
15

Systems Optimization

2.0 NUMERICAL TECHNIQUES FOR

SINGLE VARIABLE OPTIMIZATION

2.1 Introduction

In the previous chapter we reviewed some of the analytic properties of extrema and gave

necessary and sufficient conditions for local extrema for a function of a single variable. That is

important to know and we will also extend it to multivariable functions later but the question now

arises: how do we get a computer to find the extrema of our single variable function? Those

necessary and sufficient conditions discussed previously required the derivatives of the function.

What if the derivative is unknown? For example, our optimization problem may be a physical

process in which we have only a vague idea of the functional dependence between the variables.

In this chapter we will look at numerical techniques which can be implemented on a

computer. These methods can be classified by the type of functional information they use to find

the extrema. For example techniques which make use of function values only are called zeroth

order techniques. Those which use, in addition, first and second derivative information are called

first and second order techniques. One of the oldest techniques is the Newton-Raphson technique

which is really a root finding technique and we shall consider it next.

2.2 Newton-Raphson Technique

Since we know that the minimum of f(x) must lie at a stationary point we look for the roots

of the equation . (Thus we will somehow need to evaluate to use this method.)

geometrically the method is very simple. We start with an initial guess, , and the first and

second derivative values of the function at this guess, and . The derivatives allow

us to follow the tangent line to the x-axis and define a new, hopefully improved, x value x(1) from

f ′ x() 0= f ′ x()

x
0()

f ′ x
0()() f ″ x

0()()

16

Systems Optimization

which the cycle repeats itself. We stop when the value of the derivative at the current x value is as

close to zero as we so desire. The method is depicted in Figure 2.1.

Figure 2.1 one iteration of the Newton-Raphson method

Algebraically we start with an initial guess and then use the fact that the slope of the

tangent line at is given by

and use this to determine the next point, as

.

or in general, for the nth iteration

(2.1)

The problem with this method is that it requires first and second derivatives and sometimes

this scheme diverges depending not only on f(x) but on the initial guess.

2.2.1 Example - diverging iteration

Figure 2.2 depicts a few iterations of applying the Newton-Raphson technique in which

the method diverges.

x(0)x(1)

initial guessfirst iteration

. . .

f ’(x)

x

tangent line

x
0()

x
0()

f ″ x
0()() f ′ x

0()() 0–

x
0()

x
1()–()

----------------------------=

x
1()

x
1()

x
0() f ′ x

0()()
f ″ x

0()()
------------------–=

x
n()

x
n 1– f ′ x

n 1–()()
f ″ x

n 1–()()
------------------------–=

17

Numerical Techniques for
Single Variable Optimization

Figure 2.2 diverging iterations in Newton-Raphson method

2.2.2 Example - numerical

We now consider the following example:

minimize

Since and we form the following iteration:

.

We can now try the iteration for different initial guesses.

initial guess:

initial guess:

initial guess:

initial guess:

x(0)

x(1)

f’(x)

xx(3)

f x() x
3

–
3
4
---x

4
+=

f ′ x() 3x
2– 3x

3+= f ″ x() 6x– 9x
2+=

x
n 1+

x
n 3 x

n()
3

3 x
n()

2
–

9 x
n()

2
6x

n
–

-------------------------------------– x
n x

n()
2

x
n–

3x
n

2–
-----------------------– 2 x

n()
2

x
n–

3x
n

2–
--------------------------= = =

x
0() 0=

x
1()

0=() stationary point⇒

x
0() 0.5=

x
1()

0=() stationary point⇒

x
0()

.9
··

=

x
1() 1.029=

x
2() 1.0015=

x
3() 1.0000045=() 1.0⇒ stationary point=

x
0() 1.0=

x
1()

1.0=

18

Systems Optimization

We can now evaluate f(x) at the two stationary points we’ve found:

,

and since therefore . In fact you can

convince yourself that it is the global minimum. (Note that the global maximum is at .)

2.3 Search Methods: Region Elimination

In general, we now concern ourselves with finding the minimum inside an “interval of

uncertainty” or “bracketed interval”. We evaluate our methods by comparing the number of

function evaluations required to determine the solution with required accuracy. (Note: we always

assume that our function is unimodal in bracketed interval.)

As can be seen from Figure 2.3 one function evaluation inside the bracketed interval [a, b]

is not enough to reduce the interval of uncertainty. Both f1 and f2 have the same functional value at

x = c but f2 has its minimum in the interval [a, c] whereas f1 has its minimum in the interval [c, b].

Figure 2.3 One function evaluation inside a bracketed interval

Thus with only one function evaluation at c, there are two possible functions and we cannot tell

how to reduce the interval.

Now consider the same interval I0 = [a, b] with two function evaluations at x = c and x = d

as shown in Figure 2.4. It is now clear that depending on the value of the function at x = c as

compared to at x = d we can reduce the interval of uncertainty to either I1 = [c, b] or I1 = [a, d].

f 0() 0= f 1() 1 4⁄–=

f ″ 1() 3 0>= local minimum⇒ x* 1 local minimum⇒=

x* ∞±=

f2

f1

a c b
x

19

Numerical Techniques for
Single Variable Optimization

Figure 2.4 Two function evaluations inside bracketed interval

For the example shown in Figure 2.4 the new interval I1 would be chosen as follows:

1) consider ,

2) consider .

and in either case I1 is a new, smaller interval in which the minimum must lie.

Theorem If is strictly unimodal on (i.e. no plateau’s), given two

function evaluations, at c and d, , i.e. , then

a) if

b) if

c) if

Note: case (c) is not used in practice because numerically equality is hard to determine. �

The problem with non-strict unimodal functions (i.e. functions with plateau’s) is that

plateau’s may give the now indeterminate condition. Therefore we usually assume that is

strictly unimodal.

initial bracketed interval I0 = [a, b]

f2

f1

a c b
x

d

f1: f1 d() f1 c()< I1⇒ c b[,]=

f2 : f2 d() f2 c()> I1⇒ a d[,]=

f x() S x a x b≤ ≤{ }=

c d< f c() , f d()

f c() f d()< x* a d[,]∈⇒

f c() f d()> x* c b[,]∈⇒

f c() f d() x* c d[,]∈⇒=

f x()

20

Systems Optimization

Figure 2.5 Function which is not strictly unimodal causes uncertainty in interval reduction

2.3.1 Interval Halving Search

The most obvious technique which arises from the previous discussion can be simply

described as follows: given an initial interval [a,b] which brackets a function we sample at

 and of the interval as shown in Figure 2.6. The new interval will now become

either [a, xm] if or [xm, b] if . If neither of these is satisfied then the

minimum must be between and .

Figure 2.6 First step of interval halving search

The process continues with the new interval but now only two function evaluations will be

required at 1/4 and 3/4 of the interval. The half way point is reused from the previous iteration. The

process stops when the new interval is of size less than a user specified tolerance ∆min. An

algorithm implementing this procedure is shown below.

We notice that after the initial interval reduction we require 2 function evaluations for each

interval refinement of 1/2. Therefore after 2n+1 function evaluation the interval is reduced by

, (2.2)

where is the size of the initial interval.

f(x)

a c b
x

d

f(c) = f(d)

f x()

1 4⁄ 1 2⁄, 3 4⁄

f xL() f xm()< f xu() f xm()<

xL xu

a bxL xm xu
x

I2n 1+ I0 1 2⁄()n= n 1 2 3…, ,=

Io

21

Numerical Techniques for
Single Variable Optimization

Algorithm: Interval Halving Search

1. input a, b, ∆min // input the initial interval

2. set: , ,

3. while repeat

4. set: ,

5. ,

6. if then

7. set , , ,

8. else if

9. set , , ,

10. else

11. set , ,

12. end if
13. end if
14. end while
15. output [a, b] // final interval size is less than ∆min

2.3.2 Fibonacci Search Technique

We may now wonder if the interval halving technique is the best we can do. The following

question comes to mind:

Question How should we pick N successive points in an interval to perform function

evaluations such that the final reduced interval is the smallest possible irrespective of the

properties of ?

If N is the number of function evaluations then it is clear that for

for it is clear that the best place to sample the function is at two points a distance apart at

the center of our interval of uncertainty where is very small number. This is shown pictorially in

Figure 2.7 where the lengths of the shaded vertical lines represent the value of the function at those

points.

∆ b a–= xm a ∆ 2⁄+= fm f xm()=

∆ ∆min>

xL a ∆ 4⁄+= fL f xL()=

xu b ∆ 4⁄–= fu f xu()=

fL fm<

b xm= xm xL= fm fL= ∆ b a–=

fu fm<

a xm= xm xu= fm fu= ∆ b a–=

a xL= b xu= ∆ b a–=

f x()

N 1 : cannot reduce interval - indeterminant⇒=

N 2= δ

δ

22

Systems Optimization

Figure 2.7 best location for two function evaluations

If the number of function evaluations we are allowed is etc. then the best

locations to sample the function given that all we know is that it is strictly unimodal are shown in

Figure 2.8. Note that although we choose to use different initial intervals of uncertainty for each of

the cases, this is not really a restriction since we can always normalize our interval to any size.

Figure 2.8 examples of optimal sampling locations

For the case , we start with an interval of size 3, and sample at x = 1

and x = 2. The result of this will be an interval of size 2 which for the case of Figure 2.8 is

. We know from Figure 2.7 that the best location to take our one remaining sample is

x0 21 1+δ

initial interval: [0, 2]
new interval: [0, 1+δ]

N 3 4 5, ,=

x0 31 1+δ

initial interval: [0, 3]
final interval: [1, 2]

2

N = 3

x
0 51 4+δ

initial interval: [0, 5]
final interval: [4, 5]

3

N = 4

x0 82 1+δ

initial interval: [0, 8]
final interval: [4, 5]

3

N = 5

42

4 51

N 3= I0 0 3,[]=

I1 0 2,[]=

23

Numerical Techniques for
Single Variable Optimization

at the point x = 1+δ. Notice that we already have the sample at x = 1 from the previous step. Our

final interval is now of size 1 and is .

The remaining two case shown in Figure 2.8 follow in a similar manner, each iteration

consisting of only one new sample reduces our interval size because we are reusing a sample from

the previous iteration.

It is not too difficult to see that the pattern of sample points used above is based on the

Fibonacci sequence of numbers:

, , .

Given an interval of proportion and choosing two sample points at .

Figure 2.9 Fibonacci type sampling

The new interval will be either

 or

the first has size , the second has size and therefore they are the same size.

The next point is chosen as either or .

The interval reduction is equal to after N function evaluations. It has been

shown that this is the best possible reduction for a given number of function evaluations. At each

step the reduction is equal to . The drawback of this procedure is that you must start with

 and work backwards down the sequence.

It turns out that this technique is related to a simpler method called Golden Section search

with

called the golden section.

I2 1 2,[]=

F0 F1 1= = Fi Fi 1– Fi 2–+= i 2 1()∞=

Fi Fi 2– Fi 1–,

x0 FiFi-2

initial interval: [0, Fi]
new interval: [0, Fi-1] or [Fi-2, Fi]

Fi-1

0 Fi 1–[,] Fi 2– Fi[,]

Fi 1– Fi Fi 2–– Fi 1–=

Fi 3– Fi Fi 3––

IN I0⁄ 1 FN⁄=

Fi Fi 1+⁄

FN

τ
Fi

Fi 1+

i ∞→
lim 0.618= =

24

Systems Optimization

2.3.3 Golden Section Search

Given a normalized interval where should two points be chosen such that:

1) size of reduced interval is independent of function.

2) only one function evaluation per interval reduction.

Figure 2.10 golden section interval reduction, initial interval is [0, 1].

Therefore by condition 1 above

 or (2.3)

and by condition 2

(2.4)

(2.5)

from (2.3)

where we call the golden section and the golden mean.

After each function evaluation and comparison of the interval is eliminated or of the

original interval remains. Thus after N function evaluations an interval of original size L will be

reduced to a size

. (2.6)

0 1[,] x1 and x2

x2 x10 1

if f1 < f2 then new interval is [x2, 1]

if f2 < f1 then new interval is [0, x1]

x10 1x2

x1 0– 1 x2–= x2 1 x1–=

x1 x2–

x1

1 x1–

1
--------------=

x1 x2– x1 x1
2– x1

2⇒ x2= =

x1
2

x1 1–+ 0 x1⇒ τ .61803= = =

x2 1 x1– .38197 θ 1 τ– τ2
= = = = =

τ θ

θ τ

LτN 1–

25

Numerical Techniques for
Single Variable Optimization

Algorithm: Golden Section search

1. input a1, b1, tol

2. set

3.

4. for

5. if then

6. set

7.

8.

9. else

10. set

11.

12.

13. end

14. end until

Notes: iterate until

2.4 Polynomial Interpolation Methods

In an interval of uncertainty the function is approximated by a polynomial and the

minimum of the polynomial is used to predict the minimum of the function.

2.4.1 Quadratic Interpolation

If is the interpolating quadratic we need to find the coefficients p,

q, and r given the end points of the interval and c such that with

, . The coefficients satisfy the matrix equation

(2.7)

which can be easily solved analytically. Once we have the coefficients we need to find the

minimum of F(x) and thus

c1 a1 1 τ–() b1 a1–(), Fc+ F c1()= =

d1 b1 1 τ–() b1 a1–() , Fd– F d1()= =

K 1 2 …repeat, ,=

Fc Fd<

 ak 1+ ak bk 1+, dk dk 1+, ck= = =

 ck 1+ ak 1+ 1 τ–()+ bk 1+ ak 1+–()=

Fd Fc= Fc, F ck 1+()=

ak 1+ ck bk 1+, bk ck 1+, dk= = =

 dk 1+ bk 1+ 1 τ–()– bk 1+ ak 1+–()=

 Fc Fd Fd, F dk 1+()= =

 bk 1+ ak 1+– tol<

interval tol<

F x() px
2

qx r+ +=

a b[,] a c b< < Fa F a()=

Fb F b()= Fc F c()=

a
2

a 1

b
2

b 1

c
2

c 1

p

q

r

Fa

Fb

Fc

=

26

Systems Optimization

and therefore we only need the q and p coefficients. These can be solved using Cramer’s rule:

(2.8)

(2.9)

and therefore

Notice that must lie in if Fc < Fa and Fc < Fb bracketing interval. Also note that

 and therefore if local minimum of quadratic whereas if

local maximum.

We now evaluate and compare it to in order to reduce the interval of uncertainty.

xd
d F x() g x*() 2px* q+ 0= = =

x* q
2p
------–=

p
1
∆

Fa a 1

Fb b 1

Fc c 1

Fa b c–() Fb c a–() Fc a b–()+ +

∆
---= =

q
1
∆

a
2

Fa 1

b
2

Fb 1

c
2

Fc 1

Fa b
2

c
2

–() Fb a
2

c
2

–() Fc a
2

b
2

–()–+

∆
---–= =

x* q
2p
------–

1
2

Fa b
2

c
2–() Fb c

2
a

2–() Fc a
2

b
2–()+ +

Fa b c–() Fb c a–() Fc a b–()+ +
--= =

x* a b[,] ⇐

f″ x*() 2p x*()= p x*() 0 ⇒>

p x*() 0 ⇒<

f x*() f c()

27

Numerical Techniques for
Single Variable Optimization

Figure 2.11 f(x*) > fc k
new interval is [ak+1, bk+1] and new c value is ck+1

Figure 2.12 f(x*) < fc k
new interval is [ak+1, bk+1] and new c value is ck+1

f(x)

xak x* ck bk

f(x*) > fc k

ak+1 ck+1 bk+1

⇒

f(x*) < fc k

f(x)

x
ak x* ck bk

ak+1 ck+1 bk+1

⇒

28

Systems Optimization

Algorithm: Quadratic interpolation search

1. input a1, b1, c1, xtol, ftol

2. set

3. for k = 1,2, . . . repeat

4. set

5.

6. if and then

7. set , ,

8. ,

9. else if and then

10. set , ,

11.

12. else if and then

13. set , ,

14.

15. else

16. set , ,

17. ,

18. end

19. end until or

Notes: stop when interval reduced to xtol or when relative change in function value < ftol

2.4.2 Combined Quadratic Approximation and Golden Section : Brent’s Method in 1-D

Only an outline will be given of this method. The details can be found in Numerical

Recipes.

It is a hybrid method where an interval of uncertainty is maintained but the

extreme points are not necessarily used to compute the quadratic.

Four additional points are used :

 - the point with the lowest function value

Fa F a1() Fb, F b1() Fc, F c1()= = =

x* 1
2

Fa bk
2

ck
2–() Fb ck

2
ak

2–() Fc ak
2

bk
2–()+ +

Fa bk ck–() Fb ck ak–() Fc ak bk–()+ +
---=

Fx F x*()=

x* ck> Fx Fc<

ak 1+ ck= bk 1+ bk= ck 1+ x*=

Fa Fc= Fc Fx=

x* ck> Fx Fc>

ak 1+ ak= bk 1+ x*= ck 1+ ck=

Fb Fx=

x* ck< Fx Fc>

ak 1+ x*= bk 1+ bk= ck 1+ ck=

Fa Fx=

ak 1+ ak= bk 1+ ck= ck 1+ x*=

Fb Fc= Fc Fx=

bk 1+ ak 1+–() xtol< F ck() F ck 1+()–() F ck() ftol<⁄

ak bk[,]

µk υk ωk xk, , ,

xk

29

Numerical Techniques for
Single Variable Optimization

 - has the next lowest function value

 - previous value of

 - the latest point at which the function has been evaluated.

, , ,

initially: a1, b1 are given and is undefined

 (i. e. start with Golden section).

Parabolic fit is tried on

if lies in then we accept it as otherwise use Golden section.

2.5 Bounding Phase

The reader will notice that all the methods considered so far were interval reduction

techniques and that all these methods required an initial interval. The question is now: how do we

determine this initial interval? In general we perform a coarse search to bound or bracket the

minimum x*. This is also called interval location. We will discuss two types of interval location:

1) function comparison; and

2) polynomial extrapolation.

Both of these methods are heuristic in nature but are about the best we can provide in terms of an

algorithm. We start with a description of Swann’s bracketing method.

2.5.1 Function comparison: Swann’s Bracketing Method

Given an initial step length and starting point we check the point a distance away

on the right side of . If then we will move to the right. If on the other hand

 then we will move to the left (lets say we move to the right). We now magnify the

step size by a magnification factor, say 2, and evaluate the function at the point away from the

latest point. As soon as any new function evaluation shows an increase we can say that the last two

intervals provide a bound or interval of uncertainty for our minimum. An example of the process is

shown in Figure 2.13.

ωk

υk ωk

µk

Fµ F µ()= Fυ F υ()= Fω F w()= Fx F x()=

µ1

υ1 ω1 x1 a1 1 τ–() b1 a1–()+= = =

Fυ Fω Fx, ,

x̂* ak bk[,] µk 1+

∆ a1 ∆

a1 f a1 ∆+() f a1()<

f a1 ∆+() f a1()>

2∆

30

Systems Optimization

Figure 2.13 Example of Swann’s bracketing method, magnification factor is 2.0.

The process can be written in algorithmic form as follows:

8∆4∆2∆

x

F(x)
move to right until function evaluation increase,
then last two intervals are interval of uncertainty.

a1 b1

a2 b2

a3 b3

a4 b4

∆

31

Numerical Techniques for
Single Variable Optimization

Algorithm: Swann’s Bracketing Method - based on a heuristic expanding pattern.

1. input: , // initial point and step size

2. set: // lower test point.

3. // upper test point.

4. // lower function value

5. // upper function value

6. // central function value

7. // expanding exponent

8. if // case 1: move to the right

9. loop-up:

10. set: , , ,

11. // shift up in x by a magnified amount

12.

13. if go to loop-up

14. else output

15. if // case 2: move to the left

16. loop-down:

17. set: , , ,

18. // shift down in x by a magnified amount

19.

20. if go to loop-down

21. else output

22. if // case 3: initial interval is bracket

23. output

24. if error: non-unimodal function

2.5.2 Polynomial Extrapolation: Powell’s Method

In this method we use the same idea as in polynomial interpolation for interval reduction

but we know must extrapolate from the initial starting point. Given a starting point a, and two more

points apart we extrapolate a polynomial through them (we will use a quadratic function).

x0 ∆

xl x0 ∆–=

xu x0 ∆+=

fl f xl()=

fu f xu()=

f0 f x0()=

i 1=

fl f0 fu≥ ≥

i i 1+=

xl x0= x0 xu= fl f0= f0 fu=

xu xu 2i ∆+=

fu f xu()=

fu f0<

xl xu,()

fl f0 fu≤ ≤

i i 1+=

xu x0= x0 xl= fu f0= f0 fl=

xl xl 2i ∆–=

fl f xl()=

fl f0<

xl xu,()

fl f0 fu≤≥

xl xu,()

fl f0 fu≥≤

∆

32

Systems Optimization

Now in this case the fitted quadratic may have either a maximum or minimum and this

may be determined by evaluating the second derivative. As before if the polynomial is represented

as

(2.10)

then the second derivative is given as

(2.11)

and in terms of the three function values Fa, Fb, Fc, evaluated at x = a, b, and c we can evaluate p as

. (2.12)

Now how do we use this to find an interval? The procedure can be described as follows.

Starting from three points, a1, c1, and b1, a ∆ apart we fit a quadratic to these points, say F(x). If we

find that this quadratic has a maximum, that is p < 0, then the next point we take is ∆max away

from the smallest function value. This is shown in Figure 2.14 where for sake of an example we are

assuming that we move to the right. Of course the algorithm will determine the direction of

movement.

Figure 2.14 Extrapolated polynomial has a maximum therefore use the ∆max.

As can be seen in Figure 2.14, for case 1, we discard the point with smallest function value

and take new point away from b1. Discarding the lowest function value gives us more of a

F x() px
2

qx r+ +=

F″ x() G x() 2p= =

p
c b–()Fa a c–()Fb b a–()Fc+ +

b c–() c a–() a b–()
---=

x* a1 c1 b1

a2 c2 b2

∆max

f(x)
case 1: F(x) has a maximum, i.e. p < 0

F(x)

∆max

33

Numerical Techniques for
Single Variable Optimization

chance of fitting a polynomial with a minimum in the next iteration of the algorithm. If the

polynomial does have a minimum then we either use the minimum of the polynomial as shown in

case 3 of Figure 2.16 or we again use ∆max if the minimum is farther than ∆max from b1 as shown

in case 2 of Figure 2.15. An implementation of this algorithm is shown below.

Figure 2.15 Extrapolated polynomial has a minimum but it is too far away so use ∆max.

Figure 2.16 Extrapolated polynomial has a minimum and it is closer than ∆max from b1.

∆max

f(x)

a1 c1 b1
a2 c2 b2

F(x)

x*

case 2: F(x) has a minimum, i.e. p > 0

∆max

f(x)

a1 c1 b1
a2 c2 b2

F(x)

x*

case 3: F(x) has a minimum, i.e. p > 0,

and x* - b1 < ∆max

34

Systems Optimization

Algorithm: Interval location by Powell’s Method

1. input , ,

2. set , ,

3. if then

4. set ,

5. forward = true

6. else

7. set , ,

8. , ,

9. forward = false

10. end

11. for

12. set

13. if then

14. set

15. end if

16. if forward then // moving forward

17. if then // quadratic has a maximum

18. set ,

19. ,

20. else

21. if then // quadratic minimum is too far

22. set

23. else // quadratic minimum is O.K.

24. set

25. end

26. set ,

27. , ,

28. end

a1 ∆ ∆max

c1 a1 ∆+= Fa F a1()= Fc F c1()=

Fa Fc>

b1 a1 2∆+= Fb F b1()=

b1 c1= c1 a1= a1 a1 ∆–=

Fb Fc= Fc Fa= Fa F a1()=

K 1 2 … repeat, ,=

p
cK bK–()Fa aK cK–()Fb bK aK–()Fc+ +

bk cK–() cK aK–() aK bK–()
--=

p 0>

x* 1
2

bK
2

cK
2

–()Fa ck
2

aK
2

–()Fb aK
2

bK
2

–()Fc+ +

bK cK–()Fa cK aK–()Fb aK bK–()Fc+ +
--=

p 0≤

aK 1+ aK= bK 1+ bK ∆max+=

cK 1+ cK= Fb F bK 1+()=

x* bK– ∆max>

bK 1+ bK ∆ max+=

bK 1+ x*=

aK 1+ cK= cK 1+ bK=

Fa Fc= Fc Fb= Fb F bK 1+()=

35

Numerical Techniques for
Single Variable Optimization

29. else // moving backward (forward = false)

30. if then // quadratic has a maximum

31. set ,

32. ,

33. else

34. if then // quadratic minimum is too far

35. set

36. else // quadratic minimum is O.K.

37. set

38. end
39. set ,

40. , ,

41. end // if
42. end
43. end until and

p 0≤
aK 1+ aK ∆max–= bK 1+ bK=

cK 1+ cK= Fa F aK 1+()=

aK x*– ∆max>

aK 1+ aK ∆max–=

aK 1+ x*=

bK 1+ cK= cK 1+ aK=

Fb Fc= Fc Fa= Fa F aK 1+()=

p 0≤

Fc Fa< Fc Fb<

36

Systems Optimization

