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Abstract-The electric  field  integral  equation  (EFIE) is used  with 
the moment  method to develop  a  simple  and  efficient  numerical 
procedure  for  treating  problems of scattering by arbitrarily  shaped 
objects.  For  numerical  purposes, the objects  are  modeled  using  planar 
triangular  surfaces  patches.  Because  the  EFIE  formulation is used, 
the  procedure  is  applicable  to  both  open and closed  surfaces.  Crucial 
to  the numerical  formulation is the  development  of  a  set  of  special 
subdomain-type  basis  functions  which  are  defined on pairs  of  adjacent 
triangular  patches  and  yield  a  current  representation  free  of  line or 
point  charges at subdomain  boundaries. The method is applied to the 
scattering  problems  of  a  plane wave illuminated  flat  square  plate, bent 
square  plate,  circular  disk, and sphere.  Excellent  correspondence 
between  the  surface  current  computed via the  present  method and 
that  obtained via earlier  approaches or exact  formulations is 
demonstrated  in  each  case. 

E 
I. INTRODUCTION 

NGINEERS  AND  researchers  in  electromagnetics  have  been 
quick  to  take  advantage  of  the  expanding  capabilities  of 

digital  computers  over  the  past  two  decades  by  developing  ef- 
fective  numerical  techniques  applicable  to  a  wide  variety of 
practical  electromagnetic  radiation  and  scattering  problems. 
As new  computer  developments  dramatically  increase  com- 
putational  capabilities,  however, it becomes  less  cost  effective 
t o  develop  highly  efficient  but  specialized  codes  for  treating 
certain classes of  geometries  than  to  use  less  efficient  but 
existing  general  purpose  codes  that  can  handle  a  wide  variety 
of problems.  For  these  reasons  there  has  been  a  growing in- 
terest in the  use  and  development  of  computer  codes  for 
treating  scattering  by  arbitrarily  shaped  conducting  bodies. 

To  date,  the  most  notable  approaches  for  treating  such 
problems  have  used  integral  equation  formulations  in  con- 
junction  with  the  method of moments.  The  body  surface  in 
these  approaches is generally  modeled  either as a wire mesh- 
the  so-called wire-grid model-or as a  surface  partitioned  into 
smooth  or  piecewise-smooth  patches-the so-called surface 
patch  model. 

The wire-grid modeling  approach  has  been  remarkably  suc- 
cessful in treating  many  problems,  particularly in those  re- 
quiring  the  prediction of far-field quantities  such as radiation 
patterns  and  radar  cross  sections [ 1 1 .  Not  only is the  con- 
nectivity of a wire-grid model easily specified  for  computer  in- 
put,  but  the  approach  also  has  the  advantage  that  all  numerically 
computed  integrals  in  the  moment  matrix  are  one  dimensional. 
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However,  the  approach is not well suited  for  calculating  near-. 
field  and  surface  quantities  such as surface  current  and  input 
impedance.  Some of the  problems  encountered  include  the 
presence of fictitious  loop  currents  in  the  solution,  ill-condi- 
tioned  moment  matrices  and  incorrect  currents  at  the  cavity 
resonant  frequencies  of  the  scatterer [ 2 ] ,  and  difficulties  in in- 
terpreting  computed  wire  currents  and  relating  them  to  equiv- 
alent  surface  currents.  The  accuracy  of wire-grid modeling  has 
also  been  questioned on theoretical  grounds [ 31. Most of  these 
difficulties  can  be  either  wholly  or  partially  overcome  by  sur- 
face  patch  approaches,  however,  which  account  for  much of 
the  recent  activity  in  this  area. 

Several approaches  to  surface  patch  modeling  have  been re- 
ported in the  literature.  Knepp  and  Goldhirsh [4]  partitioned 
a  conducting  surface  into  nonplanar  quadrilateral  patches  and , 

employed  the  magnetic  field  integral  equation  (MFIE)  to  solve 
the  electromagnetic  scattering  problem.  Albertsen et al. [5] 
solved  for  the  current  and  computed  radiation  patterns  for 
satellite  structures  with  attached  wire  antennas,  booms,  and 
solar  panels.  They  employed  a  hybrid  formulation  in  which 
the  MFIE,  with  planar  quadrilateral  surface  patches,  was  used 
to  model  the  satellite,  and  the  electric  field  integral  equation 
(EFIE)  was  used  to  treat  the wire antennas.  Their  approach 
also  forms  the basis for  the  arbitrary  surface  treatment  of  the 
widely  used  numerical  electromagnetic  code  (NEC)  developed 
at  the  Lawrence  Livermore  Laboratory [ 61. Wang e t  a/. [ 71 
used  an  EFIE  formulation  and  modeled  relatively  complex 
surfaces  by  means  of  planar  rectangular  patches.  Newman  and 
Pozar [ 8 ]  extended  the  use  of  the  well-known  piecewise- 
sinusoidal basis functions of thin-wire  theory  to  the  treatment 
of surfaces  in  their  EFIE  formulation  for  surfaces  with  at- 
tached  wires.  Sankar  and  Tong [ 91 employed  planar  triangular 
patches to  model  a  square  plate  and  pointed  out  the  possibility 
of extending  their  approach  to  arbitrary  bodies.  Their  formu- 
lation,  based on a  variational  formula  for  the  current  made 
stationary  with  respect t o  a  set of trial  functions, is equivalent 
t o  a  Galerkin  solution of the  EFIE. Wang [ l o ] ,  [ 11  ] em- 
ployed  planar  triangular  patches  in  conjunction  with  the  MFIE, 
but  used basis functions  containing  the  phase  variation  of  the 
incident  field  in  each  patch,  which  unfortunately  yield  a mo- 
ment  matrix  dependent on the  incident  field.  Jeng  and  Wexler 
[ 121  suggested  using  the  MFIE  and  nonplanar  triangles t o  
model  arbitrary  surfaces, while  Singh and  Adams [ 131 pro- 
posed  the  use of planar  quadrilateral  patches  and  sinusoidal 
basis functions  in  conjunction  with  the  EFIE  for  the  same  pur- 
pose. 

In arbitrary  surface  modeling  the  EFIE  has  the  advantage  of 
being  applicable to  both  open  and  closed  bodies,  whereas  the 
MFIE  applies  only  to  closed  surfaces. On the  other  hand,  for 
arbitrarily  shaped  objects  the  EFIE is considerably  more  diffi- 
cult  to  apply  than  the  MFIE.  In  fact,  of  the  above  authors, 
only Wang et al. and  Newman  and  Pozar  have  actually  applied 
the  EFIE  to  nonplanar  structures-and  the  use  of  rectangular 
patches  limits  their  approaches  to  structures  with  curvature 
in one  dimension  only. 
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The  difficulites  with  the EFIE stem  primarily  from  the 
presence  of  derivatives  appearing  in  conjunction  with  a  singu- 
lar  kernel  in  the  integral  equation.  For  example, if the  vector 
basis  functions  which  represent  the  surface  current  are  not 
constructed so that  their  normal  components  are  continuous 
across  surface  edges,  then  the  continuity  equation  demands 
the  presence of line  or  point  charges  at  such  edges.  These  fic- 
titious  charges,  when  present,  usually  cause  anomalies  or in- 
consistencies  in  the  solution.  Although  the  approaches  of 
Wang et al. and  Newman  and  Pozar  are  free of these  difficulties, 
their  use of rectangular  patches,  with  their  consequent  limita- 
tion  to  surfaces  with  curvature  in  one  dimension  only, is too 
restrictive  for  many  applications. 

For  modeling  arbitrarily  shaped  surfaces,  planar  triangular 
patch  models,  an  example of which is shown  in Fig. 1,  are  par- 
ticularly  appropriate.  Some  of  the  advantages of triangular 
patch  surface  modeling  have  been  noted  by  Sankar  and  Tong 
[ 9 I , as  well  as  by Wang [ IO], and  are  similar  to  those  of  wire- 
grid modeling. For  example,  triingular  patches  are  capable of 
accurately  conforming  to  any  geometrical  surface  or  boundary, 
the  patch  scheme is easily  specified  for  computer  input,  and  a 
varying  patch  density  can  be  used  according to  the  resolution 
required  in  the  surface  geometry  or  current.  Although  planar 
quadrilateral  (nonrectangular)  patches  share  some of these 
features,  it  is  difficult to  construct basis functions  defined  on 
them  which  are  free  of  line  charges.  Furthermore,  the  vertices 
of planar  quadrilaterals  cannot  be  independently  specified-a 
restriction  that is a  severe  inconvenience to the  modeler. 

In this  paper,  a  numerical  solution  of  the  problem  of  scat- 
tering by either  open  or  closed  arbitrarily  shaped  conducting 
bodies is presented.  The  approach  combines  the  advantages  of 
triangular  patch  modeling  and  the EFIE formulation,  and re- 
sults  in  an  algorithm  which is both  simple  and  efficient.  Crucial 
to  the  approach is the  development of special basis functions 
defined  on  triangular  patches  which  are  free  of  fictitious  line 
or  point  charges  and  which  are  analogous  to  the  so-called 
“rooftop”  functions  used  in  rectangular  patch  models [ 141. 

In the  following  section  the  EFIE  formulation is presented, 
the  special  set  of  basis  functions is developed,  and  the  method 
of moments [ 151  is  applied to  obtain  a  linear  system  of  equa- 
tions  for  the  surface  current. In Section 111, numerical  results 
are  presented  for  scattering by a flat square  plate,  a  bent 
square  plate,  a  circular  disk,  and a sphere.  Section IV sum- 
marizes  the  contents  of  the  paper. 

11. ELECTRIC  FIELD  FORMULATION 

In this  section  an  integral  equation  for  the  surface  current 
induced on a  conducting  scatterer is  derived  from  boundary 
conditions on the  electric  field.  To  solve  the  integral  equation 
by  the  method of moments,  a  set of expansion  functions  and  a 
testing  procedure  are  developed  and  used to  derive  the  elements 
of the  moment  matrix.  Finally,  the  numerical  computation  of 
the  moment  matrix  elements is discussed. 

Electric Field Integral Equation 

Let S denote  the  surface  of an open  or  closed  perfectly,con- 
ducting  scatterer  with  unit  normal ii. An electric  field E‘, de- 
fined  to be the  field  due  to  an  impressed  source  in  the  absence 
of the  scatterer, is incident on and  induces  surface  currents J 
on S. If S is open, we regard J as  the  vector  sum of the  surface 
currents on opposite  sides  of S;  hence  the  normal  component 
of J must  vanish on boundaries  of S .  The  scattered  electric  field 
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Fig. 1. Arbitrary surface  modeled by triangular patches. 

E” can  be  computed  from  the  surface  current by 

ES = - joA - Q@ 

with  the  magnetic  vector  potential  defined as 

A(r) = - J - dS 
4: I 

and  the  scalar  potential as 

@ ( r ) = 2  o,-inR dS’. (3) 
4 7 ~ ~  -s R 

A harmonic  time  dependence  exp(jwt) is assumed  and sup- 
pressed,  and k = L& = 2 7 ~ f i ,  where X is the  wavelength. 
The  permeability  and  permittivity  of  the  surrounding  medium 
are p and E ,  respectively,  and R = I r - r’ I is the  distance be- 
tween  an  arbitrarily  located  observation  point r and  a  source 
point on S. Both r and  are  defined  with  respect  to a global 
coordinate  origin 0. The  surface  charge  density u is related to 
the  surface  divergence  of J through  the  equation of continuity, 

Q ,  J = -jwu. (4) 

We derive  an  integrodifferential  equation  for J by  enforcing 
the  boundary  condition h X (E’ + E,) = 0 on S ,  obtaining 

-Etani = ( - joA- V@)tan, r on S. ( 5 )  

Equation (S), with (2)-(4), constitutes  the  so-called  electric 
field  integral  equation.  One  notes  that  the  presence of deriva- 
tives  on  the  current  in (4) and  on  the  scalar  potential  in (5) 
suggests  that  care  should be taken  in  selecting  the  expan- 
sion  functions  and  testing  procedure  in  the  method  of  mo- 
ments. 

Development of Basis Functions 

In  this  section  we  discuss  a  set of basis functions  introduced 
by Glisson [ 161 which is suitable  for  use  with  the  EFIE  and 
triangular  patch  modeling. We assume  that  a  suitable  triangula- 
tion,  defined  in  terms  of  an  appropriate  set of faces,  edges, 
vertices,  and  boundary  edges,  as  illustrated  in  Fig. 1, has  been 
found to approximate S. (More  detailed  considerations  con- 
cerning  the  mathematical  representation  and  topological  prop- 
erties of triangular  patch  models  may  be  found  in [ 171 .) 
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Fig. 2. Triangle  pair  and  geometrical  parameters  associated  with  in- 
terior edge. 

It is convenient to  start  our  development  by  noting  that 
each basis function is t o  be  associated  with  an  interior  edge 
(Le., nonboundary  edge  (cf Fig. 1))  of  the  patch  model  and is 
to  vanish  everywhere on S except  in  the  two  triangles  attached 
to  that  edge. Fig. 2 shows  two  such  triangles, Tn+ and T,-, 
corresponding  to  the  nth  edge of a  triangulated  surface  model- 
ing  a  scatterer.  Points in T,+ may  be  designated  either  by  the 
position  vector r defined  with  respect t o  0, or by the position 
vector p n +  defined  with  respect to  the  free  vertex  of Tn+. 
Similar  remarks  apply to the  position  vector p n -  except  that  it 
is directed  toward  the  free  vertex  of T,-. The  plus  or  minus 
designation of the  triangles is determined  by  the  choice  of  a 
positive  current  reference  direction  for  the  nth  edge,  the  ref- 
erence  for  which is assumed t o  be  from T,+ to T,-.' We de- 
fine  the  vector basis function  associated  with  the  nth  edge as 

( 6 )  

otherwise, 

whereZ, is the  length  of  the  edge  and A,' is the  area of triangle 
Tn'. (Note  that  we  use  the  convention,  followed  throughout 
the  paper,  that  subscripts  refer  to  edges  while  superscripts  re- 
fer  to faces.)  The basis function f, is used to approximately 
represent  the  surface  current,  and we list  and  discuss  below 
some  properties  which  make  it  uniquely  suited  to  this  role. 

1)  The  current  has no component  normal  to  the  boundary 
(which  excludes  the  common  edge)  of  the  surface  formed 
by  the  triangle  pair Tn+ and T , - ,  and  hence no line 
charges  exist  along this boundary. 

2) The  component of current  normal  to  the  nth  edge is con- 
stant  and  continuous  across  the  edge  as  may  be  seen 

1 For orientable surfaces, the current reference direction may be ob- 
tained  from the  connection matrix used to describe the triangulation 
scheme. This matrix merely  lists the vertices  linked by each  edge, the 
order of  appearance  of the vertices for each  edge  effectively  assigning 
an orientation to the edge. The direction of the cross  product  of  this 
edge orientation vector with the surface  normal  in  each adjacent tri- 
angle  may  be  taken as the positive current reference direction in that 
triangle for the basis function associated  with the edge. 

-2- 2 A' 
47 

Fig. 3. Geometry for construction of component of basis function 
normal to edge. 

3) 

t 

with the aid  of Fig. 3, which  shows  that the normal  com- 
ponent  of p,' along  edge  n is just  the  height  of  triangle 
T,' with  edge  n  as  the  base  and  the  height  expressed as 
(2An' ) / ln .  This  latter  factor  normalizes f, in ( 6 )  such 
that its flux  density  normal to edge  n is unity,  ensuring 
continuity  of  current  normal  to  the edge. This  result, 
together  with l),  implies  that all edges of T,' and Tn- 
are  free  of  line  charges. 
The  surface  divergence  of f,, which is proportional to 
the  surface  charge  density  associated  with  the basis  ele- 
ment, is 

since  the  surface  divergence  in T,' is (+1  /p,')a(pRtfn)/ 
dpnf. The  charge  density is thus  constant in each  tri- 
angle, the  total  charge  associated  with  the  triangle  pair 
T,' and T,- is zero,  and  the basis functions  for  the 
charge  evidently  have  the  form of pulse doublets [ 141. 

4) The  moment  off,] is given by (A,' f A ,  )fnavg where - 

(A,]+ + An-) fnavg  = fn dS 
T,++T,-  

and pnC' is the  vector  between the free  vertex  and  the 
centroid of T,' with p n C -  directed  toward  and pnC+ 
directed  away  from  the  vertex, as shown in  Fig. 2, and 
r," is the  vector  from 0 to  the  centroid  of T,'. Equa- 
tion (8) may  be  most easily derived  by  expressing the 
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integral  in  terms of area  coordinates,  to  be  discussed 
below. 

The  current  on S may  be  approximated  in  terms of the f, as 

I\’ 

J = I,f,(r) (9) 
n= 1 

where N is the  number  of  interior  (nonboundary) edges. Since 
a basis function is associated  with  each  nonboundary  edge  of 
the  triangulated  structure,  up  to  three basis functions  may 
have  nonzero  values  within  each  triangular  face.  But  at  a given 
edge  only  the basis function  associated  with  that  edge  has  a 
current  component normal  to  the edge since,  according  to  l), 
all  other basis currents  in  adjacent  faces  are  parallel  to  the  edge. 
Furthermore,  since  the  normal  component  of f, at   the   nth 
edge is unity, each coefficient Z,, in ( 9 )  may be interpreted as 
the  normal  component o f  current density  flowing past the  nth 
edge. Also, we  see  that  the basis functions  are  independent  in 
each  triangle  since  the  current  normal to   the   n th  edge, I ,  in 
(9), is an  independent  quantity.  At  surface  boundary  edges, 
the  sum  of  the  normal  components of current  on  opposite 
sides of the  surface  cancel  because of current  continuity. 
Therefore  we  neither  define  nor  include  in (9) contributions 
from basis functions  associated  with  such  edges. 

Because  of the  considerable  variation  in  the  direction  of  the 
flow lines of f, within  a  triangle,  it is not  at  first  obvious  that 
a  linear  superposition  of basis functions is capable  of  repre- 
senting,  say,  a  constant  current  flowing  in  an  arbitrary  direc- 
tion  within  a  triangle.  That  this is possible,  however,  can  be 
seen  with  the  aid  of Fig. 4, which  shows  a  triangle -p with 
edges  arbitrarily  labeled 1 ,  2, and 3 (in  effect,  we  employ  here 
a  “local  indexing  scheme,”  in  contrast  to  the  “global  indexing 
scheme”  used  earlier).  With  the  vectors p , ,  p 2 ,  and p 3  as 
shown,  the basis functions  in T4 are fi = (I i /2Aq)pi ,  i = 1, 2,  
3, where A q  is the  triangle  area  and  where,  for  simplicity,  the 
current  reference  directions  are  assumed  to  be  out  of  the  tri- 
angle  for  each  edge.  It is apparent  from  the  figure  and  the 
definition  of f i  that  the  linear  combinations Z2fl - l l f 2  and 
13f, - I i f 3  are constant vectors  for every point r in 74 and  are 
parallel t o  sides 3 and 2, respectively.  Since  the  two  composite 
forms  are  linearly  independent  (i.e.,  nonparallel),  a  constant 
vector  of  arbitrary  magnitude  and  direction  within 79 may  be 
synthesized by an  appropriate  linear  combination of the  two 
forms,  as  asserted. 

Testing  Procedure 

The  next  step  in  the  method of moments is to  select  a  test- 
ing  procedure. We choose  as  testing  functions  the  expansion 
functions f, developed  in the  previous  section.  With  a  sym- 
metric  product  defined as 

(f, g> E f g dS, I (1 0 )  

(5) is tested  with f,E, yielding 

(E’, fm) = io(A, f,, + (V@, f,). ( 1  1) 

If one  makes  use  of  a  surface  vector  calculus  identity [ 181  and 
the  properties  of fm at  the edges of S, the  last  term  in  (1 1 )  can 

Fig. 4.  Local coordinates and  edges for source  triangle T4 with obser- 
vation point in triangle TP. 

be  rewritten  as 

With (7 ) ,  the  integral  in ( 1  2) may  now  be  written  and  approxi- 
mated as follows: 

In (1 3) the  average of over  each  triangle is approximated  by 
the  value of @ at  the  triangle  centroid. With similar  approxima- 
tions,  the  vector  potential  and  incident  field  terms  in  (1  1)  may 
be  written as 
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where  the  integral  over  each  triangle is eliminated  by  approxi- C+ 

mating E' (or A) in  each  triangle by its  value  at  the  triangle V ,  = I ,  (Ern+ - - 
centroid  and  carrying  out  integrations  similar  to  those  used  to 
obtain (8). With (12)-( 14), ( 1  1)  now becomes 

Pm + E,- . %-) 
2 

where 
C+ 

Pm + A(rmC-) - 
2 pmc-l 2 

L -J 

which is the  equation  enforced  at  each  triangle  edge, rn = 1, 2,  
' 0 . )  N .  

We remark  that  another  interpretation of the  testing  pro- 
cedure  arriving  at ( 1  5) is also  possible.  One  may  equate  line  in- 
tegrals of the  form Jc,F.dr, where F represents  the  right  and 
left  sides of (5), and C, is the  piecewise  linear  path  from  the 
point rmC+ to  the  midpoint of edge m and  thence  to rmC-. E' 
and A can  be  approximated  along  each  portion  of  the  path  by 
their  respective values at  the  triangle  centroids.  The  resulting 
equality,  apart  from  the  factor I,, is (1  5 ) .  Under  either  inter- 
pretation,  the  testing  procedure  reduces  the  differentiability 
requirement on @ in (5) by  integrating V@ first,  the  procedure 
having  been  constructed  with  this goal in  mind.  The  purpose 
of approximations  (1 3) and  (14)  is  to  eliminate  surface  inte- 
grals  of  the  potential  quantities,  allowing  a  double  surface  in- 
tegral t o  be approximated  by  a  quantity  involving  a  single  sur- 
face  integral  in  the  numerical  computation of the  moment  ma- 
trix  elements.  These  approximations  are  justified  by  observing 
that  the  potentials  are  locally  smooth  within  each  subdomain, 
as  follows  from  their  integral  definitions  and  the  locally  smooth 
nature  of  the  source  representation  in  terms of the basis func- 
tions [ 141 .* w 

Matris  Equation  Derivation 

Substitution  of  the  current  expansion (9) into (1 5) yields 
an A' X h7 system  of  linear  equations  which  may  be  written in 
matrix  form as 

Z I =  v (1 6 )  

where Z = [Z,,] is an N X N matrix  and I = [Z, ]  and V = 
[ V,] are  column  vectors  of  length 117. Elements  of Z and V 
are given by 

2 Note that it' the  approximations (13) and (14) had not been  made, 
the procedure  leading to (15) wsould  have been  identical to Galerkin's 
method since the basis and testing functions chosen are identical [ 1 5 ] .  
For the EFIE, the matrix  would then satisfy the symmetry  property 
Z,n, = Znm,  but this  desirable  property  is  lost due  to  the approxi- 
mat~ons made.  SinceZ,n, andZ,, are different approximations to the 
same quantity, however, then their average  also  approximates the 
quantity. and  one  tempting  possibility  is to average Z with its trans- 
pose, thus restoring the symmetry property to the moment matrix. 
This approach,  however,  has not to date been  tested. 

and 

E,' = Ei(r,n "). 

For  plane wave incidence, we set 

where  the  propagation  vector k is 

and (i ,, , io) defines  the  angle  of  arrival of the  plane  wave  in 
terms  of  the  usual  spherical  coordinate  convention.  Unit vec- 
tors B o  and @o are constant vectors  which  coincide  with  the 
usual  spherical  coordinate  unit  vectors  only  at  points  on  the 
line  from 0 in  the  direction of k. 

Once  the  elements of the  moment  matrix  and  the  forcing 
vector V are  determined,  one  may  solve  the  resulting  system 
of linear  equations  (16) for the  unknown  column  vector I. 
The  elements  of Z in ( 1  6) may  be  evaluated  by  naively  com- 
puting Z,nn directly  by  (17)  (with  aid of (19) and (20)) for 
each  index  combination m and n. However,  as  shown  in  the 
next  section,  this  procedure is extremely  inefficient  since  the 
integrals  required for  each  combination of m and n are  generally 
required  for  a  number  of  other  combinations as well. 

Efficient Kurnerical  Evaluation o f  Matrix  Elements 

Evaluation  of  each  matrix  element Z,, associated  with 
edges rn and n involves integrations  over  triangles Tn' with 
observation  points  located  at  the  centroids of triangles T,'. 
One is easily convinced  that  some of the  same  integrals re- 
quired  for  an  element Z,, are  also  needed to compute  an 
element Z,, ,  r # nz, s # n ,  if edge r happens  to  be  an  edge  of 
T,,' or T ,  - while edge s is an edge of T,+ or T ,  . Indeed, 
if one  focuses  attention on a  single  pair  of faces rather  than 
on a  pair of edges, one  observes  that  the  integrals  evaluated  for 
a  source  face  with  scalar  and  vector  potentials  observed  at  the 
centroid of another  face  are  involved in  all the  elements Z , ,  
having edges n as  (nonboundary)  edges  of  the  source  triangle 
and  edges m as  the  (nonboundary)  edges of the  observation 
triangle.  Thus,  the  total  number of matrix  elements  requiring 
evaluation of the  same  potential  integrals  can  be as large as 
nine.  Clearly  then,  it is far  more  efficient  to  compute  the  re- 
quired  potential  integrals by face-pair  combinations,  rather 

- 
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than  directly  compute  single  elements  of Z by  edge-pair  com- 
binations.  For  each  face-pair  combination,  the  potential  inte- 
grals  may  be  multiplied  by  the  appropriate  coefficients  (cf  (1  7)) 
and  their  contributions  accumulated  in  the  appropriate ele- 
ments of Z as  they  are  computed. 

In accordance  with  the  above  discussion,  consider  the eval- 
uation  of  the  vector  and  scalar  potential  integrals  for  a given 
source  and  observation  face  combination. Fig. 4  illustrates 
such  a  face  pair  with  an  observation  point  in  face p and  with 
source  currents  residing  in  face 4 .  Each of the  three basis func- 
tions  which  may  exist  simultaneously  in is proportional  to 
one  of  the  vectors p l ,  p 2 ,  or p 3  defined  in  the  figure.  Each 
vector pi, i = 1, 2, 3, is shown  directed  away  from  its  associated 
vertex  in  the  figure,  but  would  be  directed  toward  the  vertex if 
the  current  reference  direction  for  the  associated  edge  were 
into  the triangle.  Consequently, 

where  the  positive sign is  used if the  positive  current  reference 
direction is out  of  and  the  negative sign  is  used otherwise. 

. We wish t o  evaluate  the  magnetic  vector  potential, 

and  the  electric  scalar  potential, 

be  shown  that  surface  integrals  over  transform  as  follows: 

lq dS = 2Aq i l - q g [ t r l  + 77r2 

and 

where 

( 3 4 4  

associated  with  the  ith basis function on face q observed at  
the  centroid  of  face p .  In (25)  and  (26), 

where rcp is the  position  vector  of  the  centroid  of  face p .  
Integrals (25)  and  (26)  are  most  conveniently  evaluated by  

transforming  from  the  global  coordinate  system  to  a  local sys- 
tem of coordinates  defined  within F. To define  these  coor- 
dinates,  note  that  the  vectors p i  in Fig. 4  divide  into  three 
subtriangles  of  areas A A 2 ,  and A 3 ,  with I , ,  1 2 ,  and 1 3 ,  re- 
spectively,  as  one  of  their sides. The  areas  are  not  independent, 
however,  since  they  must  satisfy A + A 2  + A = A'. We now 
introduce  the so-called normalized area coordinates [ 191 

E=-, A I  l?=2, A <=-, '43 

A 4   A 4   A 4  

which,  because of the  area  constraint,  must  satisfy 

E + ? ? + < =  1. (2% 

Note  that all three  coordinates vary between  zero  and  unity  in 
F and  that  at  the  triangle  corners r l ,  r2, and r3, the  triplet 
( E ,  71, r) takes on the values  (1, 0, O ) ,  (0, 1, O ) ,  and (0, 0, l ) ,  
respectively.  The  transformation  from  Cartesian  to  normalized 
area  coordinates  may  be  written in vector  form as 

r' = trl + 77r2 + <r3, (30) 

where t ,  77, and  care  subject  to  the  constraint  (29).  It  can easily 

Thus  only  three  independent  integrals,  (34a)-(34c),  must  be 
numerically  evaluated  for  each  combination  of  face  pairs p 
and q .  The  three  integrals,  in  turn,  contribute t o   u p  to nine 
elements of Z in  (16).  For  a  closed  object  with N edges the  
number  of  independent  integrals  computed is 4N2/3.  By  con- 
trast,  the  edge-by-edge  approach  would  require  the  evaluation 
of 1 2 ~ 7 ~  integrals or  nine  times as many.  Numerical eva1u.ation 
of  the  integrals  (34a)-(34c)  may  be  accomplished  by  using  nu- 
merical  quadrature  techniques  specially  developed  for  triangu- 
lar  domains [ 201.  However,  for  the  terms  in  which p = 4 the  
integrands  are  singular,  and  for  these  cases  the  singular  portion 
of  each  integrand  must  be  removed  and  integrated  analytically 
1171. 

111. NUMERICAL  RESULTS 

In this  section  numerical  results  are  presented  for  surface 
current  distributions  induced  on  selected  scatterers  under 
plane wave illumination.  Although  one  radar  cross-section  ex- 
ample is given,  emphasis  in  the  examples is on the  calculation 
of current  distributions,  not  only  because of their  practical 
value  in  problems  such  as  electromagnetic  compatibility  and 
nuclear  electromagnetic  pulse  (EMP)  penetration,  but  also be- 
cause  we believe that  the  calculation of accurate  surface  cur- 
rents is a  much  more  stringent  test of a  numerical  approach 
than is ultimate  calculation  of  far-field  quantities.  The  geom- 
etries  considered  are  a  conducting  square  plate,  a  bent  plate,  a 
circular  disk,  and  a  sphere.  The  plate  and  disk  problems in- 
volve open  surfaces  and  therefore  are  a  test of the  EFIE  ap- 
proach  when  edges  are  present.  The  disk  also  serves as an  ex- 
ample of a  structure  with  a  curved  boundary,  while  the  sphere 
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exemplifies  both  a  closed  surface  and  a  doubly  curved  sur- 
face.  Both  problems  are  examples of surfaces  not  amenable  to 
rectangular  patch  modeling. A summary  of  the  computational 
resources  required  to  calculate  results  for  several  of  the  ex- 
amples is  given  at the  end  of  the  section. 

Flat Plate 

Figs. 5 and 6 show  the  dominant  component  current dis- 
tributions  along  the  two  principal  cuts on a  square  plate il- 
luminated  by  a  normally  incident  plane wave. For  compari- 
son,  the  solution  of  Glisson [ 161, obtained  using  rectangular 
patches, is also  given. The  number of  patches  listed  in  the fig- 
ures  refers to  the  number of charge patches  in  the  earlier  solu- 
tion  of  Glisson  and to  the  number of triangles  (also  equal to 
the  number of charge  patches)  in  the  present  solution.  Note 
that  these  quantities  play  similar  roles  in  the  two  approaches. 
No  comparison  of  the  convergence  rate  of  the  two  approaches 
should  be  inferred  from  the  figures  since  both  solutions  are 
already  well  converged  for  the  number  of  unknowns  used. 
Note  also  that  the  density  of  data  points  appearing  in  the fig- 
ures  for  the  triangular  patch  solution is not  truly  indicative  of 
the  linear  density of the  subdomains.  This is because,  in  effect, 
we  show  data  points  only  for  every  other  edge, i.e., only  for 
those  edges  where  the  current  reference  direction  vector is 
parallel to  the  current  component  we wish to observe. 

Fig. 5 shows  the  current  induced on a  plate  0.15 h on  each 
side. At this low frequency the current  distribution is largely 
determined  by  the  edge  conditions  and  hence  this  case  pro- 
vides  a  good  test of the  technique's  capacity  for  handling  sur- 
face  edges. We note  the  absence of any  anomalies  in  the  com- 
puted  distribution  near  the  plate  edges.  The  elimination of 
such  anomalies is attributed  to  the  use of  basis functions  in 
which  the  expansion  coefficients  are  not  associated  with  cur- 
rent  components  parallel  to  plate  edges  and  to  a  testing  pro- 
cedure  in  which  potentials  are  not  evaluated  at  edges [ 141. 

Fig. 6 shows  corresponding  results  for  a 1.0 h square  plate. 
From  the  figure,  one  observes  that  the  edge  behavior  of  the 
current  distribution is confined to  a  relatively  smaller  region 
near the edges  than  for  the 0.15 h plate  and  that  the  current 
on  the  interior  portion of the  plate  has  begun  to  exhibit  the 
physical  optics-plus  standing wave distribution  characteristic 
of the  higher  frequencies. Also shown  for  comparison  are  the 
corresponding  results  reported  in [ 2 1 ] .3  Note  that  because of 
the  placement of subdomains,  the  component  of  current  nor- 
mal to  the  plate  edge  in  the  solution of [ 21 I vanishes  pre- 
maturely  in  the  subdomain  nearest  the  edge. 

Fig. 7 compares  the  calculated  radar  cross  section (RCS) 
with the  thin  plate  measurements of  Kouyoumjian [22] and 
the  computations of  Rahmat-Samii  and  Mittra [23] for  a 
square  plate. In the  latter  case, we suspect  that  the  premature 
vanishing  of  the  current  near  the  plate  edge  causes  the  under- 
estimation  in  the RCS observed  in  the  figure  for  lower  fre- 
quencies.  Kouyoumjian  has  also  computed  the RCS from  a 
variational  formula  and  we  find  no  discernable  difference be- 
tween  his  computations  and  our  results  for  square  plates  whose 
sides  are  smaller  than 0.4 X, the  range  for  which  his  formula 
should be most  accurate. Also shown  in Fig. 7 is a  plot of the 

3 The data reported in [21] is actually for the electric field in a 
square  aperture in a ground  plane  but has been converted to an equiv- 
alent electric current on a square conducting plate via the duality of the 
plate and aperture problems. 
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RCS  for  a  square  plate given by  an  empirical  formula  derived 
from  measurements [ 241. 

While there is generally  very  good  agreement  between  the 
various  results  reported  in Figs. 6  and 7, we  have  not  been  able 
to  obtain  a  favorable  comparison  with  the  corresponding  cur- 
rent  distribution  and  RCS  calculations  of Wang et al. [ 7 ] .  
There  are  several  reasons  to  suspect  their  calculations.  First, 
they  employ  a  set  of basis functions  which  would  generally 
cause  spurious  oscillations in the  current  distribution  along 
the  direction  of  current  flow,  and  which  would  hence  be  ex- 
pected  to  adversely  affect  the  solution  for  the  current  distribu- 
tion  and,  ultimately,  the RCS. Secondly,  their  model  ignores 
the  presence  of  cross-polarized  components of surface  current 
on  the  plate.  Finally,  in  the  RCS case, the  excellent  agreement 
which  they  obtain  between  computed  and  measured  radar 
cross  section is unfortunately  based  on  a  comparison  to  the 
thick  plate  rather  than  the  thin  plate  measurements  of  Kou- 
youmjian [ 221  for  which  their  theory  more  appropriately  ap- 
plies and  which  we  have  shown  in Fig. 7. 

Bent Plate 

Fig. 8 shows  the  dominant  component  current  distribution 
along  a  cut  through  the  symmetry  plane of a  bent  square  plate. 
The  bend is parallel to  and  located  a  distance  of  one-third  the 
plate  width  from  one  edge,  and  a  plane wave with  the  electric 
field  polarized  parallel to  the  bend is incident  normal  to  the 
larger  section of the  bent  plate.  The  smaller  plate  section is 
bent  through  an  angle of SO" toward  the  shadow  side of the 
plate.  Other  frequencies,  polarizations,  and angles of incidence 
have  been  examined,  and  the  resulting  current  distributions 
show  good  correspondence  with  those  of  Glisson [ 161. 

Circular Disk 

Fig. 9 shows  the  computed  current  distribution  on  a  circu- 
lar disk illuminated  by  a  normally  incident  plane wave. The 
component J@ is shown along a  diameter cut oriented  per- 
pendicular to the  incident  electric  field  vector. Also shown 
for  comparison is the quasi-static  solution valid at  low  fre- 
quencies [ 25 1 .  
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Fig. 8. Distribution of dominant component of current on 1.0 h bent 
square plate. 

I - QUASI-STATIC I 
El El El 56 TRIANGULAR PATCHES 

0.8 

0.41  

0.2 
T 
1 
0.1 x 

I # I 
- I .o 0.0 I .o 

P / "  
Fig. 9. Distribution of current on 0.05 h radius circular  disk. 

Fig. 10  shows  the  computed  current  distribution  along  the 
principal  cuts  on  a  0.2 X radius  conducting  sphere.  The  cases 
of axial  and  equatorial  incidence  are  both  considered in order 
t o  observe the  influence of the  triangulation  scheme  on  the 
solution. Also shown  for  comparison  is  the  exact  eigenfunc- 
tion  solution.  Results  for  both  illuminations  are in very  good 
agreement  with  the  exact  solution. 

Although  we  have  not  attempted to solve  the  sphere  prob- 
. lem  at  frequencies  near  its  cavity  resonances,  we  expect  the 

usual  difficulties  associated  with  the  EFIE  formulation  at  the 
internal  resonance  frequencies of closed  bodies t o  arise. To 
alleviate  the  problem,  one  might  make  use of the  present  treat- 
ment of the  EFIE  operator in a  formulation  which  combines 
it  with  the MFIE operator  in  such  a  way as to  eliminate  the 
singularity  which is present in both  operators  alone [ 261. 0 
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Computational  Aspects 

Table I summarizes  data  on  the  number of triangular 
patches,  number of unknowns,  and  the  computation  time re- 
quired  on  a  Univac  1100/83  computer  to  generate  the  results 
of Figs, 5, 6 ,  8, and 10. The  timing  data  for Fig. 6 were not  re- 
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Fig. 10. Distribution of current components on 0.2 h radius  con- 
ductinp sphcrc. 
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TABLE I 
SUMMARY O F  COMPUTATION DATA FOR SELECTED  EXAMPLE  PROBLEMS 

Number  of  Matrix  Matrix Total 
Case Number of Boundary  Number of Fill  Inversion CPU 
(Figure Patches Edges Unknowns Time  Time  Time 
Number) 3 f  Ivb 2 v T  ( s) (S) ( S )  

~ 

5 
6 
8 

10 

~ ~ ~~ 

60 22  79 65 20 92 
84  26 113 127* 57* 195* 
72 24 96 94 35 139 
96 0 144 163 118 294 

* Estimated from  convergence study. 
f N = (3Nf-  Nb)/2. 

corded  during  computation  but  are  estimated  from  the  con- 
vergence  study  discussed  below.  The  present  version  of  the 
computer  code  has  not  been  completely  optimized  with re- 
spect  to  computation  speed,  and  it  should  be  possible  to  in- 
crease  this  speed  by  at  least  a  factor  of  two  or  three  by 1 )  
decreasing  the  order of integration  used  to  calculate  the  po- 
tential  integrals  when R P  in (34) is large  compared  to  source 
patch  size,  and 2) replacing  the  matrix  inversion  procedure, 
used primarily  for  diagnostic  purposes, by a  linear  equation 
solving procedure. 

A  convergence  study  of  the  current  distribution  on  the 
1.0 h square  plate  of  Fig. 6 was carried  out  using  18,  32, 50, 
and 72 patches  corresponding  to  21, 40, 65, and 96 un- 
knowns,  respectively.  It was found  that,  except  for  the  nearly 
singular  component of current  nearest  the  plate  edge,  the 
computed  currents  in  the  sequence of computations  differed 
from  the  results  of  Glisson (cf  Fig. 6) by no more  than 10 
percent. 

IV. SUMMARY 

In this  paper,  the  electric  field  integral  equation  (EFIE) is 
used  with  the  method of moments  to  develop  a  .simple  and 
efficient  numerical  procedure  for  treating  problems  of  scatter- 
ing  by  arbitrarily  shaped  objects.  For  numerical  purposes  the 
objects  are  modeled  by  planar  triangular  surface  patch  models. 
Because the  EFIE  formulation is used,  the  procedure is applic- 
able to  both  open  and  closed  bodies.  Crucial  to  the  formula- 
tion is the  development  of  a  set  of  special  subdomain basis 
functions  which  are  defined  on  pairs  of  adjacent  triangular 
patches  and  yield  a  current  representation  free of line  or  point 
charges  at  subdomain  boundaries. 

The  approach is applied to  the  scattering  problems of plane 
wave illumination of a  flat  square  plate,  a  bent  square  plate,  a 
circular  disk,  and  a  sphere.  Comparisons  of  surface  current 
density  with  previous  computations  or  exact  formulations 
show  good  correspondence in each case. 

A listing of the  computer  code is available  from  the  authors. 
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