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Spectral methods solve elliptic partial differential equations (PDEs) numerically with errors 
bounded by an exponentially decaying function of the number of modes when the solution 
is analytic. For time dependent problems, almost all focus has been on low-order finite 
difference schemes for the time derivative and spectral schemes for spatial derivatives. 
Spectral methods that converge spectrally in both space and time have appeared recently. 
This paper is a continuation of the authors’ previous works on Legendre and Chebyshev 
space-time methods for the heat equation. Here space-time spectral collocation methods 
for the Schrodinger, wave, Airy and beam equations are proposed and analyzed. In 
particular, a condition number estimate of each global Chebyshev space-time operator is 
shown. The analysis requires new estimates of eigenvalues of some spectral derivative 
matrices. In particular, it is shown that the real part of every eigenvalue of the third-
order Chebyshev derivative matrix is positive and bounded away from zero, settling a 
twenty-year-old conjecture. Similarly, the real part of every eigenvalue of the fourth-
order Chebyshev derivative matrix with Dirichlet boundary conditions is shown to be also 
positive and bounded away from zero. Numerical results verify the theoretical results, and 
demonstrate that the space-time methods also work well for some common nonlinear 
PDEs.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Spectral methods have been used successfully to solve elliptic PDEs for many decades. If the solution is analytic, the nu-
merical solution converges exponentially as a function of the number of spectral modes. For time dependent PDEs, the most 
common approach is to use low-order finite difference approximation of the time derivative and spectral approximation of 
the spatial derivatives. This is not ideal since the time discretization error overwhelms the spatial discretization error. In 
two earlier papers [1] and [2], a Legendre and Chebyshev collocation method in both space and time based on the work of 
Tang and Xu [3] were analyzed for the heat equation. The methods were shown to converge spectrally when the solution is 
analytic. A condition number estimate of O (N4) for the global space-time operators was derived, where N is the number of 
spectral modes in each direction. A second space-time method which is easier to implement and has similar performance 
was also proposed and studied. Two nonlinear PDEs, viscous Burgers’ and Allen–Cahn were successfully solved numerically, 
hinting that these methods are also effective solvers for nonlinear PDEs.
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The purpose of this paper is to propose and analyze a space-time Chebyshev collocation method for other canonical 
linear PDEs including the Schrodinger, wave, Airy and beam equations. A condition number estimate of the global space-
time operator will be given for each PDE. In the course of the analysis, we have been able to show that the real part of 
every eigenvalue of the third-order and fourth-order Chebyshev derivative operators is positive and bounded away from 
zero. The estimate for the third-order derivative has been open for more than 20 years. See Propositions 4.10 and 4.13. 
The estimate for the condition number of the space-time Chebyshev method for the beam equation is still incomplete 
because of our inability to show that the spectrum of the fourth-order Chebyshev derivative matrix is real. This problem 
has remained open also for 20 years. Space-time spectral convergence for the Schrodinger and wave equations are also 
shown in this paper. Numerical experiments verify the theoretical results, and further demonstrate that these methods can 
also solve common nonlinear PDEs such as a nonlinear reaction diffusion equation in combustion, nonlinear Schrodinger, 
Sine–Gordon, KdV, Kuramoto–Shivashinsky and Cahn–Hilliard equations. [1], [2] and the present paper are the only ones in 
the literature to address the condition number of discrete global space-time operators.

One drawback of these methods is that time stepping is no longer possible. The unknowns for all times must be solved 
at the same time. This presents a serious problem for PDEs in three spatial dimensions and is particularly onerous for 
nonlinear PDEs. It should be made clear that due to the spectral convergence, many fewer unknowns are needed compared 
to finite difference/element schemes for the same error tolerance.

An early work on spectrally accurate ordinary differential equation (ODE) solvers is [4]. Among the first works on space-
time spectral methods for PDEs with periodic boundary conditions include [5] and [6]. Other references include [7–16]
and the references therein. Of course, this list is incomplete. See [1] for additional papers that address space-time spectral 
methods and papers that attempt to couple space and time components for faster computations. We wish to add one more 
reference [17] that gives a good survey of algorithms that are parallel in time.

In the next section, we give the notation used in this paper and recall some basic estimates used in the analysis. Follow-
ing that, a space-time Chebyshev collocation method, the, so-called, second method in [1] and [2], for the 1D Schrodinger, 
wave, Airy and beam equations are introduced. A condition number estimate of the method for each PDE is shown in Sec-
tion 4. Basically, the condition number is bounded by a multiple of the condition number of the spectral approximation of 
the associated spatial differential operator. In Section 5, space-time spectral convergence for the Schrodinger and wave equa-
tions are discussed. After that section, some simple iterative schemes for five nonlinear PDEs (nonlinear reaction diffusion 
from combustion, Sine–Gordon, KdV, Kuramoto–Sivashinsky and Cahn–Hilliard equations) are briefly discussed. Numerical 
experiments in MATLAB are shown in Section 7, confirming the theoretical results. In the final section, a conclusion and 
some future work are outlined.

2. Notation and basic estimates

Below, we summarize our matrix notation to be followed by notation pertaining to spectral methods. Let In denote the 
n × n identity matrix. For an n × n matrix M , let [M] denote the (n − 1) × (n − 1) matrix obtained from M by deleting the 
last column and row, while [[M]] denotes the (n −2) × (n −2) matrix obtained from M by deleting the first and last columns 
and rows. For any complex number a, its complex conjugate is denoted by ā and its real and imaginary parts are denoted by 
Re a and Im a, respectively. For any matrix M , let MT and M∗ denote the transpose and complex conjugate transpose of M , 
respectively. Let | · |2 denote the vector/matrix 2-norm and | · |∞ denote the vector ∞-norm. For positive integers m, n and 
vector a ∈ Cmn , let A ∈ Cm×n be the matrix representation of a, that is, the columns of A stacked on top of one another 
form a. The notation is a = vec(A). Finally, ⊗ denotes tensor product. For matrices X ∈ CN×N , Y ∈ CM×M and z ∈ CMN , 
recall that (X ⊗ Y )z = vec(Y Z X T ), where vec(Z) = z, the vector representation of Z . For any vector v , denote by diag(v)

the diagonal matrix whose diagonal entries are elements of v . Throughout, C, c denote positive constants whose values may 
differ at different occurrences, but are independent of N , the spatial and temporal dimension.

Fix a positive integer N . Let P N denote the space of polynomials of degree at most N . For polynomials in two variables 
x and t , P N denotes polynomials in x of degree at most N for a fixed t , and in t of degree at most N for a fixed x. 
Let x0, . . . , xN denote the Chebyshev Gauss-Lobatto nodes with x0 = 1, xN = −1 and x j descending zeros of T ′

N (x), where 
1 ≤ j ≤ N − 1 and T N is the Nth Chebyshev polynomial. The Chebyshev Gauss-Lobatto nodes along the t axis are denoted 
by {tk}. Let

xh =
⎡
⎢⎣

x1
...

xN−1

⎤
⎥⎦ , th =

⎡
⎢⎣

t0
...

tN−1

⎤
⎥⎦ .

Note that xh excludes both boundary points, while th excludes only the initial point −1. For 0 ≤ j ≤ N , let � j be the Lagrange 
interpolant, a polynomial of degree N , of x j so that � j(xk) = δ jk . Recall that the Chebyshev pseudospectral derivative matrix 
D ∈R(N+1)×(N+1) has entries

D jk = d�k(x j)
, 0 ≤ j,k ≤ N.
dx
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Let dh = D(0 : N − 1, N), the first N entries of the last column of D . Define the Chebyshev interpolation operator as usual: 
for any continuous u,

IN u =
N∑

j=0

u(x j)� j . (2.1)

The following is an important property of Chebyshev quadrature: for any polynomial v of degree at most 2N − 1,

1∫
−1

v(x) w(x)dx =
N∑

k=0

v(xk)ρk, w(x) = 1√
1 − x2

, (2.2)

where {ρk} is the set of weights associated with Chebyshev Gauss-Lobatto quadrature. Let Wh be the (N + 1) × (N + 1)

diagonal matrix whose diagonal entries are {ρk} and W = [[Wh]] ⊗ [Wh].
Denote the weighted L2 norm of a continuous function v on � := (−1, 1)2 by

‖v‖ :=
⎛
⎝∫

�

|v(x, t)|2 w(x)w(t)dxdt

⎞
⎠

1/2

.

Also, define the corresponding discrete norm

‖v‖N :=
⎛
⎝ N∑

j,k=0

ρ jρk|v(x j, tk)|2
⎞
⎠

1/2

.

It is well known (inequality (5.3.2) in [18], for instance) that the weighted L2 and discrete norms are equivalent for all 
polynomials v of degree at most N:

‖v‖ ≤ ‖v‖N ≤ 2‖v‖. (2.3)

In case v is a function of one variable, we also write

‖v‖ =
⎛
⎝

1∫
−1

|v(x)|2 w(x)dx

⎞
⎠

1/2

.

The space of all v for which ‖v‖2 +‖v ′‖2 < ∞ is denoted by H1
w(−1, 1), while H1

0,w(−1, 1) is the closure of C∞
0 (−1, 1) with 

respect to the H1
w(−1, 1) norm. Similarly define H2

0,w(−1, 1) as the closure of C∞
0 (−1, 1) with respect to the H2

w(−1, 1)

norm. The following are well known inequalities for all v ∈ P N and z ∈ H1
0,w(−1, 1):

‖v ′‖ ≤ cN2‖v‖ (inverse estimate),

sup
x∈[−1,1]

|v(x)| ≤ cN1/2‖v‖ (trace inequality),

and

‖z‖ ≤ c ‖z′‖ (weighted Poincaré inequality).

[19], [20], [18] and [21] are four excellent references on spectral methods.

3. Linear PDEs

In [1] and [2], space-time spectral methods for the heat equation were examined. Now we consider other common 
linear PDEs in applications: Schrodinger, wave, Airy and beam equations. We treat the simplest case where the spatial and 
temporal domains are both (−1, 1). This is no loss of generality since this can always be accomplished by a simple change 
of variables. In cases where this may not be appropriate, the method can be repeatedly applied over several time intervals, 
for instance. Since the purpose of the paper is an analysis of the method, we shall not dwell on these and other refinements.
3
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3.1. Schrodinger equation

The linear Schrodinger equation is

ut = iuxx + f (x, t), on (−1,1)2,

with boundary conditions u(±1, t) = 0 and initial condition u(x, −1) = u0(x). Here i = √−1. We seek a numerical solution 
in P N at t = 1. The following space-time Chebyshev collocation method is analogous to the method for the heat equation 
studied in [1]:

(IN+1 ⊗ D)uh = i(D2 ⊗ IN+1)uh + fh,

where fh is the vector of f evaluated at the (spatial and temporal) collocation points. Of course, since uh vanishes at the 
boundary x = ±1 and the initial value of u is known at t = −1, it is sufficient to solve for the unknowns ûh , which is uh

deleting the components corresponding to boundary points and initial points. The spectral equations become

Asûh = f̂h − (u0h ⊗ dh),

where

As = (IN−1 ⊗ [D]) − i (
[[

D2
]] ⊗ IN). (3.1)

3.2. Wave equation

Consider the linear wave equation

utt = uxx + f (x, t), on (−1,1)2,

with boundary conditions u(±1, t) = 0 and initial conditions u(x, −1) = u0(x) and ut(x, −1) = u1(x). We seek a numerical 
solution in P N at t = 1. First write the PDE as a first order system for v = [v1, v2]T := [u, ut]T

vt =
[

0 I
∂xx 0

]
v +

[
0
f

]
, v(±1, t) = 0, v(x,−1) =

[
u0(x)
u1(x)

]
.

For j = 1, 2, let v jh be the vector of v j evaluated at the collocation points. The spectral equations in matrix form are

[
IN+1 ⊗ D 0

0 IN+1 ⊗ D

][
v1h
v2h

]
=

[
0 IN+1 ⊗ IN+1

D2 ⊗ IN+1 0

][
v1h
v2h

]
+

[
0
fh

]
,

where fh is f evaluated at the collocation points. Again, since the solution vanishes at the boundary and the initial values 
are known, it is only necessary to solve for a subset of those values. Using the ˆ notation to denote vectors stripping away 
those corresponding to boundary and initial points, the spectral equations are

[
IN−1 ⊗ [D] 0

0 IN−1 ⊗ [D]
][

v̂1h
v̂2h

]
=

[
0 IN−1 ⊗ IN[[

D2
]] ⊗ IN 0

][
v̂1h
v̂2h

]
+

[
0
f̂h

]
−

[
u0h ⊗ dh
u1h ⊗ dh

]
,

where u0h and u1h are u0 and u1 evaluated at the interior collocation points. From the first equation, it follows that

v̂2h = (IN−1 ⊗ [D]) v̂1h + (u0h ⊗ dh).

Substitute this into the second equation to get, after some algebra, the final spectral equation

Aw v̂1h = f̂h − (
u0h ⊗ ([D]dh)

) − (u1h ⊗ dh),

where

Aw = (IN−1 ⊗ [D]2) − (�D2� ⊗ IN). (3.2)
4
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3.3. Airy equation

Consider the Airy equation

ut + uxxx = f (x, t), on (−1,1)2,

with boundary conditions u(±1, t) = 0 = ux(1, t) and initial condition u(x, −1) = u0(x). We seek a numerical solution in P N

at t = 1. The spectral equations are

(IN+1 ⊗ D)uh + (D3 ⊗ IN+1)uh = fh,

where fh is the vector of f evaluated at the collocation points. Let us define the spectral approximation of the third 
derivative, taking into account the boundary conditions.

Let Y = Y (x) be a polynomial so that Y (±1) = 0 = Y ′(1). Let Z vanish at ±1 so that Y (x) = (1 − x)Z(x). Note that Y
clearly satisfies all the boundary conditions. A simple calculation leads to

Y ′′′(x) = (1 − x)Z ′′′(x) − 3Z ′′(x). (3.3)

It should be clear now that a spectral approximation of the third derivative satisfying the three boundary conditions is

B1 := (M�D3� − 3�D2�) M−1, (3.4)

where M is an (N − 1) × (N − 1) diagonal matrix whose diagonal entries are 1 − x j, 1 ≤ j ≤ N − 1. The resulting spectral 
equations are

(IN−1 ⊗ [D])ûh + (B1 ⊗ IN)ûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the (interior spatial) collocation points, ûh is uh deleting the components corresponding to 
boundary points and initial points and f̂h is fh removing the components corresponding to boundary points and initial 
points. The linear equation to be solved becomes

Aaûh = f̂h − (u0h ⊗ dh),

where

Aa = (IN−1 ⊗ [D]) + (B1 ⊗ IN). (3.5)

See [22] for an alternative Petrov–Galerkin formulation of the third derivative operator.

3.4. Beam equation

Finally, consider the fourth-order beam equation

utt + uxxxx = f (x, t), on (−1,1)2,

with boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x, −1) = u0(x) and ut(x, −1) = u1(x). We seek a 
numerical solution in P N at t = 1. As in the wave equation, we write the PDE as a first-order system for v = [v1, v2]T :=
[u, ut]T ,

vt =
[

0 I
−∂xxxx 0

]
v +

[
0
f

]
, v(±1, t) = 0, v(x,−1) =

[
u0(x)
u1(x)

]
.

Using the same notation as before, the spectral equations in matrix form are[
IN+1 ⊗ D 0

0 IN+1 ⊗ D

][
v1h
v2h

]
=

[
0 IN+1 ⊗ IN+1

−D4 ⊗ IN+1 0

][
v1h
v2h

]
+

[
0
fh

]
.

Again, the components of v jh along the boundary and initial points must be removed. However, it is not as simple as before 
since Neumann boundary conditions must also be imposed. There are at least three ways to do this. One is to impose 
the boundary conditions explicitly as constraints, as in spectral tau methods. A second approach to approximate the fourth 
derivative is to write Y (x) = (1 − x2)Z(x), so that Y automatically satisfies the boundary conditions if Z vanishes at the 
boundary. Then

Y ′′′′(x) = (1 − x2)Z ′′′′(x) − 8xZ ′′′(x) − 12Z ′′(x). (3.6)
5
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The spectral approximation of the fourth derivative, taking into account of the boundary conditions, is

B2 := (M�D4� − 8X�D3� − 12�D2�) M−1, (3.7)

where M and X are (N − 1) × (N − 1) diagonal matrices with diagonal entries 1 − x2
j and x j , respectively. See, for instance, 

[20]. Another approach, suggested in [23], gives a symmetric matrix approximation of the fourth derivative accommodating 
the boundary conditions. There is no particular advantage in the current application since the discrete time derivative is not 
symmetric. This last approach appears to only work for Legendre collocation and not for Chebyshev collocation. For these 
reasons, we apply the second approach.

The spectral equations for v̂ jh , which is v jh removing the variables corresponding to boundary and initial points, become[
IN−1 ⊗ [D] 0

0 IN−1 ⊗ [D]
][

v̂1h
v̂2h

]
=

[
0 IN−1 ⊗ IN

−B2 ⊗ IN 0

][
v̂1h
v̂2h

]
+

[
0
fh

]
−

[
u0h ⊗ dh
u1h ⊗ dh

]
.

From the first equation, it follows that

v̂2h = (IN−1 ⊗ [D]) v̂1h + (u0h ⊗ dh).

Substitute this into the second equation to get the final spectral equations:

Ab v̂1h = f̂h − (
u0h ⊗ ([D]dh)

) − (u1h ⊗ dh),

where

Ab = (IN−1 ⊗ [D]2) + (B2 ⊗ IN). (3.8)

4. Condition number estimates

In this section, we estimate the condition number of the spectral approximations of the differential operators of the 
previous section. As is commonly done, we estimate the, so-called, spectral condition number, defined by

κ(M) = maxλ∈	(M) |λ|
minλ∈	(M) |λ| ,

where 	(M) is the spectrum of matrix M .
In numerical analysis, the 2-norm condition number κ2(M) := |M||M−1| quantities the well-posedness of any linear 

system with coefficient matrix M . For a general matrix M , of course κ(M) ≤ κ2(M). If M is symmetric, then κ2(M) = κ(M). 
For all matrices appearing in spectral methods known to the authors, κ(M) = O (κ2(M)). Because the spectral condition 
number is usually easier to estimate, this explains its popularity. The spectral condition number is also useful for the 
analysis of preconditioned systems. Consider the simplest case of SPD matrices A and M . It is not difficult to show (see 
Theorem 4.10 in [23], for instance) that κM (M−1 A) = κ(M−1 A), where κM(B) = |B|M |B−1|M with |x|M := √

xT Mx. Hence 
the spectral condition number of the preconditioned matrix M−1 A is the same as its M-norm condition number. See [24]
for the use of the spectral condition number for preconditioning the third-order spectral derivative matrix.

As we shall see, the spectral condition number of each discrete spectral operator in this paper scales like that of the 
corresponding elliptic part of the operator.

We state some lemmas (see [2]) which will be needed in the analysis. The first improves upon an earlier result of [25], 
while the second one is mostly well known. Both deal with spectral properties of [D].

Lemma 4.1. Let N ≥ 1. Then the real part of every eigenvalue of [D] is larger than some positive constant independent of N.

Lemma 4.2. Let N ≥ 1 and λ be an eigenvalue of [D]. Then |λ| ≤ cN2 .

The next lemma is well known; see [26] or inequality (7.3.5) in [18], for instance.

Lemma 4.3. Let N ≥ 2. Then the eigenvalues of − 
[[

D2
]]

are real, bounded below by c and above by C N4 , where c and C are positive 
and independent of N.

4.1. Schrodinger equation

Theorem 4.4. Let N ≥ 2. Let As be the Chebyshev spectral collocation matrix defined by (3.1) and λ be any eigenvalue of As. Then

c ≤ |λ| ≤ C N4.

Consequently

κ(As) ≤ C N4.
6
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Proof. From (3.1), λ = γ + iμ, where γ is some eigenvalue of [D] and μ is some eigenvalue of − 
[[

D2
]]

. Write γ = γr + iγi , 
where γr and γi are real. From Lemmas 4.1, 4.2 and 4.3, γr ≥ c, |γ | ≤ cN2 and c ≤ μ ≤ C N4 for some positive constants 
c, C independent of N . Thus

|λ|2 = γ 2
r + (γi + μ)2 ≤ c2 + (cN2 + C N4)2 ≤ C1N8,

and

|λ|2 ≥ c2,

or equivalently,

c ≤ |λ| ≤ C N4, κ(As) ≤ C N4. �
4.2. Wave equation

Theorem 4.5. Let N ≥ 2. Let Aw be the Chebyshev spectral collocation matrix defined by (3.2) and λ be any eigenvalue of Aw . Then

c ≤ |λ| ≤ C N4.

Consequently

κ(Aw) ≤ C N4.

Proof. From (3.2), it follows that

λ = γ 2 + μ,

where γ = γr + iγi is an eigenvalue of [D] and μ is an eigenvalue of − 
[[

D2
]]

. A calculation yields

|λ|2 = γ 4
r + 2μγ 2

r + 2γ 2
r γ 2

i + (μ − γ 2
i )2 ≥ γ 4

r + 2μγ 2
r ≥ c,

by Lemmas 4.1 and 4.3. Using Lemmas 4.2 and 4.3, it follows that

|λ|2 ≤ C N8.

Thus

c ≤ |λ| ≤ C N4, κ(Aw) ≤ C N4. �
4.3. Airy equation

We begin with a couple of useful technical results followed by another one which is directly needed for an estimate of 
the condition number of the Airy spectral operator. The first one is well known. See, for instance, Lemma 5.31 in [23].

Lemma 4.6. Let u ∈ H1
w(−1, 1) and v ∈ H1

0,w(−1, 1). Then

∣∣∣∣∣∣
1∫

−1

u′(v w)′
∣∣∣∣∣∣ ≤ 2‖u′‖ ‖v ′‖.

Lemma 4.7. Let v ∈ H1
0,w(−1, 1). Then

1∫
−1

v2 w5 ≤ 2

3
‖v ′‖2,

1∫
−1

v2 w

(1 − x)2
≤ 8

3
‖v ′‖.

Proof. The first inequality of this lemma is a Hardy-type inequality (inequality (13.4) in [19], for instance). For x ∈ (−1, 1), 
it is easy to see that (1 + x)2 ≤ 4, leading to

1√ ≤ 4
5/2

.

1 + x (1 + x)

7
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Using the above inequality and Hardy-type inequality, it follows that

1∫
−1

v2 w

(1 − x)2
=

1∫
−1

v2

(1 − x)5/2 (1 + x)1/2
≤ 4

1∫
−1

v2

(1 − x2)5/2
≤ 8

3
‖v ′‖2. �

Proposition 4.8. Let N ≥ 2 and B1 be defined in (3.4). Suppose λ is any eigenvalue of B1. Then

|λ| ≤ C N6.

Proof. Let uh be an eigenvector of B1 corresponding to λ. Let v ∈ P N so that v(±1) = 0 and v(xh) = M−1uh , where M is 
diagonal with diagonal entries of the form 1 − x j . Define u(x) = (1 − x)v(x) ∈ P N+1. Note that u(xh) = M v(xh) = uh . Now

λu(xh) = λuh = B1uh = (
M

[[
D3

]] − 3
[[

D2
]] )

v(xh) = u′′′(xh)

by (3.3). Observe that u(±1) = 0 = u′(1). Therefore

λ

N∑
j=1

|u(x j)|2
(1 − x j)

2
ρ j =

N∑
j=1

u′′′(x j)
u(x j)

(1 − x j)
2
ρ j.

Since u′′′ = −3v ′′ + (1 − x)v ′′′ , the above equation becomes

λ

N∑
j=1

|v(x j)|2ρ j =
N∑

j=1

( − 3v ′′(x j) + (1 − x j)v ′′′(x j)
) v(x j)

1 − x j
ρ j

= −3
N∑

j=1

v ′′(x j)v(x j)

1 − x j
ρ j +

N∑
j=1

v ′′′(x j)v(x j)ρ j

= −3
N∑

j=0

v ′′(x j)v(x j)

1 − x j
ρ j − 3v ′′(1)v ′(1)ρ0 +

N∑
j=0

v ′′′(x j)v(x j)ρ j .

In the first sum of the last equality on the right-hand side, the term j = 0 is taken in the sense of a limit since there is 
division by zero.

Next we estimate the boundary term. Let v(x) = (1 − x)ξ(x) with ξ ∈ P N−1. It follows that v ′(1) = −ξ(1) and v ′′(1) =
−2ξ ′(1). By the trace inequality and Lemma 4.7,

|v ′(1)|2 = |ξ(1)|2 ≤ c(N − 1)‖ξ‖2 = c(N − 1)

1∫
−1

|v|2 w

(1 − x)2
≤ C N‖v ′‖2.

Similarly, invoking the inverse estimate in addition to the other inequalities,

|v ′′(1)|2 = 4 |ξ ′(1)|2 ≤ c(N − 1)‖ξ ′‖2 ≤ C N5‖ξ‖2 ≤ C N5‖v ′‖2.

The boundary term can now be estimated directly:

|v ′′(1)v ′(1)|ρ0 ≤ C N5/2‖v ′‖ C N1/2‖v ′‖ π

2N
= cN2‖v ′‖2 ≤ C N6‖v‖2.

Finally, the magnitude of the eigenvalue can be estimated using Lemmas 4.6 and 4.7 and the fact that integration can be 
evaluated exactly for any integrand of degree 2N − 1 or lower:

|λ|
N∑

j=0

|v(x j)|2ρ j ≤ 3

∣∣∣∣∣∣
1∫

−1

v ′′ v̄ w

1 − x

∣∣∣∣∣∣ +
∣∣∣∣∣∣

1∫
−1

v ′′′ v̄ w

∣∣∣∣∣∣ + C N6‖v‖2

≤ 3‖v ′′‖
⎛
⎝

1∫
−1

|v̄|2 w

(1 − x)2

⎞
⎠

1/2

+
∣∣∣∣∣∣

1∫
−1

v ′′(v̄ w)′
∣∣∣∣∣∣ + C N6‖v‖2

≤ cN2‖v ′‖ ‖v ′‖ + c ‖v ′′‖‖v̄ ′‖ + C N6‖v‖2

≤ C N6‖v‖2.
8
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In the last two lines, the inverse estimate has been invoked several times. It follows from the equivalence of the discrete 
and weighted L2 norms that |λ| ≤ C N6. �

Next a lower bound of |λ| is estimated. Note that this has been an open problem for more than 20 years. [24] first 
reported numerical evidence that Re λ is positive and bounded away from zero. First, we state the following useful result 
due to [25].

Lemma 4.9. Let N ≥ 1. If F = ∑4N−1
k=0 bk Tk for some complex constants bk, then

N∑
j=0

ρ j F (t j) =
1∫

−1

F (t)w(t)dt + πb2N .

Proposition 4.10. Let N ≥ 2 and B1 be defined in (3.4). Suppose λ is any eigenvalue of B1. Then

Re λ ≥ c.

Proof. Let λ be an eigenvalue of B1. As in the previous proposition, we look for v ∈ P N vanishing at the end points ±1 so 
that (1 − x)v(x) satisfies the eigenvalue relation:

−3v ′′(x) + (1 − x)v ′′′(x) = λ(1 − x)v(x) + λ

N

2∑
i=0

Ai x
i T ′

N(x), (4.1)

where the coefficients Ai, i = 0, 1, 2, are chosen so that the right-hand side is a polynomial of degree at most N − 2, 
matching that of the left-hand side. Let

v =
N∑

k=0

ak Tk.

Substitute this into the eigenvalue relation (4.1) and set the coefficients of T N+1, T N , T N−1 of the expression on the right-
hand side to zero to obtain

A0 = aN , A1 = 1

2
aN−1 − aN , A2 = 1

2

(
1

2
aN−2 − aN − aN−1

)
.

Evaluate (4.1) at the interior collocation points to get

−3v ′′(x j) + (1 − x j)v ′′′(x j) = λ(1 − x j)v(x j), 1 ≤ j ≤ N − 1, (4.2)

giving us the relation defining the eigenvalues of B1. Let β be a constant to be determined later. Evaluate (4.1) at x j for 
0 ≤ j ≤ N . Then multiply both sides of resultant equation by (1 + x j)(1 + βx j)v(x j)ρ j , then add the result to the complex 
conjugate of (4.1) multiplied by (1 + x j)(1 + βx j)v(x j)ρ j , and finally sum j from 0 to N to get

−3
N∑

j=0

(1 + x j)(1 + βx j)
(

v ′′(x j)v(x j) + v ′′(x j)v(x j)
)
ρ j

+
N∑

j=0

(1 − x2
j )(1 + βx j)

(
v ′′′(x j)v(x j) + v ′′′(x j)v(x j)

)
ρ j (4.3)

= 2 Reλ

⎡
⎣ N∑

j=0

(1 − x2
j )(1 + βx j)|v(x j)|2ρ j

⎤
⎦ .

Restricting β ∈ (−1, 1), the expression in square brackets is positive, say, equal to C . Use (2.3) to get

C ≤ 2

1∫
−1

(1 − x2)(1 + βx)|v(x)|2 w(x)dx.

By the mean value theorem for integrals, there is some z ∈ (−1, 1) so that

C ≤ 2(1 − z2)(1 + βz)‖v‖2 =: C ′ ‖v‖2. (4.4)
9
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Define

f (x) = −3(1 + x)(1 + βx)
(

v ′′(x)v(x) + v ′′(x)v(x)
) :=

2N∑
k=0

bk Tk(x)

and

g(x) = (1 − x2)(1 + βx)
(

v ′′′(x)v(x) + v ′′′(x)v(x)
) :=

2N∑
k=0

ck Tk(x).

Using Lemma 4.9, the left-hand side of (4.3) can be expressed as an integral plus some constants:

1∫
−1

f (x)w(x)dx + πb2N +
1∫

−1

g(x)w(x)dx + c2N ,

where, after some calculations,

b2N = −3βN(N − 1)|aN |2, c2N = −βN(N − 1)(N − 2)|aN |2.
Observe that b2N , c2N ≥ 0 if β ≤ 0.

We now estimate the left-hand side of (4.3). Toward that end, write

f (x) = (
v ′′(x)v(x) + v ′′(x)v(x)

)
p(x), g(x) = (

v ′′′(x)v(x) + v ′′′(x)v(x)
)
q(x),

where

p(x) = −3(1 + x)(1 + βx)w(x), q(x) = (1 − x2)(1 + βx)w(x).

The left-hand side of (4.3) becomes, after some integration by parts,

I :=
1∫

−1

(
v ′′(x)v(x) + v ′′(x)v(x)

)
p(x)dx +

1∫
−1

(
v ′′′(x)v(x) + v ′′′(x)v(x)

)
q(x)dx + π(b2N + c2N)

=
1∫

−1

|v ′(x)|2( − 2p(x) + 3q′(x)
)
dx +

1∫
−1

|v(x)|2(p′′(x) − q′′′(x)
)
dx + π(b2N + c2N). (4.5)

By a direct calculation,

−2p + 3q′ = 3
(
x(2β + 1) + β + 2

)
w ≥ 3(1 − β)w, (4.6)

because the linear function attains its minimum for x ∈ [−1, 1] at the left end point for β ∈ [−1/2, 0]. Also,

p′′ − q′′′ = −3
(
(β + 2)x2 + (3β + 2)x + β + 1

)
w5 ≥ −3(1 − β)w5, (4.7)

since the above quadratic is concave and attains its minimum for x ∈ [−1, 1] at the left end point if β ∈ [−2/3, −1/2]. 
Define β = −1/2 < 0. It follows that b2N , c2N ≥ 0. Using the second inequality of Lemma 4.7, (4.6) and (4.7), (4.5) can be 
estimated:

I ≥ 9

2

1∫
−1

|v ′|2 w dx − 9

2

1∫
−1

|v|2 w5 dx + π(b2N + c2N)

≥ 9

2

1∫
−1

|v ′|2 w dx − 9

2

2

3

1∫
−1

|v ′|2 w dx

= 3

2

1∫
|v ′|2 w dx.
−1

10
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Then (4.3) becomes

2C Reλ ≥ 3

2

1∫
−1

|v ′|2 w dx.

Using the weighted Poincaré inequality,

2C Reλ ≥ c

1∫
−1

|v|2 w.

Finally, from (4.4), we conclude that

Re λ ≥ c′,

a positive constant independent of N . �
Theorem 4.11. Let N ≥ 2. Let Aa be the Chebyshev spectral collocation matrix defined by (3.5) and λ be any eigenvalue of Aa. Then

c ≤ |λ| ≤ C N6.

Consequently

κ(Aa) ≤ C N6.

Proof. From (3.5), it follows that

λ = γ + μ,

where γ = γr + iγi is an eigenvalue of [D] and μ = μr + iμi is an eigenvalue of B1 defined in (3.4). By Lemma 4.1 and 
Proposition 4.10, it follows that the real part of λ is bounded below by a positive constant. This yields |λ| ≥ c immediately. 
Using Lemma 4.2 and Proposition 4.8,

|λ| ≤ cN2 + C N6.

Thus

c ≤ |λ| ≤ C N6, κ(Aa) ≤ C N6. �
4.4. Beam equation

First we state a lemma which will be needed in the estimate for the beam spectral operator. The lemma is actually a 
special case of a general result (Proposition III.1) from [27].

Lemma 4.12. Let v ∈ H2
0,w . There is some positive constant c independent of v so that

Re

1∫
−1

v ′′ (v̄ w)′′ ≥ c

1∫
−1

|v ′′|2 w.

Next are estimates for the magnitude of eigenvalues of B2 in the discrete beam operator. Note that [28] already showed 
that the real part of any eigenvalue is positive for the discrete fourth derivative for any Jacobi polynomials. Our result is 
specific to Chebyshev polynomials, and we show that the real part of every eigenvalue is bounded away from zero.

Proposition 4.13. Let N ≥ 2 and B2 be defined in (3.7). Suppose λ is any eigenvalue of B2. Then

c ≤ |λ| ≤ C N8.
11
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Proof. Let uh be an eigenvector of B2 corresponding to λ. Let v ∈ P N so that v(±1) = 0 and v(xh) = M−1uh , where M is 
diagonal with diagonal entries of the form 1 − x2

j . Define u(x) = (1 − x2)v(x) ∈ P N+2. Note that u(xh) = M v(xh) = uh . Now

λu(xh) = λuh = B2uh = (
M

[[
D4

]] − 8X
[[

D3
]] − 12

[[
D2

]] )
v(xh) = u′′′′(xh)

by (3.6). Observe that u(±1) = 0 = u′(±1). Therefore

λ

N−1∑
j=1

|u(x j)|2
(1 − x2

j )
2
ρ j =

N−1∑
j=1

u′′′′(x j)u(x j)

(1 − x2
j )

2
ρ j.

Since u′′′′ = −12v ′′ − 8xv ′′′ + (1 − x2)v ′′′′ ,

λ

N−1∑
j=1

|v(x j)|2ρ j = −12
N−1∑
j=1

v ′′(x j)v(x j)

1 − x2
j

ρ j − 8
N−1∑
j=1

x j v ′′′(x j)v(x j)

1 − x2
j

ρ j +
N−1∑
j=1

v ′′′′(x j)v(x j)ρ j

λ

N∑
j=0

|v(x j)|2ρ j = −12
N∑

j=0

v ′′(x j)v(x j)

1 − x2
j

ρ j − 8
N∑

j=0

x j v ′′′(x j)v(x j)

1 − x2
j

ρ j +
N∑

j=0

v ′′′′(x j)v(x j)ρ j

+3π

N

(
v ′′(−1)v ′(−1) − v ′′(1)v ′(1)

) + 2π

N

(
v ′′′(−1)v ′(−1) − v ′′′(1)v ′(1)

)
.

Let v(x) = (1 − x2)ξ(x) with ξ ∈ P N−2. Using a similar technique as before, we estimate the boundary terms:

|v ′(±1)|2 = 4 |ξ(±1)|2 ≤ C N‖v ′‖2, |v ′′(±1)|2 = ∣∣2ξ(±1) + 4(±1)ξ ′(±1)
∣∣2 ≤ C N5‖v ′‖2,

and

|v ′′′(±1)|2 = ∣∣6ξ ′(±1) + 6(±1)ξ ′′(±1)
∣∣2 ≤ C N9‖v ′‖2,

leading to a final upper bound of all boundary terms of cN4‖v ′‖2 ≤ C N8‖v‖2.
For the final estimate of the eigenvalue, again use Lemmas 4.6 and 4.7 and the fact that the integration can be evaluated 

exactly by summation since the integrand is of degree at most 2N − 1 to get

|λ|
N∑

j=0

|v(x j)|2ρ j ≤ 12

∣∣∣∣∣∣
1∫

−1

v ′′ v̄ w

1 − x2

∣∣∣∣∣∣ + 8

∣∣∣∣∣∣
1∫

−1

xv ′′′ v̄ w

1 − x2

∣∣∣∣∣∣ +
∣∣∣∣∣∣

1∫
−1

v ′′′′ v̄ w

∣∣∣∣∣∣ + C N8‖v‖2

≤ 12‖v ′′‖
⎛
⎝

1∫
−1

|v|2 w

(1 − x2)2

⎞
⎠

1/2

+ 8‖v ′′′‖
⎛
⎝

1∫
−1

|v|2 w

(1 − x2)2

⎞
⎠

1/2

+
∣∣∣∣∣∣

1∫
−1

v ′′′(v̄ w)′
∣∣∣∣∣∣ + C N8‖v‖2

≤ C N2‖v ′‖2 + C N4‖v ′‖2 + ‖v ′′′‖ ‖v ′‖ + C N8‖v‖2

≤ C N8‖v‖2.

By the equivalence of the discrete and weighted L2 norms, |λ| ≤ C N8.
Now a lower bound of |λ| is estimated. As in the first paragraph of this proof, let u ∈ P N+2 ∩ H2

0(−1, 1) so that uh = u(xh)

is an eigenvector of B2 with corresponding eigenvalue λ. From the eigenvalue relation for u, it follows that

u′′′′(x) = λu(x) + λ

N

3∑
i=0

Aix
i T ′

N(x), (4.8)

for some Ai ∈ R chosen so that the right-hand side is a polynomial of degree at most N − 2. Multiply (4.8) evaluated at 
x j by u(x j)ρ j and then sum over 0 ≤ j ≤ N to obtain S1. Next, multiply the complex conjugate of (4.8) evaluated at x j by 
u(x j)ρ j and then sum over 0 ≤ j ≤ N to get S2. Observe that for any 0 ≤ j ≤ N , both T ′

N (x j)u(x j) and its complex conjugate 
vanish. It follows that (S1 + S2)/2 equals

Re

⎛
⎝ N∑

j=0

u′′′′(x j)u(x j)ρ j

⎞
⎠ = C1 Reλ, (4.9)

where
12
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C1 =
N∑

j=0

|u(x j)|2ρ j.

Notice that C1 > 0, otherwise u ≡ 0. By the equivalence of weighted L2 and discrete norms,

C1 ≤ C2‖u‖2. (4.10)

Define

f (x) = Re
(

u′′′′(x)u(x)
)

.

Let

f (x) =
2N∑

k=0

bk Tk(x), u(x) =
N+2∑
k=0

ak Tk(x).

After some calculations, the coefficient of T2N of f is

b2N = 16(N2 − 1)(N + 2)N |aN+2|2 ≥ 0.

By Lemma 4.9, the left-hand side of (4.9) becomes

Re

⎛
⎝

1∫
−1

u′′′′(x)u(x)w(x)dx + πb2N

⎞
⎠ = Re

⎛
⎝

1∫
−1

u′′(x)
(
u(x)w(x)

)′′
dx

⎞
⎠ + πb2N

≥ C3

1∫
1

|u′′(x)|2 w(x)dx (Lemma 4.12)

≥ 3

2
C3

1∫
−1

|u′(x)|2 w5(x)dx (Hardy-type inequality)

≥ 3

2
C3

1∫
−1

|u′(x)|2 w(x)dx

≥ C4

1∫
−1

|u(x)|2 w(x)dx (weighted Poincaré inequality).

In summary, (4.9) and (4.10) together imply

Re λ ≥ C4 ‖u‖2

C2 ‖u‖2
:= c. �

Numerically, every eigenvalue λ of B2 is found to be real ([29]). It remains an open problem to prove that Im λ = 0. By 
assuming this explicitly, it is possible to prove a condition number estimate of the space-time beam operator.

Theorem 4.14. Let N ≥ 2. Let Ab be the Chebyshev spectral collocation matrix defined by (3.8) and λ be any eigenvalue of Ab. Assume 
every eigenvalue of B2 is real. Then

c ≤ |λ| ≤ C N8.

Consequently

κ(Ab) ≤ C N8.

Proof. From (3.8), it follows that

λ = γ 2 + μ,
13
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where γ = γr + iγi is an eigenvalue of [D] and μ is an eigenvalue of B2 defined in (3.7). By assumption, μ is real. The 
same calculation as before yields

|λ|2 = γ 4
r + 2μγ 2

r + 2γ 2
r γ 2

i + (μ − γ 2
i )2 ≥ γ 4

r + 2μγ 2
r ≥ c,

by Lemma 4.1 and Proposition 4.13. Using Lemma 4.2 and Proposition 4.13, it follows that

|λ|2 ≤ c(N8 + N12 + N16).

Thus

c ≤ |λ| ≤ C N8, κ(Ab) ≤ C N8. �
5. Spectral convergence

In this section, we discuss space-time spectral convergence of our method for the Schrodinger and wave equations.

Theorem 5.1. Let u be the solution of the Schrodinger equation. Assume u is separately analytic in each variable. Let N ≥ 2 and ûh be 
the solution of the space-time method with matrix defined by (3.1). Define the error vector Eh as the difference of u evaluated at the 
collocation points and ûh . Then

|W 1/2 Eh| ≤ cN3.5e−C N .

The proof of spectral convergence for the Schrodinger equation is almost identical to that of the heat equation in [2] and 
is omitted. What is perhaps surprising is that the method of proof is so similar despite the fact that this PDE is dispersive 
and has completely different properties from those of the heat equation which is diffusive.

Theorem 5.2. Let u be the solution of the wave equation. Assume u is separately analytic in each variable. Let N ≥ 2 and v̂1h be 
the solution of the space-time method with matrix defined by (3.2). Define the error vector Eh as the difference of u evaluated at the 
collocation points and v̂1h. Then

|W 1/2 Eh| ≤ cN4.5e−C N .

Proof. Define

uh(t) =
⎡
⎢⎣

u(x1, t)
...

u(xN−1, t)

⎤
⎥⎦ , fh(t) =

⎡
⎢⎣

f (x1, t)
...

f (xN−1, t)

⎤
⎥⎦ .

A semi-discrete approximation of the wave equation is

u′′
h(t) =

N∑
j=0

(
Auh(t j) + fh(t j)

)
� j(t), uh(−1) = u0h, u′

h(−1) = u1h,

where A = [[
D2

]]
. Hence

u′′
h(tk) = Auh(tk) + fh(tk), 0 ≤ k ≤ N − 1.

Define the error function eh(t) = uh(t) − u(xh, t) with components e j(t) = (eh(t)) j . Using the above equation, it is easy to 
see that the error satisfies, for 0 ≤ k ≤ N − 1,

e′′
h(tk) = Aeh(tk) + r(tk), r(tk) = Au(xh, tk) − uxx(xh, tk). (5.1)

For any analytic z such that z(−1) = 0, recall the definition of the interpolant

IN z(t) =
N−1∑
j=0

z(t j)� j(t).

For 0 ≤ k ≤ N − 1,

z′(tk) = (IN z)′(tk) + ε̃k = ([D](IN z)(th)
) + ε̃k = ([D]z(th)

) + ε̃k, (5.2)
k k

14
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where ε̃k = (z − IN z)′(tk) satisfies

|ε̃k| ≤ cN2e−C N

according to [30]. Take z(t) = e j(t) in (5.2), observing that e j(−1) = 0, then

e′
j(tk) = ([D]e j(th)

)
k + ε1 jk, (5.3)

where |ε1 jk| ≤ cN2e−C N . Next take z(t) = e′
j(t) in (5.2), noting that e′

j(−1) = 0, then

e′′
j (tk) = ([D]e′

j(th)
)

k + ε2 jk, (5.4)

where |ε2 jk| ≤ cN2e−C N . Considering (5.1) together with (5.3) and (5.4), we have
([D]e j(th)

)
k + ε1 jk = (e′

h(tk)) j, (5.5)([D]e′
j(th)

)
k + ε2 jk = (Aeh(tk)) j + r j(tk), (5.6)

where residual vectors r j(th) = Au(x j, th) − uxx(x j, th). Define the long vector

R̃h =
⎡
⎢⎣

r1(th)
...

rN−1(th)

⎤
⎥⎦ ,

and

Eh =
⎡
⎢⎣

e1(th)
...

eN−1(th)

⎤
⎥⎦ ,

in vector notation, the equations (5.5) and (5.6) are

(IN−1 ⊗ [D])Eh = E ′
h − ε1, (IN1 ⊗ [D])E ′

h = (A ⊗ IN)Eh + R̃h − ε2,

where ε1, ε2 are long vectors formed by stacking together vectors [εpj0, . . . , εpj,N−1]T for p = 1, 2 and 1 ≤ j ≤ N − 1; and 
each component of E ′

h has the form e′
j(tk). Combine these two equations to obtain

Aw Eh = Rh := R̃h − ε2 − (IN−1 ⊗ [D])ε1.

Using Lemma 4.2 and the above estimates, it follows that |Rh |∞ ≤ cN4e−C N . Apply the result of Theorem 4.5 and proceed 
as in [2] to get the desired error estimate. �

We expect similar spectral convergence for the Airy and beam equations. Numerical results certainly support this. We 
leave the analysis for future work.

6. Nonlinear PDEs

The purpose of this section is to show that it is simple, in a few lines of code in the spirit of [20], to adapt the above 
methodology to solve some of the most common nonlinear PDEs with spectral space-time convergence. We employ simple 
iterative schemes to solve the nonlinear system. While spectral convergence is observed numerically, we make no claims 
about theoretical convergence. In previous publications [1] and [2], we had considered the Allen–Cahn equation and Burgers’ 
equation. We now look at some other nonlinear PDEs.

6.1. Nonlinear reaction diffusion equation

Consider

ut = uxx + λeu + f (x, t), on (−1,1)2,

with initial condition u(x, −1) = u0(x) and homogeneous Dirichlet boundary conditions. Here λ is a positive constant. The 
spectral scheme is

(IN+1 ⊗ D) uh = (D2 ⊗ IN+1) uh + λeuh + fh,

where fh is f evaluated at collocation points. Deleting the known boundary and initial values, the final scheme reads
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[(IN−1 ⊗ [D]) − (�D2� ⊗ IN)] ûh − λeûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the interior collocation points. This nonlinear system can be solved using the simple iteration 
(k ≥ 0)

[(IN−1 ⊗ [D]) − (�D2� ⊗ IN)] û(k+1)

h = λeû(k)

h + f̂h − (
u0h ⊗ dh

)
.

6.2. Nonlinear Schrodinger equation

Consider

iut = −uxx + |u|2u + f (x, t), on (−1,1)2,

with initial condition u(x, −1) = u0(x) and homogeneous Dirichlet boundary conditions. The spectral scheme is

i(IN+1 ⊗ D) uh = −(D2 ⊗ IN+1)uh + |uh|2uh + fh,

where fh is f evaluated at collocation points. Deleting the known boundary and initial values, the final scheme reads

i[(IN−1 ⊗ [D]) + (�D2� ⊗ IN)] ûh − |ûh|2ûh = f̂h − (u0h ⊗ dh),

where u0h is u0 evaluated at the interior collocation points. This nonlinear system can be solved using the simple iteration 
(k ≥ 0) with relaxation:

i[(IN−1 ⊗ [D]) + (�D2� ⊗ IN)] ũ(k+1)

h − |û(k)

h |2ũ(k+1)

h = f̂h − (
u0h ⊗ dh

)
, û(k+1)

h = ũ(k+1)

h + u(k)

h

2
.

6.3. Sine–Gordon equation

The Sine–Gordon equation is

utt = uxx + sin u + f (x, t), on (−1,1)2,

with initial conditions u(x, −1) = u0(x) and ut(x, −1) = u1(x) and homogeneous Dirichlet boundary conditions. The spectral 
scheme is

(IN+1 ⊗ D2) uh = (D2 ⊗ IN+1) uh + sin uh + fh.

Deleting the known boundary and initial values, the final scheme reads

[(IN−1 ⊗ [D]2) − (�D2� ⊗ IN)] ûh − sin ûh = f̂h − (
u0h ⊗ ([D]dh)

) − (u1h ⊗ dh).

This nonlinear system can be solved using the iteration (k ≥ 0)

[(IN−1 ⊗ [D]2) − (�D2� ⊗ IN)]û(k+1)

h = sin û(k)

h + f̂h − (
u0h ⊗ ([D]dh)

) − (u1h ⊗ dh).

6.4. KdV equation

The KdV equation is

ut + uux + uxxx = f (x, t), on (−1,1)2,

with initial condition u(x, −1) = u0(x) and boundary conditions u(−1, t) = 0 = u(1, t) = ux(1, t). The spectral scheme is

(IN+1 ⊗ D)uh + diag(uh)(D ⊗ IN+1)uh + (D3 ⊗ IN+1)uh = fh.

Let B1 be the spectral third derivative (3.4) defined for the Airy operator. The final system, removing the known boundary 
and initial values, becomes

[(IN−1 ⊗ [D]) + (B1 ⊗ IN)]ûh + diag(([[D]] ⊗ IN)ûh)ûh = f̂h − (u0h ⊗ dh).

This can be solved using the iteration (k ≥ 0)

[(IN−1 ⊗ [D]) + (B1 ⊗ IN)]û(k+1) + diag(([[D]] ⊗ IN)û(k)
)û(k+1) = f̂h − (u0h ⊗ dh).
h h h
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6.5. Kuramoto–Sivashinsky equation

The Kuramoto–Sivashinsky equation reads

ut + uxxxx + uxx + uux = f (x, t), on (−1,1)2,

with initial condition u(x, −1) = u0(x) and homogeneous Dirichlet boundary conditions. The scheme is then

(
(IN−1 ⊗ [D]) + (B2 + �D2�) ⊗ IN)

)
ûh + 1

2
([[D]] ⊗ IN) û2

h = f̂h − (u0h ⊗ dh),

where B2 is defined in (3.7). This nonlinear system can be solved using the iteration (k ≥ 0)

(
(IN−1 ⊗ [D]) + (B2 + �D2�) ⊗ IN)

)
û(k+1)

h + diag
(
([[D]] ⊗ IN) û(k)

h

)
û(k+1)

h = f̂h − (u0h ⊗ dh).

6.6. Cahn–Hilliard equation

The Cahn–Hilliard equation is

ut − (−uxx + u3 − u)xx = f (x, t)

with initial condition u(x, −1) = u0(x) and boundary conditions

ux(±1, t) = 0 = uxxx(±1, t).

The full scheme, using Legendre space-time collocation, is(
(IN+1 ⊗ D) + (

(D4 + D2) ⊗ IN+1
))

uh − (D2 ⊗ IN) u3
h = fh.

Let B = W −1 DT W D , where W is the diagonal matrix whose diagonal entries are the weights of the collocation scheme. It 
is known ([23]) that −B is a spectral approximation of the second derivative for functions whose derivative vanishes at the 
boundary. The spectral equations for ûh , the entries of uh removing the initial values, become

(
(IN+1 ⊗ [D]) + (B2 − B) ⊗ IN)

)
ûh + (B ⊗ IN) û3

h = f̂h − (u0h ⊗ dh).

This nonlinear system can be solved iteratively. Let D̃ be D except that the first and last rows are replaced by a row of 
zeroes. This is a spectral approximation of the first derivative for functions whose derivative vanish at the boundary. There 
are several ways to discretize (u3)xx = 2uu2

x + u2uxx . We attempted two, one of which worked, but not the other. The simple 
scheme

(
(IN+1 ⊗ [D]) + (B2 − B) ⊗ IN)

)
û(k+1)

h − 6 diag
(
(D̃ ⊗ IN)û(k)

h

)2
û(k+1)

h

+3 diag(û(k)

h )2(B ⊗ IN)û(k+1)

h = f̂h − (u0h ⊗ dh),

did not seem to converge. The following iteration with relaxation does seem to work (k ≥ 0):

(
(IN+1 ⊗ [D]) + (B2 − B) ⊗ IN)

)
ũ(k+1)

h − 6 diag(û(k)

h )diag
(
(D̃ ⊗ IN)û(k)

h

)
(D̃ ⊗ IN)ũ(k+1)

h

+3 diag(û(k)

h )2(B ⊗ IN)ũ(k+1)

h = f̂h − (u0h ⊗ dh),

û(k+1)

h = ũ(k+1)

h + u(k)

h

2
,

where u0h is the initial data evaluated at all spatial collocation points. It is beyond the scope of this work to discuss 
convergence theories of the schemes in this section.

7. Numerical results

We implemented a very simple space-time Legendre and Chebyshev collocation method for each PDE discussed in this 
paper in MATLAB. Results for the Chebyshev space-time collocation in all but the Cahn–Hilliard equation are reported below. 
Almost identical results hold for the Legendre case and they are not given. Each linear system is solved by the Bartel-Stewart 
algorithm [31].

The convergence for the Schrodinger equation

ut = iuxx + f ,
17
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Fig. 1. Convergence of Chebyshev collocation method for the Schrodinger (left) and wave (right) equations.

Fig. 2. Convergence of Chebyshev collocation method for the Airy (left) and beam (right) equations.

with boundary conditions u(±1, t) = 0 and initial condition u(x, −1) = u0(x). Take f so that the exact solution is u(x, t) =
ex+t sin(πt/2) sinπx. Spectral convergence is clearly illustrated in the left figure of Fig. 1. The error is the largest error of 
the numerical solution at the Chebyshev nodes at the final time t = 1. Note that the error is O (10−14) at N = 18 which 
corresponds to a system with 306 unknowns.

The convergence of the Chebyshev collocation method for the wave equation

utt = uxx + f ,

with boundary conditions u(±1, t) = 0 and initial conditions u(x, −1) = u0(x) and ut(x, −1) = u1(x) can be found in the 
right figure of Fig. 1. Here we take f so that the exact solution is the same as above.

For the Airy equation

ut + uxxx = f ,

with boundary conditions u(±1, t) = 0 = ux(1, t) and initial condition u(x, 0) = u0(x), with the same exact solution as 
before, spectral convergence of the space-time Chebyshev collocation method is shown in the left figure of Fig. 2.

Next consider the beam equation

utt + uxxxx = f ,

with clamped boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x, −1) = u0(x), ut(x, −1) = u1(x). Take 
f so that the exact solution is ex+t sin(πt/2) sin2(πx), the spectral convergence of the Chebyshev collocation method can 
be seen in the right figure of Fig. 2.

The spectrum of the various spectral Chebyshev operators for the case N = 60 and plots of the spectral condition num-
bers as functions of N are shown in Figs. 3, 4, 5, 6.
18
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Fig. 3. Spectrum (left) and spectral condition number (right) for the Schrodinger operator As .

Fig. 4. Spectrum (left) and spectral condition number (right) for the wave operator Aw .

Fig. 5. Spectrum (left) and spectral condition number (right) for the Airy operator Aa .
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Fig. 6. Spectrum (left) and spectral condition number (right) for the beam operator Ab .

Now we move onto nonlinear PDEs. For all nonlinear PDEs, we take as initial guess the zero function and use the iteration 
defined for each nonlinear PDE. The iteration is stopped whenever the infinity norm of the difference of two consecutive 
iterates is smaller than ε = 10−13. Consider first the nonlinear reaction diffusion equation

ut = uxx + λeu + f ,

with homogeneous boundary conditions. Take λ = 0.5 and f so that the exact solution is u(x, t) = ex+t cos(πx/2). See the 
left figure of Fig. 7 for the convergence.

Next consider the nonlinear Schrodinger equation

iut − uxx + |u|2u = f ,

with homogeneous Dirichlet boundary conditions. Take f so that the exact solution is u(x, t) = ex+t sin(πx). See the right 
figure of Fig. 7 for the convergence.

Next consider the KdV equation

ut + uux + uxxx = f ,

with boundary conditions u(±1, t) = 0 = ux(1, t). Take f so that the exact solution is u(x, t) = cos(x − t) (x − 1)2(x + 1). See 
the left figure of Fig. 8 for the convergence.

Next consider the Sine–Gordon equation

utt = uxx + sin u + f ,

with homogeneous Dirichlet boundary conditions. Take f so that the exact solution is u(x, t) = ex+t sinπx. See the right 
figure of Fig. 8 for the convergence.

Next consider the nonlinear Kuramoto–Sivashinsky equation

ut + uxxxx + uxx + uux = f ,

with clamped boundary conditions u(±1, t) = 0 = ux(±1, t) and initial conditions u(x, −1) = u0(x). Take f so that the exact 
solution is ex+t sin2(πx), the spectral convergence of the Chebyshev collocation method can be seen in the left figure of 
Fig. 9.

Finally, consider the Cahn–Hilliard equation

ut + uxxxx + uxx − (u2)xx = f ,

with boundary conditions ux(±1, t) = 0 = uxxx(±1, t) and initial conditions u(x, −1) = u0(x). Take f so that the exact 
solution is cos(t) cos(πx), the spectral convergence of the Legendre space-time collocation method can be seen in the right 
figure of Fig. 9. This PDE was the most difficult to solve. The stopping criterion was reduced to ε = 10−9.

8. Discussion and conclusion

In this paper, we have proposed very simple space-time spectral collocation methods for some linear time dependent 
PDEs: Schrodinger, wave, Airy and beam equations. The entire MATLAB code of each PDE (including calculation of Legendre 
20
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Fig. 7. Convergence of Chebyshev collocation method for the nonlinear reaction diffusion equation (left) and nonlinear Schrodinger equation (right).

Fig. 8. Convergence of Chebyshev collocation method for the KdV (left) and Sine–Gordon (right) equations.

Fig. 9. Convergence of Chebyshev collocation method for the Kuramoto–Sivashinsky (left) and Cahn–Hilliard (right) equations.

and Chebyshev Lobatto points and plotting the errors) consists of no more than 50 lines. As far as we know, the proof of 
spectral convergence for the Schrodinger and wave equations is new. The condition number estimates of the global Cheby-
shev space-time operators are also new. The proofs require a new estimate of eigenvalues of the Chebyshev third derivative 
matrix, which was conjectured more than 20 years ago, and is proved for the first time here. The proof of the fourth-order 
case is still incomplete because we still need to prove that the spectrum of the Chebyshev fourth derivative matrix is real. 
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We did manage to show that the spectrum lies in the right half-plane and bounded away from the imaginary axis. Nu-
merical results confirm nicely the theory of the paper. Some simple experiments for common nonlinear PDEs (nonlinear 
reaction diffusion equation from combustion, nonlinear Schrodinger, Sine-Gordon, KdV, Kuramoto–Sivashinsky and Cahn–
Hilliard equations) demonstrate numerically full space-time convergence. It is remarkable that space-time spectral methods 
work so well for these different classical PDEs with different features: diffusion, dispersion, nonlinear advection, etc.

Although we have only considered one spatial dimension, the general case of a spatial domain (−1, 1)d follows imme-
diately. Also, the implementation of the collocation method for general linear variable coefficient PDEs with standard linear 
boundary conditions is quite straightforward.

Space-time methods are extremely robust methods which converge spectrally for most standard linear PDEs with stan-
dard boundary conditions. They deserve more investigations, especially more sophisticated algorithms to speed up the linear 
algebra.
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