Systems Optimization /;

9.0 Network Optimization

9.1 Network Analysis

We now turn to the analysis of problems which can be represented in anetwork. Thistype
of problem is usually considered under the heading of Combinatorial Optimization. For these
types of problems we no longer use calculus; the solutions are in the form of algorithms. The
branch of mathematics behind network analysis is graph theory and thus, we often encounter dual
terminology (e.g. node is equivalent to vertex). Electrical systems analysis is an obvious
application, but other areas like project management and industrial engineering quickly come to

mind.

9.2 Representation of Networks

A network (or sometimes graph) is a collection of nodes (or vertices) and arcs (or edges)
connecting the nodes. In general, the arcs may be directed. Formally, we can represent anetwork G

as an ordered triple:
G = (N(G), A(G), Ug)

where: N(G) isanonempty set of nodes, A(G) isaset of arcs digoint or independent of N,
and g is an incidence function which associates a (not necessarily distinct) unordered
pair of nodes of G to each arc of G. If the nodes are ordered, then it is a directed graph or

network.

We will aso use the notation G = (V(G), E(G), Yg), and sometimes use the words
vertices and edges, especialy when the topics we are covering come from graph theory. Here,
V(G) isthe vertex set, and E(G) isthe edge set.

1

% Systems Optimization

Example: consider the undirected graph defined by
N(G) = {ny, ny ng, ng
A(G) = {ay, ay a3, 84,85, 3¢
We(ay) = nyn2 We(ap) = nang Wg(ag) = ngng

Ws(ay) = ngn, We(as) = nyng We(ag) = nin,
A pictorial description of this graph is shown in Figure 9.1.

n n

n, 5 n,
Figure 9.1 Example of an undirected graph.

If agraph contain no single arc loops or self-loop (e.g. a5 above), and no two arcsjoin the

same pair of nodes, then it is called a simple graph.

Example: consider the directed graph defined by
N(G) = {ny, ny ng,ng
A(G) = {a;, ay,a3,a4,85,8¢
We(a) = nyn, Wg(ap) = nyng Ws(ag) = ngng

We(ay) = ngny We(as) = nyng Wa(ag) = nyny

N >
ds

Figure 9.2 Example of adirected graph.

Network Optimization /;

When the graph is directed the notation n,n, represents an arc going from node n; to n, andis
depicted as

Also, except for the fact that the last example is directed, the topology of the graph is the
same (but drawn differently) as the previous example. Sometimes the notation (n,n,) is used to

describe an arc.

A bipartite graph is a graph in which the vertex set, say V(G), can be partitioned into two
subsets, say X and Y, such that each edge of the graph has one end in X and the other end in Y. The
partition (X, V) is caled the bipartition of the graph. The graph shown below in Figure 9.3 is
obvioudly bipartite where the vertices corresponding to the two sets of the bipartition are depicted

differently (i.e. solid and hollow).

V3
V. €
2 0
el e3
Vi €4 4

Figure 9.3 Example of abipartite graph

Given two graphs G and H, H is said to be a subgraph of G, denoted H O G, if V(H) O
V(G), E(H) O E(G), and Yy is the restriction or imposition of g to E(H). If H O G but HZG then
H is said to be a proper subgraph of G, denoted H [] G. Also, G is said to be a supergraph of H. A
spanning subgraph of G is a subgraph H with V(H) = V(G). If H, and H, are subgraphs of G then
H, and H, are said to be digjoint if they have no vertex in common and edge-digoint if they have

no edge in common.

The union of two graphs H; and H,, denoted H, O H,, is a subgraph with vertex set V(H,)
0 V(H,) and edge set E(H,) O E(H,). If H; and H, are digjoint then their union is denoted H; + H..
The intersection of H; and H,, denoted H, n H,, is a subgraph with vertex set V(H,) n V(H,) # O
and edge set E(H;) n E(H,).

% Systems Optimization

The vertex degree dg(v) of avertex vin G isthe number of edges of G incident with vertex
v, where a loop (i.e. an edge with incidence function being an ordered pair of the same vertex)
counts as two edges. The minimum degree of vertices of G is denoted &(G) while the maximum
degree is denoted A(G). It can be shown that in any graph the number of vertices of odd degreeis
even.

A walk in agraph G is afinite non-null sequence W = vgevie;Vs ... v whose terms are
aternately vertices and edges such that for 1 < i < k the ends of e, are the verticesv;_; and v;. The
walk W may be denoted as W = (v, Vi) and Wis said to be awalk from vertex v to vertex vy. Also,
Vg issaid to be the origin of the walk and vy the terminus. The verticesv; to v, are called internal
verticeswhile k isthe length (¢(W)) of thewalk. A section of walk from v; to Y, is a subsequence of
W denoted as a (v;, v;) section of W. Walks can be concatenated if the terminus of one walk, say W,
is the origin of another, say W, and the resulting walk is denoted by WW. Walks can also be
inverted, denoted W'l, where the sequence is taken backwards from terminus to origin. Figure 9.4

shows an example of awalk.

W = v,e5v,8,V,6,V,
v, —origin

V4 —terminus

Figure 9.4 Exampleof awak in agraph

If the edges of awak W are distinct then Wis called atrail; if the vertices are also distinct
then Wis called a path. In Figure 9.4, W is also atrail but not a path since vertex v, occurs twice
inlist.

Two vertices of agraph G, u and v say, are said to be connected if thereisa (u, v) path in
G. A graph G can be partitioned into components G[V,], G[V3], ... , G[V,] of G, generated by
partitioning V into nonempty subsets V4, Vs, ... , V,, such that two vertices of V are connected if
and only if they belong to the same subset ;. The graph G is said to be connected if all its vertices
are connected, otherwiseit is called a disconnected graph.

A closed walk is one in which the origin and terminus are the same. A cycle is a closed

trail wherein the origin and the internal vertices are distinct. A k-cycleisacycle of length k while a

4

Network Optimization /;

3-cycleisalso caled atriangle. It can be shown that agraph is bipartite if and only if it contains no
odd cycles. An acyclic graph is one which contains no cycles. An acyclic graph which is also

connected is called atree. In atree, any two vertices are connected by a unique path.

A tree of agraph G isasubgraph G, of G such that any two of the following are true:

1) the subgraph G; is connected,

2) G, hasnocycles,

3) the number of edgesin G; isk-1,
where G has n verticesand G; has k verticeswith k< n.

A spanning tree is atree of G having the same number of vertices as G, and therefore,
n—1 edges. Examples are shown in Figure 9.5. It is usual to represent atree by the set of edgesin

the tree; the vertices will be implied.

T={e,e,egd
ST = {e}, e, €, €4

Figure 9.5 Examples of atree and spanning treein a graph.

A graph G iscaled aweighted graph if for every edge e J E(G) there exists aweight w(e)
O R (real number). If H is a subgraph of G then the weight of H is given as the sum of the
individual edge weightsin H

w(H) = Z w(e) (9.1)
el E(H)
and theweight of apathin Giscalled thelength of the path. The minimum weight of a(u,v)
path is called the distance d(u, v). If two vertices, u and v, are not connected by an edge,
that isif uv O E, then the weight of uv isassumed infinite (i.e. w(uv) =).

% Systems Optimization

9.2.1 Maitrix representation of agraph

The adjacency matrix is another way of storing the knowledge of a graph. Consider a
graph which is represented by G = (N, A), where the nodes are numbered sequentially, say
N ={1,2,...nt and the edges are listed as pairs of numbers representing the nodes which
terminate the edge, say { (1, 2), (5, 10), ...} . The adjacency matrix X = [x;] OR""" is defined
such that

il (,j) 0 A

i 0 therwi
0 otherwize

where i, j O N. If G isundirected, then Xij = X and the adjacency matrix X issymmetric.

Similarly, we can define the cost matrix, C = [c”-] OR

"N where c; is the cost or

weight of edge (i, j) . In an undirected graph, the cost matrix will be symmetric, Cij = G- If an

edge between two nodes i and j does not exist then the cost will be defined asinfinite, ¢;; = c.

Example: The graph shown in Figure 9.6 has an adjacency matrix given by

11000
00100
X=100001]-
11001
01000

The rows represent the source of an edge while the columns represent the sink of an edge. A 1 on

the diagonal represents aloop.

Figure 9.6 Directed graph for which adjacency matrix is defined.

Another way to represent the graph using a matrix is via the so-called node-arc incidence
matrix Z = [z,] OR""™ where n is the number of nodes and m is the number of arcs. In this

case, we must assume that the nodes as well as the arcs are numbered consecutively, asin say

6

Network Optimization /;

N={12..n,A={a,a,..a,

and that each arc can be represented as a pair of nodes, say a, = (i,) where i isthe source node

and j isthe sink node of the arc. Then the node-arc incidence matrix is given by

E 1 a, = (i,])
Z=1[z], 7z =011 a = (j,1)

O .

0o otherwize

where i, j ON and a, 0 A. For an undirected network G, we use only positive 1's in the matrix:

_ _ Dl ak:(i!j)orak:(jvi)
2=zl 2 s otherwize

Example: The graph shown in Figure 9.7 has an adjacency matrix given by

1000001
1101010
Z=10000111|-
0011100
0110000

The rows represent the noders while the columns represent the edges. Each column has exactly 2

non-zero entires.

Figure 9.7 Graph for which node-arc incidence matrix is defined.

9.3 Findinga Spanning Tree

There are two fundamental search techniques which can be used for find a spanning tree.
The first is called Breadth-First Search and the second is called Depth-First Search. These are

fundamental general purpose searching strategies which are used in many applications.

% Systems Optimization

9.3.1 Breadth-First Search for a Spanning Tree

Given a graph and any starting node, the strategy is to find all new nodes which can be
reached on an edge from the current node. Then we visit each of the nodes in the same order in

which they found applying the algorithm. The method is exemplified by an example.

Example: Breadth-first search of a graph for a spanning tree

Consider the graph shown in Figure 9.8.

Figure 9.8 Breadth-first search for a spanning tree.

If we start with node v, then we will take the following steps:
1) addedges{e;, e} ,nodesinthetreeare { v, v,, vz}
2) moveto node v, and add edges { e,, eg} , nodesin thetree are { vy, Vy, V4, V3, Vs}
3) moveto node v,, no edges to add
4) moveto node v, and add edges { e, eg} , nodesinthetree are
{V1, V5, V4, V3, V5, Vg,V
5) moveto node v, no edgesto add
6) move to node v, No edgesto add
7) moveto node v, and add edges { e,4, €;5} , nodesin the tree are now

{ V1, Vy, V4, V3, V5, Vg, V7, Vg ,Vgh - @Nd since all nodes are covered, we stop.

9.3.2 Depth-First Search for a Spanning Tree

The depth-first search technique takes a different philosophy. In this algorithm we keep
moving to a node as we add it into the tree and try to add a new edge from that new node. If we

can’'t add a new node, we backtrack to the first node in which we can continue to proceed forward.

8

Network Optimization /;

The method is best explained by an example. Again we consider the same example which was used
for the breadth-first search.

Example: Depth-first search of agraph for a spanning tree. Consider the graph in Figure 9.9.

Figure 9.9 Depth-first search for a spanning tree.

If we start with node v; then we will take the following steps:

1) add edges {e;} , nodesinthetreeare { v;, vy}
2) moveto node v, and add edge { e)} , nodesin thetreeare { v;, v,, v
3) moveto node v; and add edge { e} , nodesinthetree are { vy, v, v, V4}
4) moveto node v,, can't add an edge
5) backtrack to node v; and add edge { e;} , nodesin thetreeare {v,, v,, V3, V4, Vg
6) moveto node vy and add edge { eg} , nodesinthetree are { vy, v,, Vg, V4, Vg, Vs
7) moveto node v, can't add an edge
8) backtrack to node v4 and add edge { e,3} , nodesin thetree are
{V1, V5, V3, Vg, Vg, Vs,V
9) moveto node v, and add edge { e;;} , nodesin thetree are
{V1, Vo, V3, Vg, Vg, Vs, V7, Vgt
10) move to node v, and add edge { e;5} , nodesin thetree are
{ V1, Vo, V3, Vy, Vg, Vg, V7, Vg, Vgt
11) All nodes are in the tree so stop.

Note that the spanning trees which are obtained using these techniques are not the same
and that, even when using the same agorithm, the tree which is obtained will depend on: &) the

starting node; and b) the order in which the edges are stored in the list of edges.

% Systems Optimization

9.4 Minimum Spanning Tree

The two algorithms for finding a spanning tree are quite ssimple to understand. Now if we
have aweighted graph and we want to find the spanning tree of minimum weight, how should we
proceed? We will discuss two algorithms for finding such a minimum spanning tree: Prim’'s
algorithm and Kruskal’s minimum forest algorithm. These can be explained by considering the

following example.

Example: Say we have the weighted network shown in Figure 9.10 where the numbers along the
arcs represent the weight of the arc. Now assume that we already have the two bold arcs in the
minimum spanning tree; that is the arcs with weights 1 and 2. Should we next add the arc labelled
7? Thisis the lowest weight arc incident on the existing tree. Alternatively, should we add the arc
with weight 3? Thisis the lowest weight arc in the entire graph which could be legally added to the
tree. Thefirst choiceisrepresentative of Prim’s algorithm while the second choiceis representative

of Kruskal’s minimum forest algorithm.

Figure9.10 Example weighted graph for which to find a minimum spanning tree.

9.4.1 Prim’'sAlgorithm

Prim’s algorithm is stated as follows. Start from any node s and build a tree by repeating
the following rule: add the shortest edge that is incident to the existing tree. For the example given
in Figure 9.10, if we started with the node |abelled s, we would add the following edges (using the
weight asthe identifier in thiscase): {1, 2,7,4,3,6} for atotal weight of 22.

10

Network Optimization /;

Figure9.11 Minimum spanning tree using Prim’s or Kruskal’ s algorithm.

9.4.2 Kruskal’sminimum forest algorithm

In this agorithm we add edges in increasing order of length, rejecting any that complete a
loop. For the example of Figure 9.10 we would add edgesin thefollowing order: {1, 2,3,4,6,7} .
Therefore we would arrive at the same minimum spanning tree as that shown in Figure 9.11 but in
adifferent order of adding edges. In general the minimum spanning tree on aweighted graph may

not be unique but it will definitely have a unique weight.

9.5 Shortest Path Algorithms

A graph algorithm for finding the shortest path from aroot vertex ug to al other verticesin
the graph is Dijkstra’s algorithm named after its founder (see Dijkstra[2], and [1], pp 19 - 20).
Actually, in Dijkstra’s 1959 article he gives two algorithms. The first finds the tree of minimum
weight which spans a connected graph G, called the minimum spanning tree of the graph. The
second finds the path of minimum distance between aroot vertex up and the rest of the vertices of

G, called the single source shortest distance spanning tree.
The algorithm uses the fact that if Sis a proper subset of V (the set of n+1 vetices), where
the root vertex is chosen so that it is an e ement of S, then

d(ugp S) = min{d(u,,) +w(u} | - 9.2)

where S isV - S An increasing sequence of subsets §, Sy, ... , S, of V is constructed (with & =
{ug}) so that once the i subset is constructed the shortest paths from the root vertex ug to all the
vertices in § will be known. These shortest paths will be denoted P(ugv) where v S . The
algorithm is shown in Figure 9.12.

11

% Systems Optimization

Dijkstra’s Algorithm
S={ug}; S=V-SL(uy=0

Loop 1: Ov [S
L(v) = o; P(up V) = {ug}
endLoop 1
i=0;
Loop 2: while Sz0
min_label = o
Loop3: Ov[S
if L(u;) + w(y; v) < L(v) then
L(v) = L(u;) + w(y; v)
P(ugVv) = P(ugy;) O v
endif
if L(v) < min_label then
min_v = v; min_label = L(v)
endif
end Loop 3

U1 = min_v; S=S0 Ui+1) é = é - U1 i=i+1

Figure 9.12 Dijkstra s algorithm with shortest path determination

When the algorithm terminates, the labels at each vertex L(v), v OV, will contain the
distance from the root vertex ug and the path variable P(ugv) will contain the minimum path
specification asalist of vertices from the root vertex to v. Note that alist of verticesis sufficient to
represent apath in asimple graph. An example of the use of thisalgorithm is given below in Figure
9.3 where the labels and paths after each step are shown next to the graph. The edge weights and

the root vertex are identified in the first drawing.

12

Network Optimization /;

L(a)=0;
L(b) = eo;
L(c) = oo;
L(d) = o;
L(e) = oo;

L(a)=0;
L(b) =1;
L(c) = oo;
L(d)=5;
L(e) = oo;

L(a)=0;
L(b) =1,
L(c) = 3;
L(d)=5;
L(e) =2

L(@)=0;
L(b) =1,
L(c)=3;
L(d)=5;
L(e) =2

L(a)=0;
L(b) =1,
L(c)=3;
L(d) =4
L(e) =2

P(aa) = {a}
P(ab) = {a}
P(ac) = {a}
P(ad) = {a}
P(ae) = {a}

P(aa) = {a}
P(ab) = {ab}
P(ac) = {a}
P(ad) = {ad}
P(ae) = {a}

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {ad}
P(ae) = {abe}

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {ad}
P(ae) = {abe}

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {abcd}
P(ae) = {abe}

Figure 9.13 Example application of shortest path algorithm

In Figure 9.3 the bold vertices represent the elements of each subset Safter each step in the
algorithm. The final paths are shown in the bottom diagram of the figure with the distances given
by the labels. Of course, if the distance to only one vertex from the root vertex is required, the
algorithm is terminated when that vertex is reached. This algorithm, is a good algorithm in that it

finds the solution in polynomial time (i.e. it is of order v2 where v is the number of vertices).

13

% Systems Optimization

95.1 References

[1] J. A.Bondy, and U. S. R. Murty, Graph Theory with Applications, American Elsevier Pub.
Co,, Inc., 1976.

[2] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”, Numerische Math-
ematik, voal. 1, pp. 269 - 271, 1959.

9.6 Shortest Distance Between All Pairs of Nodes (Floyd-War shall Algorithm)

We now want to solve for the shortest path between al nodesinagraph G = (N, A). To
do this, we could apply Dijkstra’'s algorithm, which gives us the shortest distance from aroot node
to all other nodes, n times. However, there is amore efficient algorithm due to Floyd and Warshall
(1962).

Let N ={1,2,...,n be the set of nodes and let the matrix C = [cij] be the nxn
matrix of weights, so that Cjj istheweight of arc (i, j) . We now create a n x n matrix of distances
fromitoj: D = [dij] such that d;; will be the minimal distance from nodei to j. Initially, we set
D = C and then we iterate n times. After n iterations, D will contain the minimal distances
between each pair of nodes. (In this algorithm, we assume that d;; =) We first define the so-

called triangle operation.

Definition: triangle or triple operation

Given an n x n distance matrix d;;

ij the triangle operation for afixed nodej is

di = min{d;, d; +d;} Oi,k=1(1)n i, k#j

14

Network Optimization /;

Theorem: If we perform the triangle operation for successive values j = 1(1)n, each entry d,,

becomes equal to the length of the shortest path from i to k, assuming weights c; ;20.

We now give the Floyd-Warshall algorithm which uses the triangle operation.

Algorithm: Floyd-Warshall Algorithm

Input: nx n matrix [C;;] (non-negative entries)
Output: n x n matirx [dij] , Where d;; is shortest distance fromi to j under [Cij] .

forali#j dod; = C;,

fori = 1(1)ndod; = o
forj = 1(1)n do
fori = 1(1)n i #] dobegin

fork = 1(1)n k#j dobegin

Example: consider the following graph:

2
0 0ol

1 C = 201
0 oo 0 o
o430

3

now we initializethe D matrix
< pivot row
[dij] =D = elements to be updated

in next generation, e.g.:
dy, = min{e,2+1 =3

4
pivot column

15

% Systems Optimization

————————

Which gives the final answer:
dy =2 dy =

dg = o dgp =

o
=
N

I}
~N a1
o o
8

|

IS

Q.
N

|

[EEN

8

dgg = dyy = o
dy=6 dp=4 dz=3 d,=7

Note that starting the diagonals with d;;

oo finds the paths which are chains (or cycles). That is,
we ended up with dy; = 7, dy, = 7, dgg = 0,d,, = 7 which are cycles.

Now how do we keep track of the shortest path? We keep track of a new matrix which is
initially set to zero, called the route matrix:

E=[ed g, =0 i,k = 1(1)n

Then every time we apply the triangle operation in the algorithm, we also execute:
1l .
Bk Otherwize

16

Network Optimization /;

i.e. if an intermediate node, j, can be used to create a shorter path, then we should storeit.

Example:

01wb5
C = oo Q2 o
3104
1o o0
w1 5] 0000
DO:EOOEOOZOO EO: 0000
'3'1 w 4 0000
1100 00 oo 0000
(0100 5] 0000
Dl = [®.® 2 o gl - (0000
310 4 0000
1:2:0 6 10/1:0'1) the only changes
0 1:3'5 0020
D2: 0000'2?0 E2: 00(?0
3 134 0020
1 2:4:6 0121
6135 3.0 20|
o = |5326 £3 = (3303
3134 0020
1246 0121
6135 3020
Dt = 5326 £t - (3303
3134 0020
1246 0121

17

% Systems Optimization

Note that there was no change during the last step. Now to find the paths we proceed as follows:
To find the path from node 2tonode 1:P,,: dy; = 5, €, = 3, €55 = 00 Py = {2,3, 1}
To find the path from node 1 to node 3:P,5: di3 = 3,3 = 2,6, = 00 P53 ={1,2,3}

To find the path fromnode 1tonode 1. P,;: d;; = 3,¢e; = 3,€;3=2,¢€, =0
0OP;y;={1231

The procedureis as follows:

Py = {1} add terminal node

k=]
while g, #0
P = e Py
k= e
continue
P. =10 Pij add source node

i]

9.7 Maximum Flow - Network Problems

We now consider networks, G = (N, A), where the arcs are weighted by some sort of

capacity, e.g.: 2 messages per hour, 10 gallons per minute, 100 cars per minute, and a source node,

s{ = 0}, and terminal (or destination) node, t {= m} (i.e. IN| = m+ 1). To be clear, the capacity

here is different than weight; when an arc is traversed, the total weight of the arc is used, but not

necessarily the total capacity.

Example:

Consider the example network shown in Figure 9.14. The capacity of arc (1,2) is denoted

f,, and for ageneral arc (i,) - fij - If (i,) doesn't exist then we set fi = 0. In this example, we

have for instance: fy, = 2, f;, = 4, f;3 = 1. We assume an unlimited supply of commodity at

the source s.

18

Network Optimization /;

Figure 9.14 Example network with capacities on the arcs.

Let: X

f represent total flow from s to t

; represent the amount of flow from nodei to |

fi; maximum flow or capacity from node i to j

We assume that the flow and capacities are non-negative and thus:

X;20 fi;=0 f=>0
We also assume that no commodity is produced at intermediate nodes [1 conservation of flow.
Therefore we have that the flow into node i equals the flow out of node i, and this can be

expressed as

iji = ZXij i = 1(1)m-1.
i=0 i=0

Note that the conservation of flow is satisfied at all interior nodes (i.e. excluding the source and
destination nodes). The remaining constraints are that the flow must be less than the capacity for

each arc:

X <f .. i = 0(1)n j =01)n.m

9.8 Maximum Flow Problem:
How do we get as much of the commaodity as possible through the network from source to
terminal?

Mathematically, we can state the objective as.

19

% Systems Optimization

maximize f= ZX ,
X

which states that we wish to maximize the flow leaving the source node (0) .

At the terminal node, the flow will accumulate and thus, do to the conservation of flow at

the interior nodes, we have:

m-1
f= inm
i=0

which isthe flow into sink node. We could have just as easily maximized this function. Including it

as one of the constraints may simplify the solution.

Example:

Aswe saw before, we can consider the maximum flow problem as a linear program.

maximize f = Xop + Xgo *+ Xo3
X

subject to, conservation of flow:
Xo1 = Xpp+ X3t Xqy
Xop ¥ X1p = Xo3+ Xy

Xoz ¥ X3+ Xp3 = Xz

20

Network Optimization /;

maximum flow in each arc:

Xg1 £ 2 Xgp <3 Xgz<1
X1, <4 Xi3<1 X4 <3
Xp3s1l Xoy < 2
Xy <2

non-negative flow:
X =0 f=0

and that the flow into the sink node must be the same as the flow out of the source node:
{X14+ Xoq + X3, = f} (NOt NeCcessary). W

Solving the maximum flow problem using linear programming is not efficient, and faster
algorithms have been developed. Before we study these algorithms, let us define some terms and

state a theorem.

Definition: Cut in the network
A cut in a network produces a separation of nodes into 2 groups, S and T, such that s S and
t0T.0

Definition: Capacity of cut
The total capacity on edges crossing from the set S to the set T is called the capacity of the cut.
The flow cannot exceed this capacity. O

Definition: Minimal cut
The minimal cut isthe cut of the smallest possible capacity. O

Theorem: Max-flow/Min-cut

The value of the maximum flow equals the capacity of the minimal cut. O

21

% Systems Optimization

Example:
1
14
1
Cutss 5+7+9 =21
6+8+5 =19
1+14+1 =16

1+1+8+1+1 = 12 (minima cut = maximum flow)

Note that the minimal cut is not unique, but it'svalueis. B

9.9 Ford and Fulkerson Labeling Algorithm for Maximum Flow Problems

Definition: Augmentation (or augmenting) path P
Given aflow network N = (s, t,V,E,C) where:
s isthe source node
t isthe terminus node
V isthe set of nodes
E isthe set of arcs
C isthe capacities

and afeasible s—t flow f, an augmentation path P isapath from s to t in the undirected graph

st

G, resulting from N by ignoring the arc directions, with the following properties:

1. forevery arc (i,j) O E thatistraversed by P intheforward direction (caled a

forward arc), we have f;; < ¢;;. That isforward arcs of P are unsaturated.

2. foreveryarc (i,j) O E that istraversed by P in the reverse direction (called a

backward arc) we have f; >0. O

22

Network Optimization /;

Give an augmentation path, we can increase the flow from s to t while maintaining flow
conservation at every node by increasing the flow on every forward arc of P and decreasing it

aong every backward arc.

The maximum amount of flow augmentation possible along P is

. c;—f; dongaforwardarc
d = minimum 0
etUP g fj along a backward arcp]

where e = (i,j) isanarcinthe path.

Example:

Consider the following network where the label (2, 4) O fij =4, Cij = 4, that is the flow
equals 2 and the capacity equals 4. This instance of this network has feasible flow f = 4 but the

guestion is whether or not it is maximum possible flow obtainable in the network.

L3

22)

Now consider the following augmentation path:

29 (0,4) (13—~ (L4 (3,5)
O W@~ 1=6

5= 1= minimum (i —f; aongaforwardarc
& HP E fii along a backward arc%

Thus, the flow can beimcreased by & = 1 on this augmentation path. B

Theorem: afeasibleflow f is maximum if there is no augmentation path with respectto f. O

23

% Systems Optimization

The following comments can be made about this procedure:

1. if anode has both forward arcs, asin

o) >
+0 _/ +d

then the flow in and the flow out goes up by & which impliesthat the flow is

conserved.

2. If anode has both arcs as backward arcs, asin

< (e
5 -8

then again the flow is conserved.

3. If anode has one of each, the flow is still conserved:

e
+5 -®

Thus, if we cannot find an augmenting path for alabeled network, then that flow must be
maximum. Now, how do we use this theorem to determine a algorithm which will find the

maximum flow? The algorithm we will describe is attributed to Ford and Fulkerson (1956).

In the agorithm, all nodes j # s get alabel of the form (p(j), A) where p(j) isthe node
from which j receivesflow, and A isthe amount of flow sent from p(j) to j. The source node, s,
haslabel (s, «). Thus, for aforward arc (p(i), A), thelabel on node j will be

: (fi<cp) , _
@ (fjij!cijj) =® (i, min(A, ¢;; - ;)

whilefor areversearc (P(i), A), thelabel on j will be

. (f;>0) . o
®< (fjji,cji) @ (i, min(A, ;)

The algorithm can now be described as follows.

24

Network Optimization /;

Algorithm: Ford-Fulkerson Maximum Flow
Sep 1-initialization- f = 0 (or any feasible flow).

The sourceislabeled (s,). All nodes are unscanned, and all nodes except s are

unlabeled. Leti = s.

Sep 2 - scan node |
Oj suchthat (i,j) O E, fi; <cjj and j isunlabeled, label j with (i, min(4, Cjj —fij))
Oj suchthat (j,i) D E, j isunlabeled, and f;; >0, label j with (—i, min(4, f;;)).
(Notice the negative sign to signify a backward path.)
Node i is scanned.

Sep 3 - if theterminusislabeled, go to step 4, otherwise choose alabeled and unscanned node
i and go to step 2. If none exists, the current flow is maximum. (Nodes are scanned in the

order in which they were labeled).

Sep 4 - suppose t islabeled (p(t), A) . An augmenting path has been found. Use the first
element of each label to trace the path back to s. Increase the flow by A on all forward

arcs of the path and decrease the flow by A on all reverse arcs. Erase al labels and return

tostep 1. W

Example: Consider the following network where we start with aninitial flow of f = 0.

25

% Systems Optimization

(1,2) (2,2)

(1,8)
Scan 1 - labels2and 3
Scan 2 - labels4and 5
Scan 3 -~ no new labels
Scan 4 - label t
Sep 4 - augmenting pathis {6,4,2,1} ,A ont=10 increaseall forward arcs by 1.

(1,2) w3 (2.2)

Return back to step 1:

©02)

(1,8)

Scanl - labels2and3

26

Network Optimization /;

Scan2 - labels4and5
Scan3 - nonew labels
Scan4 - arc (4,t) issaturated so no label!
Scan5 - labelt
Sep 4 - augmenting path {5, 2,1} ,A ontis1l increaseall forward arcsby 1.

(41) w3 (3.4)

(1.8) 0,2

Sep 1:
Scanl - label 3since (1, 2) issaturated.
Scan3 - label 4,5
Scan4 - label 2 (reverse label)
Scan5 - label t
Sep 4 - augmentation path {5,3,1} ,A = 20 increase all forward arcs on path by 2.

1.3

22)

Sep 1L:
Scanl - label 3(since (1, 2)issaturated)
Scan3 - label 4 (since (3, 5) issaturated)
Scan4 - label 2 (since (4, 6) is saturated)

27

% Systems Optimization

Scan2 - label 5
Scan5 - label t
Sep 4 - augmentation pathis {5,2,-4,3,1} ,A = 10 increaseal forward arcs on path by 1,

and, since we have areverse arc, decrease al reverse arcs on path by 1.

(3,3)

0.3

(1.5) (22)

Sep 1L:

Scanl - label 3

Scan3 - label 4

Scan4 - cannot label anymore, since (4, 6) is saturated f,, = 0.

The terminus is not labeled, so current flow is maximum. The maximum flow is found to
be 5 (this is done by cutting around s or t). The cut generated by the last labeled nodes { 1, 3, 4
(forward arcsonly is { (1, 2), (3, 5), (4, 6)} which has capacity equal to maximum flow.

(2.2

(2.2)

(L1)

28

Network Optimization /;

9.10 Shortest Path with Fixed Charges
When applying Dijkstra’s algorithm, it was assumed that:
“If the shortest path betwen node s to node t passes through node k , then that segment

of theroute from s to k isalso the shortest path to k. Also, the route from k to t isthe

shortest between these two nodes”.
Now what if the network has turn penalties? These are fixed charges based on the
direction of entering and the direction of exiting a node. Then, in general, the above will not be

true.

Example:

Consider the following network:

o) o 6) o) >
OO E——C

source

) 4

3 » 4 8)sink
2 = 4
What is the shortest path from 1 to 8, given that there is an additional penalty of 3 for

taking any turn? If we use brute force, then we can proceed by finding all the paths.

Path Arc Sequence Travel Cost Turn Cost Total Cost

P 1,2
(2,6)
(6,5)

1
3
1
5, 7) 6
(7,9

W| ok, | W]k
w|o|lo| o] o

6=17

29

% Systems Optimization

Path Arc Sequence Travel Cost Turn Cost Total Cost
P, 1,2 1 0 1
(2, 6) 3 0 3
(6,5) 1 0 1
(5,4 2 3 5
(4,98) 4 3 7=17
Ps 1,2 1 0 1
(2,3) 2 3 5
(3,4 2 3 5
(4, 8) 4 0 4=15

Thus, P isthe shortest path from 1 - 8.

source

3 > » 4 2 =@ sink
but, now notice that the shortest path from 1 to 4 is the subpath of P, not P;. That is
(1,2)(2,6)(6,5)(5,4) 0 total cost = 10.
whereas:
(1,2)(2,3)(3,4) 0 total cost =11
So how do we solve this problem efficiently?

We create a new pseudo network and then apply any shortest path algorithm on the new network.

1) add a pseudo source and sink “terminal” node to the network:

30

Network Optimization /;

@ Lo »@ L, »i L, »@ Ly
L8
3 L,

2) and label each arc of the network

3) create a new network with one node for every labelled arc:

2= 2 ,@_3,%;,@&»@
®

5

G2
The weights cost of (L, Lj) = C(L;) + p(L;, Lj) where:C(L;) - original cost of L;, p(L;, Lj) -

“turn penalty” C[(s, s)] = C[(t,t)] = O by definition. Nodes s and t are never turned.

Shortest path in new network:

Original Node gsg Old Cost
(Lp, Ly) O 1 0 -
(L, Lg) O 2 4 1
(Lg, L, O 3 5 5
(L, Lg) O 4 2 5
(Le L) O 8 4 4
Total 15 15

Example: conveyor system design

31

% Systems Optimization

v

Points 1, 2, 6, 10, 9 implies 1 extra unit for aturn
Points 3, 5, 8, 7, 4 implies 2 extra units for aturn.
Pseudo Network:

Therefore, the shortest pathis L4, L4, Lg, L45,L4, Or nodes: 1, 2, 6, 7, 10, 12.

minimum cost = 115 units

32

