19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu=p (19.5.1)

864 Chapter 19. Partial Differential Equations

where £ represents some elliptic operator and p is the source term. Rewrite the
equation as a diffusion equation,

—=Lu—p (19.5.2)

An initial distribution u relaxes to an equilibrium solution as ¢ — oo. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all the machinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

Ou 8%u 0%

o 522 + ;9? —-p (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

At
Wi =i T (W Ul uf i — 4ul) - puAt (19.5.4)
Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
At/A? < . Intwo dimensions this becomes At/A? < 1. Suppose we try to take
the largest possible timestep, and set At = AZ%/4. Then equation (19.5.4) becomes

1 2
it= 1 (uiprg +ufoyy +ufipn +uf) - 7 Pt (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigrid methods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed [, we have

2
uip = i (u?+1,l Hut udg o+ U;‘T_H) - AT,D]‘,I (19.5.6)
This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.
Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A-x=b (19.5.7)

19.5 Relaxation Methods for Boundary Value Problems 865

we can consider splitting A as
A=L+D+U (19.5.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal.
In the Jacobi method we write for the rth step of iteration

D x"=_—L+U)-x"D +p (19.5.9)

For our model problem (19.5.5), D is simply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix —D~! - (L+U)is
the iteration matrix which, apart from an additive term, maps one set of x’s into the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus < 1 for
the relaxation to work at all! The rate of convergence of the method is set by the
rate for the slowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted p;.

The number of iterations 7 required to reduce the overall error by a factor
1077 is thus estimated by

pln10

TR (—inp.) (19.5.10)

In general, the spectral radius p, goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on a J x J grid with
Dirichlet boundary conditions on all four sides, the asymptotic formula for large
J tumns out to be

2

Ps = 1- 5‘:]‘2- (19.5.11)

The number of iterations r required to reduce the error by a factor of 107 is thus

2pJln10 1
po 210 1 (19.5.12)
i1 2

In other words, the number of iterations is proportional to the number of mesh points,
J2. Since 100 x 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

866 Chapter 19. Partial Differential Equations

The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L+D)-x7 =_-U.x""11p (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

2

ps =1 — 2 (19.5.14)

_pJimi0 1 .,
The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)

We get a better algorithm — one that was the standard algorithm until the 1970s
— if we make an overcorrection to the value of x(") at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x(add and
subtract x("~1) on the right-hand side, and hence write the Gauss-Seidel method as

x =x=D _(L+D)™* . [(L+D+U) -xrD — p] (19.5.16)
The term in square brackets is just the residual vector £ (r-1) so

XM =xr-D (L 4+ D). D (19.5.17)
Now overcorrect, defining

x(= x("D _ (L + D). £V (19.5.18)

Here w is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:

e The method is convergent only for 0 < w < 2. If 0 < w < 1, we speak
of underrelaxation.

o Under certain mathematical restrictions generally satisfied by matrices
arising from finite differencing, only overrelaxation (1 < w < 2) can give
faster convergence than the Gauss-Seidel method.

o If pyacobi 18 the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then the optimal
choice for w is given by

w= 2 (19.5.19)

1+ \Y l_pJacobi

19.5 Relaxation Methods for Boundary Value Problems 867

o For this optimal choice, the spectral radius for SOR is

2
PSOR = (Placobi) (19.5.20)

I+ V I~ PJacobi

As an application of the above results, consider our model problem for which
Placobi 18 given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

2
~_ 2 19.5.
W= s (19.5.21)
2
psor ~ 1 — i for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 1077,
-~ p/In10 1
T 3pJ (19.5.23)
Comparing with equation (19.5.12) or (19.5.15), we sec that optimal SOR requires
of order J iterations, as opposed to of order J2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose w for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value of w. It is better to take w
slightly too large, rather than slightly too small, but best to get it right.

One way to choose w is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of pjacobi for our model
problem on a rectangular J x L grid, allowing for the possibility that Az # Ay:

(19.5.24)

Placobi =

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement © — 2.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value w empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of w are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.

868 Chapter 19. Partial Differential Equations

Consider a general second-order elliptic equation in = and y, finite differenced on
a square as for our model equation. Corresponding to each row of the matrix A
is an equation of the form

aj i1, + b1 + et + djpuga-a tejaug = fin o (19.5.25)

For our model equation, we had a = b = ¢ = d = 1,e = —4. The quantity
f is proportional to the source term. The iterative procedure is defined by solving
(19.5.25) for u;;:

1

S (fin = a1 — bjauj11 — cjpujivr — djaugai-1) (19.5.26)
5l

utyy =
Then u37" is a weighted average
’

oW — wuj + (1 — w)udy (19.5.27)

U, .1

We calculate it as follows: The residual at any stage is
&0 = a1 + biguio1g + Gt + diaug i1+ eug0 — fiun (19.5.28)

and the SOR algorithm (19.5.18) or (19.5.27) is

wI = udf - w@ (19.5.29)
€51

This formulation is very easy to program, and the norm of the residual vector &;,
can be used as a criterion for terminating the iteration.

Another practical point concerns the order in which mesh points are processed.
The obvious strategy is simply to proceed in order down the rows (or columns).
Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black squares of a checkerboard. Then equation (19.5.26) shows that the
odd points depend only on the even mesh values and vice versa. Accordingly,
we can carry out one half-sweep updating the odd points, say, and then another
half-sweep updating the even points with the new odd values. For the version of
SOR implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence
in SOR is not attained until of order J iterations. The error often grows by a
factor of 20 before convergence sets in. A trivial modification to SOR resolves this
problem. It is based on the observation that, while w is the optimum asymprtotic
relaxation parameter, it is not necessarily a good initial choice. In SOR with
Chebyshev acceleration, one uses odd-even ordering and changes w at each half-
sweep according to the following prescription:

w® =1
w(1/2) = 1/(1 - pgacobi/2) 10.5.30

WD = 1/(1 - placapiw™/4), m=1/2,1,..,00 (19:330)

o0
W() - Woptimal

19.5 Relaxation Methods for Boundary Value Problems 869

The beauty of Chebyshev acceleration is that the norm of the error always decreases
with each iteration. (This is the norm of the actual error in ujy. The norm of
the residual &;; need not decrease monotonically.) While the asymptotic rate of
convergence is the same as ordinary SOR, there is never any excuse for not using
Chebyshev acceleration to reduce the total number of iterations required.

Here we give a routine for SOR with Chebyshev acceleration.

#include <math.h>
#define MAXITS 1000
#define EPS 1.0e-5

void sor(double **a, double **b, double **xC, double **d, double **e,

double **f, double **u, int jmax, double rjac)
Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a, b, ¢,
d, e, and f are input as the coefficients of the equation, each dimensioned to the grid size
[1..jmax][1..jmax]. uisinput as the initial guess to the solution, usually zero, and returns
with the final value. rjac is input as the spectral radius of the Jacobi iteration, or an estimate
of it.

{
void nrerror(char error_text[]);
int ipass,j,jsw,1l,1sw,n;
double anorm,anormf=0.0,omega=1.0,resid;
Double precision is a good idea for jmax bigger than about 25.
for (j=2;j<jmax;j++)
Compute initial norm of residual and terminate iteration when norm has been reduced by
a factor EPS.
for (1=2;1<jmax;1l++)
anormf += fabs(£[j1[11); Assumes initial u is zero.
for (n=1;n<=MAXITS;n++) {
anorm=0.0;
jsw=1;
for (ipass=1;ipass<=2;ipass++) { Odd-even ordering.
lsw=jsw;
for (j=2;j<jmax;j++) {
for (1=lsw+l;1<jmax;1+=2) {
resid=a[j] [(11*u(j+1][1]
+b[j1[11*ulj-1][1]
+c[j1 1T *uljl [1+1)
+d{j1[11*ulj] [1-1]
+e[j1[1]*ulj][1]
-£[j1011;
anorm += fabs(resid);
uljl[1] -= omega*resid/eljl[1];
1sw=3-1lsw;
}
jsw=3-jsw;
omega=(n == 1 &% ipass == 1 7 1.0/(1.0-0.5%rjacrjac)
1.0/(1.0-0.25%rjac*rjac*omega));
}
if (anorm < EPS*anormf) return;
}
nrerror ("MAXITS exceeded");
}

The main advantage of SOR is that it is very easy to program. Its main
disadvantage is that it is still very inefficient on large problems.

