	. This gives us the algebraic system:

	and since all the coefficients are negative the maximum criterion is fulfilled.
	. We see that the optimal solution is given by

	for which we have .
	. Thus, we have seen that once we reach a degenerate feasible vector, it may take more than one exchange of right-hand variables to left-hand variables in order to reach another basic feasible vector.
	Difficulty in Finding Starting Points
	. A second difficulty may arise when the origin is not feasible. Now we may not know how to find a basic feasible vector as a starting point. We demonstrate how to overcome this difficulty by example.
	Example: Consider the following problem:
	maximize
	subject to:


	The graph of this problem is shown below.
	Feasible region is polygon enclosed by ABCD
	. Introducing the slack variables we see that , and therefore we have degrees of freedom (i.e. 2 right-hand variables). In normal form the problem is written as:


	Now we notice that the origin , is not feasible!
	. A general technique to find a starting point is the introduction of a new artificial variable. Notice that if we tried to use the origin as the first basic feasible vector then we would get the system

	and since the right-hand variables are set to zero, that is , we would have which violates the constraint.
	. We now introduce the artificial variable in the offending equation. The number of equations remains the same but the number of variables has increased by 1, therefore we can set variables equal to zero. We add the artificial variable to the equation

	and move the new variable to the left
	. Now choosing as the right-hand variables, we will have which is feasible. In the final solution we require that and this will imply that . To ensure this we modify the objective function as:

	where is a very large positive number.
	. Therefore, in order to maximize this, we require , and in terms of the right-hand variables:
	. Now we see that only the variable has a positive coefficient. We exchange and and get
	. Now since has become the right hand variable, it can be set to zero and removed. The new right-hand variables are and which implies point A. We have
	. We exchange and : right hand variables which implies Point B.
	. We exchange and and the right-hand variables become which implies point C.
	. Since all the coefficients are negative, the maximum criterion is satisfied and we have
	at

	which is point C.
	Multiple Optimal Solutions:
	. If the level lines of the objective function are parallel to one of the sides of the feasible region, then a multiple optimal solution will occur along that side. Of course, there is still only one value for and .
	. This condition will manifest itself algebraically by the absence of one or more of the right-hand variables in the final form of the objective function.

	Example: Optimal Utilization of a Communications Network
	. It is quite remarkable to find such a large number of applications which can be formulated as a linear program.
	. Consider a communications network in which we have:
	1) N stations in which messages are sent, relayed, and received;
	2) a set of links connecting the stations over which the messages travel; and
	3) a set of messages.
	. The following notation and terminology is now used:

	T is the interval of time over which messages are sent, received and relayed.
	are the demand coefficients which represent the number of messages originating at station i per time T and destined for another station j.
	is the capacity of the direct link from station i to j during period T.
	is the switching capacity at station i during the time interval T. (i.e. number of messages entering and leaving the node during T cannot exceed .
	is the number of messages sent from station i (not necessarily originating at i) over one link to another station j during T and destined for .
	combinations
	combinations
	is the ratio of the number of delivered messages to the number of originating messages during T.
	. The optimal routing or utilization problem tries to optimize



	Therefore we can write the objective function as
	where is the number of messages which have been delivered.
	. We have an inequality constraint related to the demand for messages

	where are the messages sent from i to m and destined for j and are the messages sent from m to i and destined for j.
	The first term on the left of the inequality represents the total number of messages sent out from i and destined for j.
	The second term represents the total number of messages coming into i destined for j from all other nodes.
	. The total number of messages sent out from i and destined for j must be less than the total number of messages originating at i plus the messages using i as an intermediate node with j as the destination node.
	Demand limitation constraint.
	. The next set of inequalities are related to link capacity:
	. switching centre capacity for messages leaving node i:
	. and switching centre capacity for messages entering node i:

	Example network with three nodes.
	. The linear program associated with this network can be written as


	subject to the demand constraints:
	. the link capacity constraints:
	. switch capacity constraints for messages leaving each node
	. and switch capacity constraints for messages entering each node
	. The message demands, , may change depending on the time period (business hours, night time, etc.) therefore, the decision on how to choose so as to maximize may have to be determined many times a day from estimates of the demands.
	Specific network with three nodes.
	. The variables are:


	and the linear program is written as
	that is
	. The next equations are the demand limitation constraints:
	, ,
	, ,
	, ,
	, ,
	, ,
	, ,

	the link capacity constraints
	the switch capacity constraints for messages leaving each node
	and the switch capacity constraints for messages entering each node
	Another Look at Basic Solutions
	. Recall that a linear program can be written in normal or standard form.
	, ,
	subject to: , ,


	with , , and . Now consider the equality constraints .
	. Let be an matrix whose columns are linearly independent, and re-write:

	where is a matrix. Since the matrix is non-singular we can write
	and
	. If we let

	then is a solution of . We now make the following definitions:
	Definitions
	. is a basic solution of with respect to the basis . The components of are called basic variables, (or left hand variables). The columns of are called basic columns.r
	. if some basic variables of a basic solution are zero then the solution is called a degenerate basic solution.r
	. if satisfies and then is called a feasible solution.r
	. if a feasible solution is also basic it is called a basic feasible solution.r
	. if a basic feasible solution is also degenerate then we call it a degenerate basic feasible solution.r

	Consider the problem defined by
	and form the augmented matrix :
	we now perform elementary row operations to get
	.
	. This implies that the general solution can be written with two parameters, , as
	. Note that where


	with , . We say that is in the null space of . We now can set the parameters so as to make any two elements of equal to 0. There are six ways we can do this.
	1) If we choose then we have which implies the basis is which is the same as solving:

	which is a basic solution, but since this is not a basic feasible solution.
	2) If we choose and such as to set then this implies that the basis is which is the same as solving:

	which is a basic feasible solution.
	3) If we choose and such as to set then this implies that

	which is singular and therefore is not a basis.
	4) If we choose and such as to set then we get

	which is basic feasible.
	5) If we choose and such as to set , then we get

	which is basic but not feasible.
	6) If we choose and such as to set , then we get

	which is basic but not feasible.
	. Notice that the number of ways we can choose 2 elements of to be zero given that it has 4 elements is choices; or more generally .

	Definitions
	. any which minimizes the objective function and satisfies the constraints , and is said to be an optimal feasible solution.r
	. an optimal feasible solution which is basic is said to be an optimal basic feasible solution.r
	. Theorem: fundamental theorem of linear program.

	given a linear program in standard form:
	. if there exists a feasible solution, then there exists is a basic feasible solution.
	. if there exists an optimal feasible solution, then there exists an optimal basic feasible solution.r
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