
1

Systems Optimization

9.0 Network Optimization

9.1 Network Analysis

We now turn to the analysis of problems which can be represented in a network. This type

of problem is usually considered under the heading of Combinatorial Optimization. For these

types of problems we no longer use calculus; the solutions are in the form of algorithms. The

branch of mathematics behind network analysis is graph theory and thus, we often encounter dual

terminology (e.g. node is equivalent to vertex). Electrical systems analysis is an obvious

application, but other areas like project management and industrial engineering quickly come to

mind.

9.2 Representation of Networks

A network (or sometimes graph) is a collection of nodes (or vertices) and arcs (or edges)

connecting the nodes. In general, the arcs may be directed. Formally, we can represent a network G

as an ordered triple:

where: is a nonempty set of nodes, is a set of arcs disjoint or independent of ,

and is an incidence function which associates a (not necessarily distinct) unordered

pair of nodes of to each arc of . If the nodes are ordered, then it is a directed graph or

network.

We will also use the notation , and sometimes use the words

vertices and edges, especially when the topics we are covering come from graph theory. Here,

 is the vertex set, and is the edge set.

G N G() A G() ψG, ,()=

N G() A G() N

ψG

G G

G V G() E G() ψG, ,()=

V G() E G()

2

Systems Optimization

Example: consider the undirected graph defined by

A pictorial description of this graph is shown in Figure 9.1.

Figure 9.1 Example of an undirected graph.

If a graph contain no single arc loops or self-loop (e.g. above), and no two arcs join the

same pair of nodes, then it is called a simple graph.

Example: consider the directed graph defined by

Figure 9.2 Example of a directed graph.

N G() n1 n2 n3 n4, , ,{ }=

A G() a1 a2 a3 a4 a5 a6, , , , ,{ }=

ψG a1() n1n2= ψG a2() n2n3= ψG a3() n3n3=

ψG a4() n3n4= ψG a5() n4n1= ψG a6() n1n2=

a6

a2
n3 a3

a4

n4
a5

n2

a1

n1

a3

N G() n1 n2 n3 n4, , ,{ }=

A G() a1 a2 a3 a4 a5 a6, , , , ,{ }=

ψG a1() n1n2= ψG a2() n2n3= ψG a3() n3n3=

ψG a4() n3n4= ψG a5() n4n1= ψG a6() n2n1=

a2
a5

n3

a3

a4

n4

n1

a1

n2

a6

3

Network Optimization

When the graph is directed the notation represents an arc going from node to and is

depicted as

Also, except for the fact that the last example is directed, the topology of the graph is the

same (but drawn differently) as the previous example. Sometimes the notation is used to

describe an arc.

A bipartite graph is a graph in which the vertex set, say , can be partitioned into two

subsets, say X and Y, such that each edge of the graph has one end in X and the other end in Y. The

partition (X, Y) is called the bipartition of the graph. The graph shown below in Figure 9.3 is

obviously bipartite where the vertices corresponding to the two sets of the bipartition are depicted

differently (i.e. solid and hollow).

Figure 9.3 Example of a bipartite graph

Given two graphs G and H, H is said to be a subgraph of G, denoted H ⊆ G, if V(H) ⊆

V(G), E(H) ⊆ E(G), and ψH is the restriction or imposition of ψG to E(H). If H ⊆ G but H≠G then

H is said to be a proper subgraph of G, denoted H ⊂ G. Also, G is said to be a supergraph of H. A

spanning subgraph of G is a subgraph H with V(H) = V(G). If H1 and H2 are subgraphs of G then

H1 and H2 are said to be disjoint if they have no vertex in common and edge-disjoint if they have

no edge in common.

The union of two graphs H1 and H2, denoted H1 ∪ H2, is a subgraph with vertex set V(H1)

∪ V(H2) and edge set E(H1) ∪ E(H2). If H1 and H2 are disjoint then their union is denoted H1 + H2.

The intersection of H1 and H2, denoted H1 ∩ H2, is a subgraph with vertex set V(H1) ∩ V(H2) ≠ ∅

and edge set E(H1) ∩ E(H2).

n1n2 n1 n2

n1 n2

n1n2()

V G()

v1

v2
v3

v4

e1

e2

e3

e4

e5

4

Systems Optimization

The vertex degree dG(v) of a vertex v in G is the number of edges of G incident with vertex

v, where a loop (i.e. an edge with incidence function being an ordered pair of the same vertex)

counts as two edges. The minimum degree of vertices of G is denoted δ(G) while the maximum

degree is denoted ∆(G). It can be shown that in any graph the number of vertices of odd degree is

even.

A walk in a graph G is a finite non-null sequence W = v0e1v1e2v2 ... ekvk whose terms are

alternately vertices and edges such that for 1 ≤ i ≤ k the ends of ei are the vertices vi-1 and vi. The

walk W may be denoted as W = (v0, vk) and W is said to be a walk from vertex v0 to vertex vk. Also,

v0 is said to be the origin of the walk and vk the terminus. The vertices v1 to vk-1 are called internal

vertices while k is the length (ε(W)) of the walk. A section of walk from vi to vj is a subsequence of

W denoted as a (vi, vj) section of W. Walks can be concatenated if the terminus of one walk, say W,

is the origin of another, say W′, and the resulting walk is denoted by WW′. Walks can also be

inverted, denoted W -1, where the sequence is taken backwards from terminus to origin. Figure 9.4

shows an example of a walk.

Figure 9.4 Example of a walk in a graph

If the edges of a walk W are distinct then W is called a trail; if the vertices are also distinct

then W is called a path. In Figure 9.4, is also a trail but not a path since vertex occurs twice

in list.

Two vertices of a graph G, u and v say, are said to be connected if there is a (u, v) path in

G. A graph G can be partitioned into components G[V1], G[V2], ... , G[Vω] of G, generated by

partitioning V into nonempty subsets V1, V2, ... , Vω such that two vertices of V are connected if

and only if they belong to the same subset Vi. The graph G is said to be connected if all its vertices

are connected, otherwise it is called a disconnected graph.

A closed walk is one in which the origin and terminus are the same. A cycle is a closed

trail wherein the origin and the internal vertices are distinct. A k-cycle is a cycle of length k while a

v1

v2 v3

v4

e1

e2

e3

e4

e5

W ν2e5ν1e1ν2e2ν3=

ν2 origin–

ν3 terminus–

W ν2

5

Network Optimization

3-cycle is also called a triangle. It can be shown that a graph is bipartite if and only if it contains no

odd cycles. An acyclic graph is one which contains no cycles. An acyclic graph which is also

connected is called a tree. In a tree, any two vertices are connected by a unique path.

A tree of a graph is a subgraph of such that any two of the following are true:

1) the subgraph is connected,

2) has no cycles,

3) the number of edges in is ,

where has vertices and has vertices with .

A spanning tree is a tree of having the same number of vertices as , and therefore,

 edges. Examples are shown in Figure 9.5. It is usual to represent a tree by the set of edges in

the tree; the vertices will be implied.

Figure 9.5 Examples of a tree and spanning tree in a graph.

A graph G is called a weighted graph if for every edge e ∈ E(G) there exists a weight w(e)

∈ R (real number). If H is a subgraph of G then the weight of H is given as the sum of the

individual edge weights in H

(9.1)

and the weight of a path in G is called the length of the path. The minimum weight of a (u,v)

path is called the distance d(u, v). If two vertices, u and v, are not connected by an edge,

that is if uv ∉ E, then the weight of uv is assumed infinite (i.e. w(uv) = ∞).

G G1 G

G1

G1

G1 k 1–

G n G1 k k n≤

G G

n 1–

v1

v2 v3

v4

e1

e2

e3

e4

e5

T e1 e2 e6, ,{ }=

e6 e7

v5

ST e1 e2 e4, , e6,{ }=

w H() w e()

e E H()∈

∑=

6

Systems Optimization

9.2.1 Matrix representation of a graph

The adjacency matrix is another way of storing the knowledge of a graph. Consider a

graph which is represented by , where the nodes are numbered sequentially, say

 and the edges are listed as pairs of numbers representing the nodes which

terminate the edge, say . The adjacency matrix is defined

such that

where . If is undirected, then and the adjacency matrix is symmetric.

Similarly, we can define the cost matrix, , where is the cost or

weight of edge . In an undirected graph, the cost matrix will be symmetric, . If an

edge between two nodes and does not exist then the cost will be defined as infinite, .

Example: The graph shown in Figure 9.6 has an adjacency matrix given by

.

The rows represent the source of an edge while the columns represent the sink of an edge. A 1 on

the diagonal represents a loop.

Figure 9.6 Directed graph for which adjacency matrix is defined.

Another way to represent the graph using a matrix is via the so-called node-arc incidence

matrix where is the number of nodes and is the number of arcs. In this

case, we must assume that the nodes as well as the arcs are numbered consecutively, as in say

G N A,()=

N 1 2 …n, ,{ }=

1 2,() 5 10,() …, ,{ } X xij[]= R
n n×∈

xij

1 i j,() A∈
0 otherwize




=

i j, N∈ G xij xji= X

C cij[]= R
n n×∈ cij

i j,() cij cji=

i j cij ∞=

X

1 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 1 0 0 1

0 1 0 0 0

=

1

2
e1

e2

e6 e7

4

e9

e10

e8

e5

5

3

Z zik[]= R
n m×∈ n m

7

Network Optimization

,

and that each arc can be represented as a pair of nodes, say where is the source node

and is the sink node of the arc. Then the node-arc incidence matrix is given by

,

where and . For an undirected network , we use only positive 1’s in the matrix:

,

Example: The graph shown in Figure 9.7 has an adjacency matrix given by

.

The rows represent the noders while the columns represent the edges. Each column has exactly 2

non-zero entires.

Figure 9.7 Graph for which node-arc incidence matrix is defined.

9.3 Finding a Spanning Tree

There are two fundamental search techniques which can be used for find a spanning tree.

The first is called Breadth-First Search and the second is called Depth-First Search. These are

fundamental general purpose searching strategies which are used in many applications.

N 1 2 …n, ,{ }= A a1 a2, …am{ }=

ak i j,()= i

j

Z zik[]= zik

1

1–

0





=

ak i j,()=

ak j i,()=

otherwize

i j, N∈ ak A∈ G

Z zik[]= zik

1

0



=
ak i j,()= or ak j i,()=

otherwize

Z

1 0 0 0 0 0 1

1 1 0 1 0 1 0

0 0 0 0 1 1 1

0 0 1 1 1 0 0

0 1 1 0 0 0 0

=

1

2
a1

a7 a6

3

a2

a3

a5

a4

4

5

8

Systems Optimization

9.3.1 Breadth-First Search for a Spanning Tree

Given a graph and any starting node, the strategy is to find all new nodes which can be

reached on an edge from the current node. Then we visit each of the nodes in the same order in

which they found applying the algorithm. The method is exemplified by an example.

Example: Breadth-first search of a graph for a spanning tree

Consider the graph shown in Figure 9.8.

Figure 9.8 Breadth-first search for a spanning tree.

If we start with node then we will take the following steps:

1) add edges , nodes in the tree are

2) move to node and add edges , nodes in the tree are

3) move to node , no edges to add

4) move to node and add edges , nodes in the tree are

5) move to node , no edges to add

6) move to node , no edges to add

7) move to node , and add edges , nodes in the tree are now

 and since all nodes are covered, we stop.

9.3.2 Depth-First Search for a Spanning Tree

The depth-first search technique takes a different philosophy. In this algorithm we keep

moving to a node as we add it into the tree and try to add a new edge from that new node. If we

can’t add a new node, we backtrack to the first node in which we can continue to proceed forward.

v1

v2 v3

v4

e1

e2

e3

e4

e11

e6 e7

v5

e9

e12

e13

e10

e8

e5

v6

v7

v8

v9

v1

v2 v3

v4

e1

e2

e4

e11

e6

v5

e9

e12

e5

v6

v7

v8

v9

v1

e1 e4,{ } v1 v2 v4, ,{ }

v2 e2 e6,{ } v1 v2 v4 v3 v5, , , ,{ }

v4

v3 e5 e9,{ }

v1 v2 v4 v3 v5 v6 v7, , , , , ,{ }

v5

v6

v7 e11 e12,{ }

v1 v2 v4 v3 v5 v6 v7 v8 v9, , , , , , , ,{ }

9

Network Optimization

The method is best explained by an example. Again we consider the same example which was used

for the breadth-first search.

Example: Depth-first search of a graph for a spanning tree. Consider the graph in Figure 9.9.

Figure 9.9 Depth-first search for a spanning tree.

If we start with node then we will take the following steps:

1) add edges , nodes in the tree are

2) move to node and add edge , nodes in the tree are

3) move to node and add edge , nodes in the tree are

4) move to node , can’t add an edge

5) backtrack to node and add edge , nodes in the tree are

6) move to node and add edge , nodes in the tree are

7) move to node , can’t add an edge

8) backtrack to node and add edge , nodes in the tree are

9) move to node and add edge , nodes in the tree are

10) move to node and add edge , nodes in the tree are

.

11) All nodes are in the tree so stop.

Note that the spanning trees which are obtained using these techniques are not the same

and that, even when using the same algorithm, the tree which is obtained will depend on: a) the

starting node; and b) the order in which the edges are stored in the list of edges.

v1

v2 v3

v4

e1

e2

e3

e4

e11

e6 e7

v5

e9

e12

e13

e10

e8

e5

v6

v7

v8

v9

v1

v2 v3

v4

e1

e2

e3

e11

v5

e13

e10

e8

e5

v6

v7

v8

v9

v1

e1{ } v1 v2,{ }

v2 e2{ } v1 v2 v3, ,{ }

v3 e3{ } v1 v2 v3 v4, , ,{ }

v4

v3 e5{ } v1 v2 v3 v4 v6, , , ,{ }

v6 e8{ } v1 v2 v3 v4 v6 v5, , , , ,{ }

v5

v6 e10{ }

v1 v2 v3 v4 v6 v5, , , v7, , ,{ }

v7 e11{ }

v1 v2 v3 v4 v6 v5, , , v7 v9, , , ,{ }

v9 e13{ }

v1 v2 v3 v4 v6 v5, , , v7 v9 v8, , , , ,{ }

10

Systems Optimization

9.4 Minimum Spanning Tree

The two algorithms for finding a spanning tree are quite simple to understand. Now if we

have a weighted graph and we want to find the spanning tree of minimum weight, how should we

proceed? We will discuss two algorithms for finding such a minimum spanning tree: Prim’s

algorithm and Kruskal’s minimum forest algorithm. These can be explained by considering the

following example.

Example: Say we have the weighted network shown in Figure 9.10 where the numbers along the

arcs represent the weight of the arc. Now assume that we already have the two bold arcs in the

minimum spanning tree; that is the arcs with weights 1 and 2. Should we next add the arc labelled

7? This is the lowest weight arc incident on the existing tree. Alternatively, should we add the arc

with weight 3? This is the lowest weight arc in the entire graph which could be legally added to the

tree. The first choice is representative of Prim’s algorithm while the second choice is representative

of Kruskal’s minimum forest algorithm.

Figure 9.10 Example weighted graph for which to find a minimum spanning tree.

9.4.1 Prim’s Algorithm

Prim’s algorithm is stated as follows. Start from any node and build a tree by repeating

the following rule: add the shortest edge that is incident to the existing tree. For the example given

in Figure 9.10, if we started with the node labelled , we would add the following edges (using the

weight as the identifier in this case): for a total weight of .

2

8

1
8

3

5
7

4

6

9

s

s

s

1 2 7 4 3 6, , , , ,{ } 22

11

Network Optimization

Figure 9.11 Minimum spanning tree using Prim’s or Kruskal’s algorithm.

9.4.2 Kruskal’s minimum forest algorithm

In this algorithm we add edges in increasing order of length, rejecting any that complete a

loop. For the example of Figure 9.10 we would add edges in the following order: .

Therefore we would arrive at the same minimum spanning tree as that shown in Figure 9.11 but in

a different order of adding edges. In general the minimum spanning tree on a weighted graph may

not be unique but it will definitely have a unique weight.

9.5 Shortest Path Algorithms

A graph algorithm for finding the shortest path from a root vertex u0 to all other vertices in

the graph is Dijkstra’s algorithm named after its founder (see Dijkstra [2], and [1], pp 19 - 20).

Actually, in Dijkstra’s 1959 article he gives two algorithms. The first finds the tree of minimum

weight which spans a connected graph G, called the minimum spanning tree of the graph. The

second finds the path of minimum distance between a root vertex u0 and the rest of the vertices of

G, called the single source shortest distance spanning tree.

The algorithm uses the fact that if S is a proper subset of V (the set of n+1 vetices), where

the root vertex is chosen so that it is an element of S, then

(9.2)

where is V - S. An increasing sequence of subsets S0, S1, ... , Sn of V is constructed (with S0 =

{u0}) so that once the ith subset is constructed the shortest paths from the root vertex u0 to all the

vertices in Si will be known. These shortest paths will be denoted P(u0v) where . The

algorithm is shown in Figure 9.12.

2

8

1
8

3

5
7

4

6

9

s

1 2 3 4 6 7, , , , ,{ }

d u0 S,() min d uo u,() w uv()+{ }
u S v S∈,∈

=

S

v Si∈

12

Systems Optimization

Figure 9.12 Dijkstra’s algorithm with shortest path determination

When the algorithm terminates, the labels at each vertex L(v), v ∈ V, will contain the

distance from the root vertex u0 and the path variable P(u0v) will contain the minimum path

specification as a list of vertices from the root vertex to v. Note that a list of vertices is sufficient to

represent a path in a simple graph. An example of the use of this algorithm is given below in Figure

9.3 where the labels and paths after each step are shown next to the graph. The edge weights and

the root vertex are identified in the first drawing.

Dijkstra’s Algorithm

S = {u0}; = V - S; L(u0) = 0

Loop 1:

L(v) = ∞; P(u0 v) = {u0}

end Loop 1

i = 0;

Loop 2: while ≠ ∅

min_label = ∞

Loop 3:

if L(ui) + w(ui v) < L(v) then

L(v) = L(ui) + w(ui v)

P(u0 v) = P(u0 ui) ∪ v

endif

if L(v) < min_label then

min_v = v; min_label = L(v)

endif

end Loop 3

ui+1 = min_v; S = S ∪ ui+1; = - ui+1; i = i + 1

S

v∀ S∈

S

v∀ S∈

S S

13

Network Optimization

Figure 9.13 Example application of shortest path algorithm

In Figure 9.3 the bold vertices represent the elements of each subset S after each step in the

algorithm. The final paths are shown in the bottom diagram of the figure with the distances given

by the labels. Of course, if the distance to only one vertex from the root vertex is required, the

algorithm is terminated when that vertex is reached. This algorithm, is a good algorithm in that it

finds the solution in polynomial time (i.e. it is of order ν2 where ν is the number of vertices).

d

a b

c

e

1

5

1

2

3

1
L(a) = 0;
L(b) = ∞;
L(c) = ∞;
L(d) = ∞;
L(e) = ∞;

P(aa) = {a}
P(ab) = {a}
P(ac) = {a}
P(ad) = {a}
P(ae) = {a}

d

a b

c

e

L(a) = 0;
L(b) = 1;
L(c) = ∞;
L(d) = 5;
L(e) = ∞;

P(aa) = {a}
P(ab) = {ab}
P(ac) = {a}
P(ad) = {ad}
P(ae) = {a}

d

a b

c

e

L(a) = 0;
L(b) = 1;
L(c) = 3;
L(d) = 5;
L(e) = 2;

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {ad}
P(ae) = {abe}

d

a b

c

e

L(a) = 0;
L(b) = 1;
L(c) = 3;
L(d) = 5;
L(e) = 2;

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {ad}
P(ae) = {abe}

d

a b

c

e

L(a) = 0;
L(b) = 1;
L(c) = 3;
L(d) = 4;
L(e) = 2;

P(aa) = {a}
P(ab) = {ab}
P(ac) = {abc}
P(ad) = {abcd}
P(ae) = {abe}

14

Systems Optimization

9.5.1 References

[1] J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications, American Elsevier Pub.
Co., Inc., 1976.

[2] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”, Numerische Math-
ematik, vol. 1, pp. 269 - 271, 1959.

9.6 Shortest Distance Between All Pairs of Nodes (Floyd-Warshall Algorithm)

We now want to solve for the shortest path between all nodes in a graph . To

do this, we could apply Dijkstra’s algorithm, which gives us the shortest distance from a root node

to all other nodes, times. However, there is a more efficient algorithm due to Floyd and Warshall

(1962).

Let be the set of nodes and let the matrix be the

matrix of weights, so that is the weight of arc . We now create a matrix of distances

from i to j : such that will be the minimal distance from node i to j. Initially, we set

 and then we iterate n times. After n iterations, D will contain the minimal distances

between each pair of nodes. (In this algorithm, we assume that) We first define the so-

called triangle operation.

Definition: triangle or triple operation

Given an distance matrix , the triangle operation for a fixed node j is

G N A,()=

n

N 1 2 … n, , ,{ }= C cij[]= n n×

cij i j,() n n×

D dij[]= dij

D C=

dii ∞=

n n× dij

dik min dik dij djk+,{ }= i k, 1 1()n=∀ i k, j≠

ki

j

dij djk

dik

15

Network Optimization

Theorem: If we perform the triangle operation for successive values , each entry

becomes equal to the length of the shortest path from i to k, assuming weights .

We now give the Floyd-Warshall algorithm which uses the triangle operation.

Algorithm: Floyd-Warshall Algorithm

Input: matrix (non-negative entries)

Output: matirx , where is shortest distance from i to j under .

for all do ,

for do

for do

for do begin

for do begin

Example: consider the following graph:

now we initialize the matrix

j 1 1()n= dik

cij 0≥

n n× Cij[]

n n× dij[] dij Cij[]

i j≠ dij Cij=

i 1 1()n= dii ∞=

j 1 1()n=

i 1 1()n= i j≠

k 1 1()n= k j≠

dik min dik dij djk+,{ }=

2 1

1

4
3

3

1

2

4 C

0 ∞ ∞ 1

2 0 1 ∞
∞ ∞ 0 ∞
∞ 4 3 0

=

D

dij[] D

∞ ∞ ∞ 1

2 ∞ 1 ∞
∞ ∞ ∞ ∞
∞ 4 3 ∞

= =

pivot row

elements to be updated

pivot column

in next generation, e.g.:
d24 min ∞ 2 1+,{ } 3= =

16

Systems Optimization

Which gives the final answer:

Note that starting the diagonals with finds the paths which are chains (or cycles). That is,

we ended up with which are cycles.

Now how do we keep track of the shortest path? We keep track of a new matrix which is

initially set to zero, called the route matrix:

Then every time we apply the triangle operation in the algorithm, we also execute:

j 1= D

∞ ∞ ∞ 1

2 ∞ 1 3

∞ ∞ ∞ ∞
∞ 4 3 ∞

=

j 2= D

∞ ∞ ∞ 1

2 ∞ 1 3

∞ ∞ ∞ ∞
6 4 3 7

=

j 3= D

∞ ∞ ∞ 1

2 ∞ 1 3

∞ ∞ ∞ ∞
6 4 3 7

=

j 4= D

7 5 4 1

2 7 1 3

∞ ∞ ∞ ∞
6 4 3 7

=

d11 7= d12 5= d13 4= d14 1=

d21 2= d22 7= d23 1= d24 3=

d31 ∞= d32 ∞= d33 ∞= d34 ∞=

d41 6= d42 4= d43 3= d44 7=

dii ∞=

d11 7= d22 7= d33 ∞= d44 7=, , ,

E eik[]= eik 0= i k, 1 1()n=

eik

j if dik dij djk+>

eik otherwize



=

17

Network Optimization

i.e. if an intermediate node, j, can be used to create a shorter path, then we should store it.

Example:

51

1 2

2

3
4

4

1

3 C

0 1 ∞ 5

∞ 0 2 ∞
3 1 0 4

1 ∞ ∞ 0

=1

D
0

∞ 1 ∞ 5

∞ ∞ 2 ∞
3 1 ∞ 4

1 ∞ ∞ ∞

= E
0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

=

D
1

∞ 1 ∞ 5

∞ ∞ 2 ∞
3 1 ∞ 4

1 2 ∞ 6

= E
1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 1

=

the only changes

D
2

∞ 1 3 5

∞ ∞ 2 ∞
3 1 3 4

1 2 4 6

= E
2

0 0 2 0

0 0 0 0

0 0 2 0

0 1 2 1

=

D
3

6 1 3 5

5 3 2 6

3 1 3 4

1 2 4 6

= E
3

3 0 2 0

3 3 0 3

0 0 2 0

0 1 2 1

=

D
4

6 1 3 5

5 3 2 6

3 1 3 4

1 2 4 6

= E
4

3 0 2 0

3 3 0 3

0 0 2 0

0 1 2 1

=

18

Systems Optimization

Note that there was no change during the last step. Now to find the paths we proceed as follows:

To find the path from node 2 to node 1: : , ,

To find the path from node 1 to node 3: : , ,

To find the path from node 1 to node 1: : , , ,

The procedure is as follows:

add terminal node

while

continue

add source node

9.7 Maximum Flow - Network Problems

We now consider networks, , where the arcs are weighted by some sort of

capacity, e.g.: 2 messages per hour, 10 gallons per minute, 100 cars per minute, and a source node,

s { = 0}, and terminal (or destination) node, t {= m } (i.e. . To be clear, the capacity

here is different than weight; when an arc is traversed, the total weight of the arc is used, but not

necessarily the total capacity.

Example:

Consider the example network shown in Figure 9.14. The capacity of arc (1,2) is denoted

 and for a general arc . If doesn’t exist then we set . In this example, we

have for instance: , , . We assume an unlimited supply of commodity at

the source s.

P21 d21 5= e21 3= e23 0 P21⇒ 2 3 1, ,{ }= =

P13 d13 3= e13 2= e12 0 P13⇒ 1 2 3, ,{ }= =

P11 d11 3= e11 3= e13 2= e12 0=

P11 1 2 3 1, , ,{ }=⇒

Pij j{ }=

k j=

eik 0≠

Pij eik Pij∪=

k eik=

Pij i Pij∪=

G N A,()=

N m 1)+=

f12 i j,() fij→ i j,() fij 0=

f01 2= f12 4= f13 1=

19

Network Optimization

Figure 9.14 Example network with capacities on the arcs.

Let: represent the amount of flow from node i to j

 represent total flow from to

 maximum flow or capacity from node to

We assume that the flow and capacities are non-negative and thus:

We also assume that no commodity is produced at intermediate nodes conservation of flow.

Therefore we have that the flow into node equals the flow out of node , and this can be

expressed as

.

Note that the conservation of flow is satisfied at all interior nodes (i.e. excluding the source and

destination nodes). The remaining constraints are that the flow must be less than the capacity for

each arc:

. !

9.8 Maximum Flow Problem:

How do we get as much of the commodity as possible through the network from source to

terminal?

Mathematically, we can state the objective as:

3

2

1

1

3

1

1

2

4 t3

0s
2 4

2

m 4=

xij

f s t

fij i j

xij 0≥ fij 0≥ f 0≥

⇒

i i

xji

j 0=

m

∑ xij

j 0=

m

∑= i 1 1()m 1–=

xij fij≤ i 0 1()n= j 0 1()n=

20

Systems Optimization

which states that we wish to maximize the flow leaving the source node .

At the terminal node, the flow will accumulate and thus, do to the conservation of flow at

the interior nodes, we have:

which is the flow into sink node. We could have just as easily maximized this function. Including it

as one of the constraints may simplify the solution.

Example:

As we saw before, we can consider the maximum flow problem as a linear program.

subject to, conservation of flow:

maximize
x

f xoi

i 1=

m

∑=

0()

f xim

i 0=

m 1–

∑=

F

3

2

1

1

3

1

1

2

4
t

3

0
s

2 4

2

m 4=

F

maximize
x

f x01 x02 x03+ +=

x01 x12 x13 x14+ +=

x02 x12+ x23 x24+=

x03 x13 x23+ + x34=

21

Network Optimization

maximum flow in each arc:

non-negative flow:

and that the flow into the sink node must be the same as the flow out of the source node:

 (not necessary). !

Solving the maximum flow problem using linear programming is not efficient, and faster

algorithms have been developed. Before we study these algorithms, let us define some terms and

state a theorem.

Definition: Cut in the network

A cut in a network produces a separation of nodes into 2 groups, and , such that and

. "

Definition: Capacity of cut

The total capacity on edges crossing from the set to the set is called the capacity of the cut.

The flow cannot exceed this capacity. "

Definition: Minimal cut

The minimal cut is the cut of the smallest possible capacity. "

Theorem: Max-flow/Min-cut

The value of the maximum flow equals the capacity of the minimal cut. "

x01 2≤ x02 3≤ x03 1≤

x12 4≤ x13 1≤ x14 3≤

x23 1≤ x24 2≤

x34 2≤

xij 0≥ f 0≥

x14 x24 x34+ + f={ }

S T s S∈

t T∈

S T

22

Systems Optimization

Example:

Cuts:

 (minimal cut = maximum flow)

Note that the minimal cut is not unique, but it’s value is. !

9.9 Ford and Fulkerson Labeling Algorithm for Maximum Flow Problems

Definition: Augmentation (or augmenting) path P

Given a flow network where:

 is the source node

 is the terminus node

 is the set of nodes

 is the set of arcs

 is the capacities

and a feasible flow , an augmentation path is a path from to in the undirected graph

, resulting from by ignoring the arc directions, with the following properties:

1. for every arc that is traversed by in the forward direction (called a

forward arc), we have . That is forward arcs of are unsaturated.

2. for every arc that is traversed by in the reverse direction (called a

backward arc) we have . "

ts

1
6

8

51

1
14

1
2

2
7

5

9

5 7 9+ + 21=

6 8 5+ + 19=

1 14 1+ + 16=

1 1 8 1 1+ + + + 12=

N s t V E C, , , ,()=

s

t

V

E

C

s t– fst P s t

G N

i j,() E∈ P

fij cij< P

i j,() E∈ P

fji 0>

23

Network Optimization

Give an augmentation path, we can increase the flow from to while maintaining flow

conservation at every node by increasing the flow on every forward arc of and decreasing it

along every backward arc.

The maximum amount of flow augmentation possible along is

where is an arc in the path.

Example:

Consider the following network where the label , that is the flow

equals 2 and the capacity equals 4. This instance of this network has feasible flow but the

question is whether or not it is maximum possible flow obtainable in the network.

Now consider the following augmentation path:

Thus, the flow can be imcreased by on this augmentation path. !

Theorem: a feasible flow is maximum if there is no augmentation path with respect to . "

s t

P

P

δ minimum
eij P∈

cij fij– along a forward arc

fji along a backward arc 
 
 

=

eij i j,()=

2 4,() fij 4= cij 4=,⇒

f 4=

4

t

3

2

5

(1, 3)

(1, 1)

(3, 5)
(1, 4)

(2,2)

(0, 4)

(2, 8)

(2, 2)

s 1 6

+1 +1 -1 +1 +1

(2, 8) (0, 4) (1,3) (1, 4) (3, 5)
43 2 51 6

δ 1 minimum
eij P∈

cij fij– along a forward arc

fji along a backward arc 
 
 

= =

δ 1=

f f

24

Systems Optimization

The following comments can be made about this procedure:

1. if a node has both forward arcs, as in

then the flow in and the flow out goes up by which implies that the flow is

conserved.

2. If a node has both arcs as backward arcs, as in

then again the flow is conserved.

3. If a node has one of each, the flow is still conserved:

Thus, if we cannot find an augmenting path for a labeled network, then that flow must be

maximum. Now, how do we use this theorem to determine a algorithm which will find the

maximum flow? The algorithm we will describe is attributed to Ford and Fulkerson (1956).

In the algorithm, all nodes get a label of the form where is the node

from which receives flow, and is the amount of flow sent from to . The source node, ,

has label . Thus, for a forward arc , the label on node will be

while for a reverse arc , the label on will be

The algorithm can now be described as follows.

+δ +δ

δ

-δ -δ

+δ -δ

j s≠ p j() ∆,() p j()

j ∆ p j() j s

s ∞,() p i() ∆,() j

i
fij cij<()
fij cij,()

i min ∆ cij fij–,(),()j

P i() ∆,() j

i
fji 0>()
fji cji,()

i min ∆ fji,(),()j

25

Network Optimization

Algorithm: Ford-Fulkerson Maximum Flow

Step 1 - initialization - (or any feasible flow).

The source is labeled . All nodes are unscanned, and all nodes except are

unlabeled. Let .

Step 2 - scan node

 such that , and is unlabeled, label with

 such that , is unlabeled, and , label with .

(Notice the negative sign to signify a backward path.)

Node is scanned.

Step 3 - if the terminus is labeled, go to step 4, otherwise choose a labeled and unscanned node

 and go to step 2. If none exists, the current flow is maximum. (Nodes are scanned in the

order in which they were labeled).

Step 4 - suppose is labeled . An augmenting path has been found. Use the first

element of each label to trace the path back to . Increase the flow by on all forward

arcs of the path and decrease the flow by on all reverse arcs. Erase all labels and return

to step 1. !

Example: Consider the following network where we start with an initial flow of .

f 0=

s ∞,() s

i s=

i

j∀ i j,() E∈ fij cij< j j i min ∆ cij fij–,(),()

j∀ j i,() E∈ j fji 0> j i– min ∆ fji,(),()

i

i

t p t() ∆,()

s ∆

∆

f 0=

c24 3=
c46 1=

c25 4=

c34 4=

c56 5=

c35 2=

c13 8=

c12 2=

s ∞,()

4

t

3

2

5

(0, 3)

(0, 1)

(0, 5)
(0, 4)

(0,2)

(0, 4)

(0, 8)

(0, 2)

s 1 6

26

Systems Optimization

Scan labels 2 and 3

Scan labels 4 and 5

Scan no new labels

Scan label

Step 4 - augmenting path is , on increase all forward arcs by 1.

Return back to step 1:

Scan 1 labels 2 and 3

1 2,() 2 2,()

4 1,()

2 2,()1 8,()

s ∞,()

4

t

3

2

5

(0, 3)

(0, 1)

(0, 5)
(0, 4)

(0,2)

(0, 4)

(0, 8)

(0, 2)

s 1 6

1 →

2 →

3 →

4 → t

6 4 2 1, , ,{ } ∆ t 1= ⇒

1 2,() 2 2,()

4 1,()

2 2,()1 8,()

s ∞,()

4

t

3

2

5

(1, 3)

(1, 1)

(0, 5)
(0, 4)

(0,2)

(0, 4)

(0, 8)

(1, 2)

s 1 6

1 1,() 2 1,()

5 1,()

2 2,()1 8,()

s ∞,()

4

t

3

2

5

(1, 3)

(1, 1)

(0, 5)
(0, 4)

(0,2)

(0, 4)

(0, 8)

(1, 2)

s 1 6

→

27

Network Optimization

Scan 2 labels 4 and 5

Scan 3 no new labels

Scan 4 arc (4, t) is saturated so no label!

Scan 5 label t

Step 4 - augmenting path , on is increase all forward arcs by 1.

Step 1:

Scan 1 label 3 since is saturated.

Scan 3 label 4, 5

Scan 4 label 2 (reverse label)

Scan 5 label

Step 4 - augmentation path , increase all forward arcs on path by 2.

Step 1:

Scan 1 label 3 (since is saturated)

Scan 3 label 4 (since is saturated)

Scan 4 label 2 (since is saturated)

→

→

→

→

5 2 1, ,{ } ∆ t 1 ⇒

4– 1,() 3 4,()

5 1,()

3 2,()1 8,()

s ∞,()

4

t

3

2

5

(1, 3)

(1, 1)

(1, 5)
(1, 4)

(0,2)

(0, 4)

(0, 8)

(2, 2)

s 1 6

→ 1 2,()

→

→

→ t

5 3 1, ,{ } ∆ 2 ⇒=

4– 1,() 3 4,()

5 1,()

2 1,()1 6,()

s ∞,()

4

t

3

2

5

(1, 3)

(1, 1)

(3, 5)
(1, 4)

(2,2)

(0, 4)

(2, 8)

(2, 2)

s 1 6

→ 1 2,()

→ 3 5,()

→ 4 6,()

28

Systems Optimization

Scan 2 label 5

Scan 5 label

Step 4 - augmentation path is , increase all forward arcs on path by 1,

and, since we have a reverse arc, decrease all reverse arcs on path by 1.

Step 1:

Scan 1 label 3

Scan 3 label 4

Scan 4 can not label anymore, since (4, 6) is saturated .

The terminus is not labeled, so current flow is maximum. The maximum flow is found to

be 5 (this is done by cutting around s or t). The cut generated by the last labeled nodes

(forward arcs only is which has capacity equal to maximum flow.

→

→ t

5 2 4 3 1, ,–, ,{ } ∆ 1 ⇒=

3 3,()

1 5,()

4

t

3

2

5

(0, 3)

(1, 1)

(4, 5)
(2, 4)

(2,2)

(1, 4)

(3, 8)

(2, 2)

s 1 6

→

→

→ f24 0=

1 3 4, ,{ }

1 2,() 3 5,() 4 6,(), ,{ }

S T

f = 5

4

3 5

1

6

2
(2,2)

(2,2)

(1,1)

29

Network Optimization

9.10 Shortest Path with Fixed Charges

When applying Dijkstra’s algorithm, it was assumed that:

“If the shortest path betwen node to node passes through node , then that segment

of the route from to is also the shortest path to . Also, the route from to is the

shortest between these two nodes”.

Now what if the network has turn penalties? These are fixed charges based on the

direction of entering and the direction of exiting a node. Then, in general, the above will not be

true.

Example:

Consider the following network:

What is the shortest path from 1 to 8, given that there is an additional penalty of 3 for

taking any turn? If we use brute force, then we can proceed by finding all the paths.

Path Arc Sequence Travel Cost Turn Cost Total Cost

P1 (1, 2) 1 0 1

(2, 6) 3 0 3

(6, 5) 1 0 1

(5, 7) 6 0 6

(7, 8) 3 3 6 = 17

s t k

s k k k t

1 2 6 5 7

843 sink

3

6

42

131

2

source

30

Systems Optimization

Thus, P3 is the shortest path from 1 - 8.

but, now notice that the shortest path from 1 to 4 is the subpath of not . That is

total cost = 10.

whereas:

total cost = 11

So how do we solve this problem efficiently?

We create a new pseudo network and then apply any shortest path algorithm on the new network.

1) add a pseudo source and sink “terminal” node to the network:

P2 (1, 2) 1 0 1

(2, 6) 3 0 3

(6, 5) 1 0 1

(5, 4) 2 3 5

(4, 8) 4 3 7 = 17

P3 (1, 2) 1 0 1

(2,3) 2 3 5

(3, 4) 2 3 5

(4, 8) 4 0 4 = 15

Path Arc Sequence Travel Cost Turn Cost Total Cost

1 2

843 sink
42

1

2

source

P2 P3

1 2,() 2 6,() 6 5,() 5 4,() ⇒

1 2,() 2 3,() 3 4,() ⇒

31

Network Optimization

2) and label each arc of the network

3) create a new network with one node for every labelled arc:

The weights cost of where: - original cost of , -

“turn penalty” by definition. Nodes and are never turned.

Shortest path in new network:

Example: conveyor system design

Original Node
New
Cost

Old Cost

1 0 -

2 4 1

3 5 5

4 2 5

8 4 4

Total 15 15

1 2 6 5 7

3 4 8

S

t

L0 L1 L2 L3 L4

L8

L7

L9

L6 L10

L5

4

391310

4

5 2

4

5

L0 L1 L2 L3

L9

L6L6L8

L4 L5
L10

Li Lj,() C Li() p Li Lj,()+= C Li() Li p Li Lj,()

C s s,()[] C t t,()[] 0= = s t

L0 L1,() ⇒

L1 L8,() ⇒

L8 L7,() ⇒

L7 L6,() ⇒

L6 L10,() ⇒

32

Systems Optimization

Points 1, 2, 6, 10, 9 implies 1 extra unit for a turn

Points 3, 5, 8, 7, 4 implies 2 extra units for a turn.

Pseudo Network:

Therefore, the shortest path is or nodes: 1, 2, 6, 7, 10, 12.

minimum cost = 115 units

1 2 3 4

6 7 1 1

8 9 10 12

5

0 25 31 38

18 19 26 26

30 35

3531

102 7

9
1 6

B

t

s
L1

L2

L4

L6

L16

L5

L3

L8

L7
L9

L11

L10

L12

L14

L13

L15
C

40

96

26

1 2 2

3 5

115

10
105

32

83

26

58
3 3

312 5

37

46
20

2 62 6

250

21

30

28

58

1 1
1 9

18

20

0

1 30

17

56

L0 L1

L3

L2

L4 L6 L5

L16 L8

L11

L12

L15

L14

L13

L10

L9

L7

L1 L3 L8 L11 L12, , , ,

