1. Methods of Proof and Some Notation

11
A B|notA notB | A=B (not B)=(not A)
F F| T T T T
F T| T F T T
T F| F T F F
T T| F F T T
12
A B |notA notB | A=B not(A and (not B))
F F| T T T T
F T| T F T T
T F| F T F F
T T| F F T T
1.3
A B |not(AandB) | notA notB | (notA)or (notB))
F F T T T T
F T T T F T
T F T F T T
T T F F F F
1.4
A B |AandB Aand(notB) | (A andB)or (A and (not B))
F F| F F F
F T| F F F
T F| F T T
T T| T F T
L5

The cards that you should turn over are 3 and A. The remaining cards are irrelevant to ascertaining the truth or falsity
of the rule. The card with S is irrelevant because S is not a vowel. The card with 8 is not relevant because the rule
does not say that if a card has an even number on one side, then it has a vowel on the other side.

Turning over the A card directly verifies the rule, while turning over the 3 card verifies the contraposition.

2. Vector Spaces and Matrices

2.1
We show this by contradiction. Supposen < m. Then, the number of columns of A isn. Sincerank A is the maximum
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number of linearly independent columns of A, then rank A cannot be greater than n < m, which contradicts the
assumption that rank A = m.

2.2

=»: Since there exists a solution, then by Theorem 2.1, rank A = rank[A:b]. So, it remains to prove that rank 4 = n.
For this, suppose that rank A < n (note that it is impossible for rank A > n since A has only n columns). Hence,
there exists ¥ € R?, y # 0, such that Ay = 0 (this is because the columns of A are linearly dependent, and Ay is a
linear combination of the columns of A). Let = be a solution to Az = b. Then clearly & + y # x is also a solution.
This contradicts the uniqueness of the solution. Hence, rank A = n.

<: By Theorem 2.1, a solution exists. It remains to prove that it is unique. For this, let x and y be solutions, i.e.,
Az = band Ay = b. Subtracting, we get A(x — y) = 0. Since rank A = n and A has n columns, thenz —y =0
and hence z = y, which shows that the solution is unique.

2.3
Consider the vectors @; = [1,a7]7 € R**!, i = 1,...,k. Since k > n + 2, then the vectors @, ..., a; must be
linearly independent in R™*1. Hence, there exist vy, . . . g, not all zero, such that

k
Z aza; = 0.
i=1

The first component of the above vector equation is Ele a; = 0, while the last n components have the form
Zle a;a; = 0, completing the proof.

24
1. Apply the definition of | — al:

—a if —a>0
|—a] = ¢ 0 if —a =0
—(—a) if-a<0
—a ifa <0
= 0 ifa=20
a ifa>0
= |al.
2. Ifa > 0, then |a| = a. If a < 0, then |a| = —a > 0 > a. Hence |a| > a. On the other hand, | — a| > —a (by
the above). Hence, a > —| — a| = —|a| (by property 1).

3. We have four cases to consider. First, if a,b > 0, thena + b > 0. Hence, |a + b| = a + b = |a| + |b].
Second, if a,b > 0,thena + b < 0. Hence |a + b| = —(a + b) = —a — b = |a| + |b].
Third, if a > 0 and b < 0, then we have two further subcases:

1. Ifa+b>0,thenla+b| =a+b<]al+ b
2. Ifa+b<0,then|a+bl = —a—b<|al+ b

The fourth case, a < 0 and b > 0, is identical to the third case, with a and b interchanged.
4. We first show |a — b] < |a] + |b]. We have

la — b| la+ (—b)|
lal +]—b] by property 3

la] +]bf by property 1.

IA

Il

To show ||a| — |bl] < |a — b], we note that |a| = |a — b+ b] < |a — b| + |b], which implies |a| — |b| < |a — b]. On the
other hand, from the above we have |b| — |a] < |b — a| = |a — b by property 1. Therefore, ||a| — |b]] < |a — b].

5. We have four cases. First, if a,b > 0, we have ab > 0 and hence |ab| = ab = |a||b|. Second, ifa,b < 0,
we have ab > 0 and hence |ab] = ab = (—a)(—b) = |a|b|. Third, if a < 0, b < 0, we have ab < 0 and hence
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lab] = —ab = a(-b) = |a||b]. The fourth case, a < 0 and b > 0, is identical to the third case, with a and b

interchanged.
6. We have

la+b] < |a|+|b] by property3
< c+d.

7. =: By property 2, —a < |a| and a < |a. Therefore, |a| < bimplies —a < la| < banda < la| < b.
&: Ifa > 0, thenja| = a < b. If a < 0, then |a| = —a < b.

For the case when “<" is replaced by “<", we simply repeat the above proof with “<" replaced by “<".
8. This is simply the negation of property 7 (apply DeMorgan’s Law).

2.5
Observe that we can represent (&, ¥)2 as

(,y)r =z [g g} y = (Qz)"(Qy) =" Q%,
where
11
o= i 3]
Note that the matrix § = Q7 is nonsingular.
1. Now, (z,z)2 = (Qz)T(Qz) = ||Q=|[* 2 0, and
(@,z)=0 & [|Qz]’=0
& Qe=20
& =0
since () is nonsingular.
2. (z,y)2 = (Qz)T(Qy) = (Qy)" (Qx) = (y, T)2.
3. We have
(@+y.2)e = (@+9) Q=

— JJTQQZ’f‘yTQQZ
= ((B,Z>2 + (yaz>2-

4. (rz,y)e = (r2)TQ%y = reT Q%y = r(z, )2
2.6

We have ||z]| = ||(z — y) + yl| < |lz — yl| + |lyl| by the Triangle Inequality. Hence, ||z|| - llyl| < ||z — yl|. On the
other hand, from the above we have |ly|| — ||z]| < |ly — z|| = ||z — yl|. Combining the two inequalities, we obtain
Mzl =yl < llz -yl

2.7
Let ¢ > 0 be given. Set § = e. Hence, if || — y|| < 4, then by Exercise 2.6, Nzl = llylll < lle —yll <d=e

3. Transformations
3.1

Let v be the vector such that & are the coordinates of v with respect to {e1,€2,..., en}, and x' are the coordinates of
v with respect to {e}, €5, ..., el }. Then,
v=r1€ ++Inen = [€1,. .., 60T,
and
it AN N 13 !
v=rle) + - +ahe, =le},. .. eylT
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Hence,

ler,...,ex]z =[e],..., e, ]z’
which implies
z' =lef,....e ] e,...,e ]z = Tx.
3.2
Suppose v1, ..., v, are eigenvectors of A correspondingto Ay, ..., Ay, respectively. Then, foreachi = 1,...,n, we
have
(In - A)'Ui = v; — A’Ui =v; - /\'Ui = (1 - /\,-)vi
which shows that 1 — Ay,...,1 — A, are the eigenvalues of I,, — A.

Alternatively, we may write the characteristic polynomial of I,, — A as
WIRMA(]. = A) =det((1 = NI, - (I, — A)) = det(—[M, — A]) = (=1)"mw 4(A),

which shows the desired result.
33
Letz,y € V*,and a, 8 € R To show that V! is a subspace, we need to show that ax + By € V. For this, let v be
any vector in V. Then,

v (ax + By) = avTe + fovTy =0,

T

since vTz = vTy = 0 by definition.

3.4
Letz,y € R(A), and o, 8 € R. Then, there exists v, u such that = Av and y = Au. Thus,

oz + Sy = aAv + fAu = A(av + fu).

Hence, ax + By € R(A), which shows that R(A) is a subspace.
Letx,y € N(A),and @, 8 € R Then, Az = 0 and Ay = 0. Thus,

Aoz + fy) = aAz + fAy = 0.

Hence, ax + Ay € N(A), which shows that N'(A) is a subspace.

3.5
Letv € R( ), i.e, v = Bz for some x. Consider the matrix [A v]. Then, N(AT) = N([A v]T), since if
u € N(AT), then u € N (BT) by assumption, and hence u”v = «T Bz = 2T BTu = 0. Now,

dim R(A) + dim AN (AT) = m

and
dim R([A v]) + dim N ([A v]T) =m

Since dim M(AT) = dim N ([A v]T), then we have dim R(A) = dim R([A v]). Hence, v is a linear combination
of the columns of A, i.e., v € R(A), which completes the proof.

3.6
We first show V C (V )L, Letv € V, and u any element of V. Then uTv = vTu = 0. Therefore, v € (VHL

We now show (V)L C V. Let {ai,.. ,ai} be a basis for V', and {by,...,b;} a basis for (V 1)L, Define
A={a, -ar]and B = [b;---b], so that V = R(A) and (V)1 = R(B). Hence, it remains to show that
R(B) C R{A). Using the result of Exerc1se 3.3, it suffices to show that N(AT) c MN(BT). Soletz € N(AT)
which implies that E R(A)* = V', since R(A)l N(AT). Hence, forall y, we have (By)Tz = 0 = y"B Tz,
which implies that BT = 0. Therefore, z € N (B (B ) which completes the proof.

37
Let w € W+, and y be any element of V. Since V C W, then y € W. Therefore, by definition of w, we have
wly = 0. Therefore,w € Vi,

3.8
Letr = dimV. Letvy,..., v, be a basis for V, and V the matrix whose ith column is v;. Then, clearly V = R(V).
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Let %y,...,un_y be a basis for V*, and U the matrix whose ith row is ul. Then, V* = R(UT), and
Y= (VH)+ = RWUT)L = N(U) (by Exercise 3.6 and Theorem 3.4).
3.9
a Letz € V. Then,z = Pz + (I — P)z. Notethat Pz € V,and (I — P)x € Vi, Therefore,x = Pz + (I — P)z
is an orthogonal decomposition of = with respect to V. However, z = & + 0 is also an orthogonal decomposition of
x with respect to V. Since the orthogonal decomposition is unique, we must have ¢ = Pz.

b. Suppose P is an orthogonal projector onto V. Clearly, R(P) C V by definition. However, from part a, z = Pz
forall z € V, and hence V C R(P). Therefore, R(P) = V.

3.16
To answer the question, we have to represent the quadratic form with a symmetric mairix as

A CHE P B

The leading principal minors are A, = 1 and Ay = —45 /4. Therefore, the quadratic form is indefinite.

3.11
The leading principal minors are &y = 2, Ay = 0, As = 0, which are all nonnegative. However, the eigenvalues

of A are 0, —1.4641,5.4641 (for example, use Matlab to quickly check this). This implies that the matrix A is
indefinite (by Theorem 3.7). An alternative way to show that A is not positive semidefinite is to find a vector & such
that zT Az < 0. So, let x be an eigenvector of A corresponding to its negative eigenvalue A = —1.4641. Then,
2T Az = 27(\z) = \xTz = A||z[|> < 0. For this example, we can take & = [0.3251,0.3251, —0.8881]7, for
which we can verify that zT Az = —1.4643.

3.12
a. The matrix (@ is indefinite, since Ay = —1and A3 = 2.
b. Letz € M. Then, 2o + 3 = —Z1,T1 + &3 = —Zy,and 21 + T3 = —I3. Therefore,

2T Qe = (s + z3) + 22(21 + 73) + za(x) +x2) = —(x% + :r% -+ z%)

This implies that the matrix @ is negative definite on the subspace M.

3.13
We represent this quadratic form as f(z) = zTQx, where

1 € -1
Q=|¢& 1 2
-1 2 5
The leading principal minors of Q@ are Ay = 1, Ay =1 — €2, Ay = —5€% — 4€. For the quadratic form to be positive
definite, all the leading principal minors of Q must be positive. This is the case if and only if £ € (—4/5,0).

3.14
The matrix @ = Q7 > 0 can be represented as Q = Q/2Q"?, where Q'/* = Q77T > 0.

L. Now, (z,2)q = (@/?2)T(Q"*z) = |Q"*z||* 2 0, and
(@2)g=0 & [[@7z|"=0
=3 QI/Qw =
o =0

since Ql/2 is nonsingular.
2 (2, y)g =2TQy =y"QTx =y Qz = (y,z)o-
3. We have
@+y.zq = (+y)Qz
z7Qz + y'Qz
= (z,2)0+ (¥ 2o
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4. (rz,y)q = (rz)"Qy = reTQy = r(z,y)o.
3.15
We have

lAllec = max{||Az|eo : [|z]lo = 1}.

We first show that || Aflo < max; 3°¢_, |ai|. For this, note that for each 2 such that ||z||oo = 1, we have

n
Azl = max Zaikwk
' k=1
n
< max ) |agl|zk|
’ k=1
n
< max ) |al,
¢ k=1
since |z;| < maxy, || = ||z]|eo = 1. Therefore,

Al < mfxg laik].

To show that [|Allc = max; ) ;_; |ai|, it remains to find a & € R", ||Z]lc = 1, such that |AZ]|o =
n .
max; » . _, lai|. So, let j be such that
n n
> lajel = max > fa.
k=1 ! k=1

Define & by
- ={ }ajkl/ajk ifajk ;éO

Tg .
1 otherwise

Clearly ||#||co = 1. Furthermore, for i # j,

7
E Qi Ty
k=1

n n n
<D laik] <max - Jawl =D lagel
k=1 bok=1 k=1

and
n ki3
Z (I,jk.'i:k = Z lajkl~
k=1 k=1
Therefore,
n n n
[AZ]lo0 = max D iy = > lajel = mzaxz laik]-
k=1 k=1 k=1
3.16
We have

lAlly = max{|| Az, : x|, = 1}.

We first show that [|A[|1 < maxy 37", |as|. For this, note that for each @ such that ||z[|; = 1, we have

n
E E Aik Tk
i=1 {k=1
m n

> lawllex]

=1 k=1

m

| Az,

IA

6



T T
< D lewl 3 laul
k=1 pm= 1
m T
< <m’?}c}:}aikl) [Tk
1= k=1
<

ki
mng laik],
o

since S, |z&| = llz{l = 1. Therefore,
g

1Al < mgx}jllaikl-
pAeng

To show that || Ay = maxg 1o |ai|,itremainsto finda® € R™, |£]]; = 1,suchthat [AZ]l; = maxy S lakl-
So, let § be such that

mn ki

2 lai;| = m}?x; laik]-

Define T by

5o = 1 ifk=y
7Y 0 otherwise

Clearly ||Z||; = 1. Furthermore,

m

HA53H} = Z

ie=1

T
E ik Tk

k=1

m m
= Z lai;| = mkaxz ik |-
i=1 i=1

4. Concepts from Geometry

4.1
=: Let S = {x : Az = b} be a linear variety. Letz,y € S and o € R. Then,

Alaz + (1 - a)y) = cAz + (1 —a)Ay = ab+(1—-a)b=D0.

Therefore, ax + (1 —a)y € S.

&=: If § is empty, we are done. S0, SUppose Tg € S. Considertheset So = S—zp = {Z ~To: T € St. Clearly,
forall z,y € Sy and @ € R, we have ax + (1 - a)y € Sp. Note that 0 € So. We claim that S is a subspace. To
see this, let 2,y € So, and @ € R Then, ax = ax + (1 —a)0 € So. Furthermore, 1z + $y € Sp, and therefore
z + y € Sy by the previous argument. Hence, Sp is a subspace. Therefore, by Exercise 3.8, there exists A such that
Sy = N(A) = {x : Az = 0}. Define b = Axo. Then,

S = Sg+a:0:{y+a:o:y€/\f(A)}
= {y+xo: Ay = 0}
= {y+zo: Aly +xo) = b}
= {z: Az =b}.

4.2
Letu,v € O = {z € R" : |
need to show that z € O, i.e.,

z|| < r}.and o € [0,1]. Suppose z = au + (1 —ajv. To show that © is convex, we
z|| < r. To this end,

Iz = (eu” +(1- o)) (au + (1 — a)v)

oA lull* + 2a(1 — aulv + (1 - a)?|v]?.

i
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Since u,v € O, then |[u|* < r* and ||v||> < r2. Furthermore, by the Cauchy-Schwarz Inequality, we have
uTv < ||lu|l||v]] < 7. Therefore,

”z”2 < a?r? + 2a(1 — 01)1"2 + (1 - a)27,2 — 2

Hence, z € O, which implies that O is a convex set, i.e., the any point on the line segment joining u and v is also in ©.
4.3
Letu,v € © = {z € R" : Az = b}, and @ € [0, 1]. Suppose z = au + (1 — a)v. To show that © is convex, we
need to show that 2 € 9, i.e., Az = b. To this end,

Az = A(ocu+(1-a)v)
aAu + (1 - a)Av.

Since u,v € O, then Au = b and Av = b. Therefore,
Az=ab+ (1 -a)b=hp,

and hence z € ©.

4.4
Letu,v € @ ={x € R* : & > 0},and @ € [0, 1]. Suppose z = au + (1 ~ a)v. To show that © is convex, we need
to show that z € ©, i.e, z > 0. To this end, write z = [z;, ... @]l Y = Y1, yn)T, and z = [z, .. Szt

Then, z; = az; + (1 — a)y;,i = 1,...,n. Since T,y 2 0,and @, 1 — a > 0, we have z; > 0. Therefore, z > 0,
and hence z € 0.

5. Elements of Calculus

5.1
Observe that

A8 < A Al < |AR2) Al < - < Al
Therefore, if || A|| < 1, then limy_, o || A¥|| = O which implies that lim_,, A* = O.

5.2
For the case when A has all real eigenvalues, the proof is simple. Let A be the eigenvalue of A with largest absolute
value, and z the corresponding (normalized) eigenvector, i.e., Az = Az and ||z]| = 1. Then,

Al > lAz| = [|]Az]| = [Ml|l2]| = |,

which completes the proof for this case.
In general, the eigenvalues of A and the corresponding eigenvectors may be complex. In this case, we proceed as

follows (see [27]). Consider the matrix
A

Al +e’

where € is a positive real number. We have

Al

l ”:W<1'

By Exercise 5.1, B¥ — O as k — oo, and thus by Lemma 5.1, |A;(B)| < 1,i = 1,...,n. On the other hand, for
eachi=1,...,n,
Ai(A)

Ai(B) = —=L

lA]l + &
and thus A(A)|
[Ai(B)] = ml*”‘r
€

8
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which gives
Ai(A)] <[IA]l +e.

Since the above arguments hold for any £ > 0, we have |X:(A)] < Al

5.3
We have
Df(x) = [z1/3,22/2],
and J .
g —
a= M '
By the chain rule,
d
O
— [(3t+5)/3,(2t — 6)/2] m
= 5t —1.
5.4
We have

Df(z) = [z2/2,21/2],

nd ) 4 ) 3
~—'g 3 = -——g 5 ==
5 (5:0) = M 5, (1) M

By the chain rule,

d
2 flg(s.1) = DI@)F, (1)
1 o [2
= -2-[25 + t, 45 + 3t] [4}
= 10s + 7¢,
and
9 2
O fast) = DIgO) gD
1 3
= 5[25 + t,4s + 3t] L]
= 55+ 3t
5.5
We have
Df(m) = [313%1‘211% + T3, IIJ%.’L‘é + Ty, 218%:622233 -+ 1]
and

da dz et + 3t?
di

By the chain rule,

(w(t))—*—(f)

i

d
= f(a(t))

et + 3t*
= [3z:(t) 2gy ()23 (t)? + 22(1), 21 (1) 23 () + 31 (1), 21 (82 2o (D)3 (8) + 1] { 2t }
1

= 12t(e! + 3t%)° + 2te’ + 6t7 + 2t + L.
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5.6
Lete > 0 be given. Since f(z) = o(g(x)), then

@
z-0 g(T)

Hence, there exists § > 0 such that if ||z|| < 4, then

I f ()]
9(z)

< g,

which can be rewritten as

If (@)l < eg(a).

5.7
By Exercise 5.6, there exists § > 0 such that if ||z|| < &, then lo(g(z))| < g(x)/2. Hence, if ||z|| < 6,  # 0, then

f(z) < —g(x) + o(g(x))| < —g(x) + g(x)/2 = —%g(w) <0.

5.8
We have that

{z: filz) =12} = {x: 2} — 22 = 12},
and
{z: f2(x) =16} = {z : 2, = 8/x,}.

To find the intersection points, we substitute 7 = 8/z; into 27 — 7% = 12 to get z} — 1227 — 64 = 0. Solving gives
z? =16, —4. Clearly, the only two possibilities for z; are z; = +4, —4, from which we obtain zo = +2, ~2. Hence,
the intersection points are located at [4, 2] and [—4, —2]7.

The level sets associated with f; (z1,22) = 12 and fy(z;, Z2) = 16 are shown as follows.

XZA

fa(xq,%2) = 16

f1(x1,x2) = 12
f1(xq.x0) = 12 +

f2(x1 7X2) =1
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5.9

a. We have :
f(@) = f(@o) + Df(@o) (@ — wo) + 5@ = @) D*fl@o)(@ = 2o) -
We compute
Df(z) = [e 7, —me ™+ 1],
i) = [l i)
Hence,

- 1 - _
2+ [1,0] [mmz 1}+§{w1~—1,$2][?1 11} [331179 1} 4o

L o
1+1?1+:E2“a;1372+§x2+.._

=
8
I

i

b. We compute

Df(z) = [4a}+ 47,73, 4xizy + 42),
2 12t 4+ 413 8z1T2
D f(=) = { 8z 4z3 + 1223

Expanding f about the point Z, yields

1171“-1 }_ o 16 g 1131*—1
4+[8,8} {x2~1}+2[$1—1,$2 1}[8 16} {:172'-1}4.

8¢? + 8z} — 167 — 1623 + 82170 + 12+

1

f(z)

Il

¢. We compute

Df(:L‘) — {e“"“ + eFrtT 1, TP eFi e 1}7
9 eT1 T 4 e$1+$2 —eTiT T gTitr2
D f(il’l) = _e:r,l——mg +ez1+zg ez1~xg +ez1+:62

Expanding f about the point T, yields

- 1 . —
2+ 2e + [2e + 1,1] {“l_? 1} +~2—(m1 —1,22] {208 206} {ng 1} e

i

J(@)

i

L4z +e(l+at+33)+

Il



