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The study of constraining the eigenvalues of the sum of two 
symmetric matrices, say P + Q, in terms of the eigenvalues 
of P and Q, has a long tradition. It is closely related to 
estimating a lower bound on the minimum singular value of 
a matrix, which has been discussed by a great number of 
authors. To our knowledge, no study has yielded a positive 
lower bound on the minimum eigenvalue, λmin(P + Q), when 
P + Q is symmetric positive definite with P and Q singular 
positive semi-definite. We derive two new lower bounds on 
λmin(P +Q) in terms of the minimum positive eigenvalues of 
P and Q. The bounds take into account geometric information 
by utilizing the Friedrichs angles between certain subspaces. 
The basic result is when P and Q are two non-zero singular 
positive semi-definite matrices such that P+Q is non-singular, 
then λmin(P + Q) ≥ (1 − cos θF ) min{λmin(P ), λmin(Q)}, 
where λmin represents the minimum positive eigenvalue of 
the matrix, and θF is the Friedrichs angle between the range 
spaces of P and Q. Such estimates lead to new lower bounds 
on the minimum singular value of full rank 1 ×2, 2 ×1, and 2 ×2
block matrices. Some examples provided in this paper further 
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highlight the simplicity of applying the results in comparison 
to some existing lower bounds.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The spectral problem of a symmetric matrix sum estimates the eigenvalues of a sum of 
two symmetric matrices P +Q, in terms of the eigenvalues of P and Q. Fundamental re-
sults, like Weyl’s inequality in [25, p. 239], and several other works collected in [15], have 
addressed this problem. Another substantial contribution is Horn’s conjecture proved 
in [32,33]. The present work is focused on the case when P and Q are symmetric posi-
tive semi-definite (PSD) matrices, which impacts numerous areas-such as computational 
economics, graph theory, perturbation theory, semi-definite programming, spectrum of 
self-adjoint operators, among others. As variance-covariance matrices are PSD, this prob-
lem appears in statistics, and more recently in statistical machine learning and spectral 
methods for data science, discussed in [4] and [13], respectively.

Singular values have been investigated for more than a century. For a square real ma-
trix, its minimum singular value is less than or equal to its absolute minimum eigenvalue. 
Thus, formulation of a lower bound for the minimum singular value is an influential prob-
lem appearing in several studies including the condition number estimates of a matrix, 
resonant frequencies, population dynamics, principal component analysis, etc. Since the 
singular values of a matrix are the square-root of eigenvalues of its corresponding gram 
matrix, the singular values of a general block matrix are associated with the spectral 
problem of a sum of symmetric matrices. Although a myriad of research has been done 
on these topics, however, when the symmetric matrices are both singular PSD, we could 
not find a result providing a positive lower bound even if their sum is non-singular.

In practice, we often come across symmetric positive definite (SPD) matrices repre-
sented as a sum of two singular PSD matrices. To illustrate, let us estimate the minimum 
singular value of a full rank block column matrix, say A =

[A1
A2

]
so that A1 and A2

are rank deficient. This problem is equivalent to finding the minimum eigenvalue of 
ATA = AT

1 A1 + AT
2 A2, an SPD matrix which is a sum of two singular PSD matrices. 

We derive a positive lower bound on the minimum singular value of A in terms of the 
minimum positive singular values of A1 and A2 in Corollary 3.7.

In this work, we desire a positive lower bound on the minimum eigenvalue of an SPD 
matrix P + Q, where P, Q ∈ Rn×n are PSD matrices. Two positive lower bounds on 
the smallest eigenvalue of P + Q, framed in terms of the smallest positive eigenvalues 
of P and Q, are presented in Theorems 3.1 and 3.5. These estimates of the minimum 
eigenvalue employ the Friedrichs angle between certain subspaces, i.e., some principal 
angle between them, as given in Proposition 2.4. Moreover, the two new lower bounds 
lead to useful outcomes when applied to a 2 × 2 non-singular block matrix X as:
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X TX =
[
AT CT

BT DT

] [
A B
C D

]
=
[
ATA ATB
BTA BTB

]
+
[
CTC CTD
DTC DTD

]
.

Here X TX is a full rank matrix expressed as a sum of two PSD matrices. Therefore, 
the above expression admits a lower bound on the minimum singular value of X , in terms 
of the minimum positive singular values of its blocks A, B, C, and D (Theorem 3.9). 
Finally, the above expression and XX T are used again to get two lower bounds on other 
singular values of X in Theorem 3.14.

We now summarize the notation used in this paper. Let A ∈ Rn×n be a PSD matrix 
and let Λ(A) denote the spectrum of A, that is, the set of eigenvalue of A. If r = rank(A), 
then its eigenvalues λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) ≥ 0, are such that λr > 0 and λi = 0
for all r + 1 ≤ i ≤ n. Moreover, we define the minimum positive eigenvalue of A as

λmin(A) :=
{
λr(A), if A �= O,

∞, if A = O.
(1.1)

For a matrix A ∈ Rm×n, rank(A) = rank(ATA) = rank(AAT ). The set of singular values 
of A is denoted by σ(A). Let r = rank(A), then its singular values σ1(A) ≥ σ2(A) ≥
. . . ≥ σmin(m,n)(A) are such that σr(A) > 0 and σi = 0 for all r + 1 ≤ i ≤ min(m, n). 
Again, we define the minimum positive singular value of A as

σmin(A) :=
{
σr(A), if A �= O,

∞, if A = O.
(1.2)

The above expressions for λmin and σmin are defined for the convenience of notation 
for results derived in section 3 and their value is set as infinity for zero matrices to ignore 
the zeros while calculating the minimum as it was required by the formulations derived 
for zero matrices. The 2-norm of a vector is denoted by | · |, whereas ‖ · ‖ represents 2-
norm of a matrix. The range space and null space of A are denoted by R(A) and N (A), 
respectively. For a scalar k, the constant vector of n components equal to k is denoted by 
kn. Also, for Ai ∈ Rni×ni with ni ∈ N, diag(A1, A2, . . . , Ak) denotes a square diagonal 
matrix of size 

∑k
i=1 ni with diagonal blocks Ai, for 1 ≤ i ≤ k.

This paper is organized as follows. In section 2, some important results that will be 
used to prove the main results are listed. In section 3, we prove some new positive lower 
bounds. Additionally, some examples and special cases for these results are discussed in 
section 4. Finally, some ideas for future work are mentioned in section 5.

2. Existing results

There is an abundance of results related to the study of the minimum singular value 
of a non-singular matrix in the literature. We attempt to summarize some of the existing 
focal results related to the ones developed in section 3.
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2.1. Minimum eigenvalue of the sum of two PSD matrices

The problem of estimating a lower bound on the minimum eigenvalue of the sum of 
two symmetric matrices say P, Q ∈ Rn×n, has been investigated for many years. Several 
results describe an upper bound on the spectrum of P + Q in terms of the spectrum of 
P and Q. One of the most fundamental results is the set of Weyl’s inequalities, given 
in [25, p. 239], which is stated as follows:

λj(P ) + λn(Q) ≤ λj(P + Q) ≤ λj(P ) + λ1(Q), j = 1, 2 . . . , n. (2.1)

Other results include trace identity, given as
∑

λ(P ) +
∑

λ(Q) =
∑

λ(P + Q), Ky-
Fan inequalities, Lidskii and Wielandt inequalities, and Horn’s conjecture as proved in 
[33,32]. In general, it is challenging to improve upon a lower bound on the minimum 
eigenvalue, λn(P + Q) ≥ λn(P ) + λn(Q), that is set forth by (2.1).

A more systematic and theoretical analysis was conducted for a specific case when P
and Q are PSD. Note that for any A ∈ Rm×n and B ∈ R�×n, their corresponding gram 
matrices, defined as ATA, BTB ∈ Rn×n, respectively, are PSD; thus, the following lower 
bounds on eigenvalues of the sum of two PSD matrices were established in [9] and quoted 
in [8, p. 904]:

λj(ATA + BTB) ≥ 2σj(ABT ), j = 1, 2, . . . ,min(�,m, n). (2.2)

R. Bhatia and F. Kittaneh also speculated a generalization of the arithmetic-geometric 
mean inequality in [10], which stated that for two PSD matrices P, Q ∈ Rn×n, λj(P +
Q) ≥ 2

√
σj(PQ), for all j = 1, 2, . . . , n, that were later proved by S. Drury in [17]. 

However, all these results give a trivial lower bound for the case in which P +Q is SPD 
and both P and Q are singular PSD matrices.

2.2. Spectrum of saddle point matrices

One of the most commonly seen 2 × 2 block matrices of the form X =
[ A B1
BT

2 −C

]
, 

where A ∈ Rm×m and one or both of B1, B2 ∈ Rm×n are non-zero, is called a saddle 
point matrix. For a good survey of results on saddle point matrices see [5]. In particu-
lar, check Theorem 3.5 in [5, p. 21], which estimates the spectrum for the case when A is 
SPD, B1 = B2 is full rank, and C = O. A noteworthy improvement was presented in the 
form of Theorem 1 in [2, p. 341] with a positive or negative semi-definite matrix C. Note 
that these results provide singular values of a 2 × 2 block matrix from its corresponding 
gram matrix; however, estimating the parameters defined in these theorems could be dif-
ficult due to their complicated expressions. Another applicable result for the spectrum 
of a preconditioned saddle point matrix can be found in [43].

To formulate the spectrum of a more generalized saddle point matrix, several advance-
ments have been considered, such as defining B = BT

1 = −B2 in [6,7,42,1]. Another step 
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forward was to have a symmetric indefinite leading block A. The first of such cases was 
proved in [22], by imposing the condition that A is SPD on N (B), which was eliminated 
in [3]. Recently, in [26], A has been considered to be a non-symmetric matrix with a posi-
tive definite symmetric part with C = O, which originates from discretized Navier-Stokes 
equations.

2.3. Lower bound on the minimum singular value

Several techniques are reported in the literature for formulating a lower bound on 
the minimum singular value of a particular type of matrices; however, we attempt to 
mention seminal contributions to this problem for a general non-singular matrix. An 
initial result for the special case of diagonally dominant matrices is derived in [46], and 
for a non-singular matrix, a consequential approach is Gerschgorin-type lower bounds 
formulated in [41,27]. The results evolved gradually into several stronger versions, as 
seen in [28,37,29,50]. Also, [24] devised a lower bound in terms of the determinant, the 
2-norms of the rows, and columns of the matrix. Some later advancements of this result 
include [48,49,38] and the references therein.

It is well-known that for a 2 ×2 block matrix, the maximum singular value is bounded 
above by 2-norm of the matrix consisting of 2-norms of its blocks, see Theorem 1(f) in 
[44, p. 2630]. Thus, for X ∈ Rn×n,

X =
[
A B
C D

]
, ‖X‖ ≤

∥∥∥∥
[
‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .
Since σmin(X ) = σmax(X−1)−1, so on applying this result to X−1 calculated in terms 

of its blocks, an estimate of σmin(X ) is obtained. One drawback of this method is that 
the expression for X−1 can be quite problematic.

2.4. Separation between subspaces

A cardinal component of this study is the concept of orthogonality. Let V be an inner-
product space and U ⊆ V be a subspace of V , then U⊥ = {v ∈ V | 〈v, u〉 = 0, ∀ u ∈ U}
is the orthogonal complement of U in V , where 〈·, ·〉 is the standard inner product on 
Rn. A pivotal result, as seen in [39, p. 409], states that

U⊥ + V ⊥ = (U ∩ V )⊥ , (2.3)

whenever U , V be two subspaces of an inner-product space X. Our analysis is limited to 
finite dimensions by using orthogonal projections. Let U ⊆ Rn be a subspace. A matrix 
P ∈ Rn×n is the orthogonal projection onto U if R(P ) = U , P 2 = P , and PT = P . 
Moreover, if x ∈ Rn, then Px ∈ U and (I − P )x ∈ U⊥. For a detailed discussion, we 
refer the reader to [20].
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An instinct for formulating a non-trivial lower bound on the minimum eigenvalue of 
a non-singular sum, P +Q, of two PSD matrices encouraged us to gauge the separation 
between the range spaces of matrices P and Q. In this case, a suitable measure is the 
principal angle between subspaces.

Definition 2.1 (Principal angles [19]). Let U, V ⊆ Rn be subspaces with p = dim(U) ≥
dim(V ) = q ≥ 1. The principal angles 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θq ≤ π

2 between U and V are 
recursively defined for k = 1, 2, . . . , q by

cos(θk) = max
u∈U, v∈V
|u|=|v|=1

|uT v| =: uT
k vk,

subject to the constraints

uT
i u = 0, vTi v = 0, i = 1, 2, . . . , k − 1.

The vectors {u1, . . . , uq}, {v1, . . . , vq} are called principal vectors of the pair of spaces. 
The angle θ1 is also called the minimal principal angle.

It is worth noting that θ1 = 0 if and only if U ∩ V �= {0}, and θ1 = π
2 if and only 

if U ⊥ V . The following result describes a beautiful connection between the orthogonal 
projections and the principal angles between their subspaces.

Theorem 2.2 ([47,19]). Let U, V ⊆ Rn be subspaces with p = dim(U) ≥ dim(V ) = q ≥ 1, 
θi be the principal angles between U and V , and r be the number of angles θi such that 
0 < θi <

π
2 . Let P, Q ∈ Rn×n be orthogonal projections onto U, V , respectively, then the 

set of singular values of P ±Q are

1. σ(P + Q) = {2k, 1 ± cos(θk+i)(i = 1, . . . , r), 1n1+n2 , 0n3},
2. σ(P −Q) = {1n1+n2 , sinsinsin(((θθθkkk+++iii)))2(i = 1, . . . , r), 0k+n3},

where k = dim(U ∩ V ), n1 = dim(U ∩ V ⊥) = p − k − r, n2 = dim(U⊥ ∩ V ) = q − k − r, 
and n3 = dim(U⊥ ∩ V ⊥) = n − p − q + k.

A notable application of principal angles is canonical correlations of matrix pairs 
given in [21], and in many other areas, namely eigenspaces, functional analysis, matrix 
perturbation theory, statistics, etc., are found in [34,45,16,14], respectively. The spectral 
problem of a sum of two PSD matrices is closely related to the first aforementioned appli-
cation of canonical correlations, and its dependence upon the Friedrichs angle, discussed 
next, elucidates geometric aspects of spectral theory.
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2.5. The Friedrichs angle

Finally, we attempt to shed light on another essential tool of this paper. Note that if 
dim(U ∩V ) = k, then θi = 0, for all 1 ≤ i ≤ k, and θk+1 > 0, whenever k+1 ≤ min(p, q). 
This angle θk+1, has been studied widely in the context of angles between subspaces of 
Hilbert spaces and is referred to as the Friedrichs angle, see [16]. The Friedrichs angle 
between the subspaces M and N of a Hilbert space (H, 〈·, ·〉) is the angle a(M, N) in 
[0, π2 ] whose cosine is given by

c(M,N) = sup{|〈x, y〉|
∣∣x ∈ M ∩ (M ∩N)⊥, |x| ≤ 1, y ∈ N ∩ (M ∩N)⊥, |y| ≤ 1}.

A remarkable property of the Friedrichs angle is c(M, N) < 1 or a(M, N) > 0 if and 
only if M + N is closed. Thus, the following definition is adapted for finite dimensions.

Definition 2.3 (Friedrichs angle [16]). The angle θF ∈
(
0, π

2
]

between subspaces U, V ⊆
Rn, whose cosine is defined by

cos θF := sup
{
|uT v|

∣∣u ∈ U ∩ (U ∩ V )⊥, |u| ≤ 1, v ∈ V ∩ (U ∩ V )⊥, |v| ≤ 1
}
,

is called the Friedrichs angle.

We summarize some significant properties of the Friedrichs angle, which will be used 
later to prove some results.

Proposition 2.4. Let U, V ⊆ Rn be subspaces, as defined in Theorem 2.2. Let P, Q be 
orthogonal projections onto U and V , respectively, and let θF denote the Friedrichs angle 
between subspaces U and V , then the following results hold.

1. θF = θ1
(
U ∩ (U ∩ V )⊥, V ∩ (U ∩ V )⊥

)
.

2. θF = θ1(U, V ) if and only if U ∩ V = {0}.
3. θF = θ1

(
U, V ∩ (U ∩ V )⊥

)
= θ1

(
U ∩ (U ∩ V )⊥, V

)
.

4. cos θF = ‖PQ −PU∩V ‖.
5. θF = θk+1(U, V ), if θk+1 exists.

See [16, p. 110] for the first four properties of Proposition 2.4. A proof of Property 4 is 
also provided in [12, p. 1430], which along with ‖PQ −PU∩V ‖ = cos θk+1, proved in [19, 
p. 245], implies Property 5. Several more interesting results on the Friedrichs angle are 
stated in [18, p. 242].

3. Main results

As discussed in section 1, a positive lower bound on the minimum eigenvalue of a non-
singular sum of two PSD matrices, say P, Q ∈ Rn×n, is the key tool for the development 
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of a positive lower bound on the minimum singular value of some full rank block matrices. 
Note that N (P ) ∩N (Q) = {0} when P +Q is SPD, however, the range spaces of P and 
Q may intersect. Let k = dim(R(P ) ∩ R(Q)), then the first k principal angles between 
R(P ) and R(Q) vanish: θi = 0 for i = 1, 2, . . . , k. Therefore, if θk+1 exists then it could 
contribute in estimating the minimum eigenvalue of P + Q in terms of the minimum 
positive eigenvalues of P and Q. Even when θk+1 does not exist, this idea serves as a 
motivation for the following theorem for a pair of two PSD matrices with a non-singular 
sum.

Theorem 3.1. Let P, Q ∈ Rn×n be PSD matrices of rank p, q ≤ n, respectively, so that 
P + Q is non-singular. Then

λmin(P + Q) ≥ c(P,Q) min {λmin(P ), λmin(Q)} ,

where c(P, Q) is defined by

c(P,Q) =

⎧⎪⎪⎨
⎪⎪⎩

2, r = 0, p + q = 2n,
1, r = 0, p + q < 2n,
1 − cos(θk+1), r > 0,

(3.1)

where k = p + q − n, 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θmin(p,q) ≤ π
2 represent the principal angles 

between R(P ), R(Q) ⊆ Rn, and r is the number of angles θi so that 0 < θi < π
2 , for 

1 ≤ i ≤ min(p, q).

Proof. Since P, Q are PSD matrices, there exist matrices A1 ∈ Rp×n and A2 ∈ Rq×n, 
so that P = AT

1 A1, Q = AT
2 A2. Moreover, N (P ) = N (A1) and N (Q) = N (A2). Define 

M1 := R(P ) = R(PT ) = N (P )⊥ = N (A1)⊥ and similarly define M2 := R(Q) =
N (A2)⊥. Let Pi ∈ Rn×n be the orthogonal projection on Mi, for i = 1, 2. Therefore, 
R(Pi) = Mi and R(I−Pi) = M⊥

i = N (Ai) for i = 1, 2. The variational characterization 
of the smallest eigenvalue of a symmetric matrix implies

λmin(P + Q) = inf
x∈Rn\{0}

xTAT
1 A1x + xTAT

2 A2x

|x|2 .

Since any x ∈ Rn \ {0} can be represented as x = (I − Pi)x + Pix, for i = 1, 2, thus

xTAT
i Aix = [Ai((I − Pi)x + Pix)]T [Ai((I − Pi)x + Pix)]

= (AiPix)T (AiPix) (as (I − Pi)x ∈ N (Ai))

= (Pix)TAT
i Ai(Pix),

therefore,
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λmin(P + Q) = inf
x∈Rn\{0}

(P1x)TAT
1 A1(P1x) + (P2x)TAT

2 A2(P2x)
|x|2 . (3.2)

Note that the minimum positive eigenvalue of AT
i Ai is identified by the variational 

characterization as follows,

λmin(AT
i Ai) = inf

x∈N (Ai)⊥
xTAT

i Aix

|x|2 .

Since for any x ∈ Rn\{0}, Pix ∈ Mi = N (Ai)⊥, therefore the above expression gives

(Pix)TAT
i Ai(Pix) ≥ λmin(AT

i Ai)|Pix|2,

hence (3.2) provides the following estimate

λmin(P + Q) ≥ inf
x∈Rn\{0}

λmin(AT
1 A1)|P1x|2 + λmin(AT

2 A2)|P2x|2
|x|2

= inf
x∈Rn\{0}

λmin(P )|P1x|2 + λmin(Q)|P2x|2
|x|2 (3.3)

≥ min {λmin(P ), λmin(Q)} inf
x∈Rn\{0}

|P1x|2 + |P2x|2
|x|2

=: min {λmin(P ), λmin(Q)} inf
x∈Rn\{0}

Δ(x), (3.4)

where Δ(x) := |P1x|2 + |P2x|2
|x|2 , for x ∈ Rn \ {0}. Since the parallelogram identity for 

inner-product spaces states that

|P1x|2 + |P2x|2 = 1
2
[
|(P1 + P2)x|2 + |(P1 − P2)x|2

]
, (3.5)

leading to a lower bound,

inf
x∈Rn\{0}

Δ(x) ≥ 1
2
[
σ2

min(P1 + P2) + σ2
min(P1 − P2)

]
, (3.6)

hence the set of singular values of P1 ± P2 need to be analyzed. To this end, note that 
M⊥

1 ∩M⊥
2 = N (P ) ∩N (Q) = {0}, as

x ∈ N (P ) ∩N (Q) ⇔ (P + Q)x = 0 ⇔ x = 0,

since P + Q is non-singular. Also, (2.3) gives

M1 + M2 = (M⊥
1 ∩M⊥

2 )⊥ = {0}⊥ = Rn,
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consequently, Theorem 2.2 gives the set of singular values of P1 ± P2 as

σ(P1 + P2) = {2k, 1 ± cos(θk+i)(i = 1, . . . , r),1n1+n2},
σ(P1 − P2) = {1n1+n2 , sin(θk+i)sin(θk+i)sin(θk+i)2(i = 1, . . . , r),0k},

(3.7)

where,

k = dim(M1 ∩M2) = dim(M1) + dim(M2) − dim(M1 + M2) = p + q − n,

n1 = dim(M1 ∩M⊥
2 ) = p− k − r,

n2 = dim(M⊥
1 ∩M2) = q − k − r,

n3 = dim(M⊥
1 ∩M⊥

2 ) = 0,

n = n1 + n2 + k + 2r = p + q − k.

(3.8)

Let us estimate (3.6), thus (3.4) in terms of the following cases.
Case 1: Suppose r = 0. Note that (3.8) implies n1 = p − k, n2 = q − k for this case. 

Firstly, consider k = 0 and n1 = n2 = 0, then (3.8) implies p = q = 0, thus P = Q = O. 
Since P + Q is required to be non-singular, thus this case is rejected.

For k = 0 and n1 + n2 > 0, (3.7) and (3.8) yield σ(P1 ± P2) = {1n1+n2} = {1n}, 
hence (3.6) gives

inf
x∈Rn\{0}

Δ(x) ≥ 1
2
[
12 + 12] = 1. (3.9)

For k > 0 and n1 = n2 = 0, (3.8) implies that k = p = q = n or both P and Q are 
non-singular. Therefore, M1 = M2 = Rn, hence (3.4) gives

inf
x∈Rn\{0}

Δ(x) = inf
x∈Rn\{0}

|x|2 + |x|2
|x|2 = 2. (3.10)

For k, n1 > 0, and n2 = 0, (3.8) results in p = n and q = k, that is, M2 ⊆ M1 = Rn

or Q is non-singular. Hence, (3.4) becomes

inf
x∈Rn\{0}

Δ(x) = inf
x∈Rn\{0}

|x|2 + |P2x|2
|x|2 ≥ 1.

Similarly, for k, n2 > 0 and n1 = 0, the same lower bound as above is derived which 
also coincides with (3.9). Finally, consider k, n1, n2 > 0, since dim(M1 ∩M2) = k > 0, 
therefore M1 ∩M2 is a non-trivial subspace. Define M3 := M2 ∩ (M1 ∩M2)⊥, then

dim(M3) = n− dim(M⊥
3 )

= n− dim(M⊥
2 + M1 ∩M2) (by (2.3))

= n− (n− dim(M2)) − dim(M1 ∩M2)
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= n− (n− q) − k = q − k,

or dim(M3) = q − k = n2 > 0, thus it is a non-trivial subspace. Let P3 and PU be the 
orthogonal projections onto the subspace M3 and some subspace U of Rn, respectively. 
The following was proved in [12, p. 1429],

P3 = PM2∩(M1∩M2)⊥ = PM2P(M1∩M2)⊥

= PM2 (I − PM1∩M2)

= PM2 − PM2PM1∩M2

= P2 − PM1∩M2 ,

or P2 = PM1∩M2 + P3, which implies for any x ∈ Rn \ {0},

P2x = PM1∩M2x + P3x. (3.11)

By definition, M1 ∩M2 and M3 are mutually orthogonal subspaces. Therefore, for any 
x ∈ Rn \ {0},

|P2x|2 = |PM1∩M2x|2 + |P3x|2, (3.12)

and (3.4) becomes

inf
x∈Rn\{0}

Δ(x) = inf
x∈Rn\{0}

|P1x|2 + |PM1∩M2x|2 + |P3x|2
|x|2

≥ inf
x∈Rn\{0}

|P1x|2 + |P3x|2
|x|2

= 1
2 inf

x∈Rn\{0}

|(P1 + P3)x|2 + |(P1 − P3)x|2
|x|2 (by (3.5))

≥ 1
2
[
σ2

min(P1 + P3) + σ2
min(P1 − P3)

]
. (3.13)

By Theorem 2.2,

σ(P1 + P3) = {2k̃, 1 ± cos(αk̃+i)(i = 1, . . . , r),1ñ1+ñ2 , 0ñ3},
σ(P1 − P3) = {1ñ1+ñ2 , sin(αk̃+i)sin(αk̃+i)sin(αk̃+i)2(i = 1, . . . , r),0k̃+ñ3

},
(3.14)

where 0 ≤ α1 ≤ α2 ≤ . . . ≤ αmin(p,q−k) ≤ π
2 represent the principal angles between the 

subspaces M1 and M3, and r is the number of principal angles that satisfy 0 < αi <
π
2 . 

Observe that r is the same number for M1 and M2 by Definition 2.1, or see [19, p. 231]
for more details. Thus, r = 0 and (3.8) gives the following parameters
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k̃ = dim(M1 ∩M3) = dim(M1 ∩ (M2 ∩ (M1 ∩M2)⊥)) = 0,

ñ1 = p− k̃ − r = p,

ñ2 = (q − k) − k̃ − r = q − k,

ñ3 = n− p− (q − k) + k̃ = n− (p + q − k) = 0.

(3.15)

Hence, σmin(P1 ± P3) = 1, therefore (3.13) implies that infx∈Rn\{0} Δ(x) ≥ 1, which 
coincides with (3.9).

In conclusion, for r = 0 and p + q < 2n, λmin(P + Q) ≥ min {λmin(P ), λmin(Q)}
holds, or c(P, Q) = 1. Whereas, for r = 0 and p + q = 2n, λmin(P + Q) ≥
2 min {λmin(P ), λmin(Q)} holds, or c(P, Q) = 2.

Case 2: Suppose r > 0. For k = 0 and any n1, n2 ≥ 0, (3.7) implies that σmin(P1+P2) =
1 − cos θ1 and σmin(P1 − P2) = sin θ1. By (3.6),

inf
x∈Rn\{0}

Δ(x) ≥ 1
2
[
(1 − cos θ1)2 + sin2 θ1

]
= 1 − cos θ1.

Therefore, (3.4) gives λmin(P + Q) ≥ (1 − cos θ1) min{λmin(P ), λmin(Q)}.
For k > 0 and n1, n2 ≥ 0, thus M1 ∩ M2 is non-trivial. Consider the subspaces M1

and M3, as defined earlier for k, n1, n2 > 0 in Case 1. Note that M3 is always non-trivial, 
as n1, n2 ≥ 0 (3.8) implies p ≥ k + r and q ≥ k + r, thus dimM3 = q − k ≥ r > 0. Also, 
the set of parameters for M1 and M3 are given by (3.15) and r > 0 as follows,

k̃ = dim(M1 ∩M3) = 0,

ñ1 = p− k̃ − r = p− r,

ñ2 = (q − k) − k̃ − r = q − k − r,

ñ3 = n− p− (q − k) + k̃ = 0.

(3.16)

Let θF be the Friedrichs angle between M1 and M2, then by Property 3 of Proposition 2.4, 
it is equal to the minimal angle between M1 and M3 in (3.14), that is,

α1 = θF = θk+1, (3.17)

where the last equality follows by Property 5 of Proposition 2.4. Therefore, (3.14) implies 
that σmin(P1 + P3) = 1 − cosα1 = 1 − cos θk+1 and σmin(P1 − P3) = sinα1 = sin θk+1, 
so (3.13) yields

inf
x∈Rn\{0}

Δ(x) ≥ 1
2
[
(1 − cos θk+1)2 + sin2 θk+1

]
= 1 − cos θk+1. (3.18)
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Thus, (3.4) implies λmin(P + Q) ≥ (1 − cos θk+1) min {λmin(P ), λmin(Q)}, or c(P, Q) =
1 − cos θk+1, which is consistent for r > 0 and k = 0. �
Remark 3.2. Recall that θk+1 is the Friedrichs angle between R(P ) and R(Q) as stated 
in Property 5 of Proposition 2.4. It can be easily calculated by using a result by A. 
Björck and G. Golub given in [11]. Let Q1 ∈ Rn×p and Q2 ∈ Rn×q represent orthogonal 
bases for R(P ) and R(Q), respectively. Define M = QT

1 Q2, then cos θi = σi(M), where 
i = 1, 2, . . . , min(p, q).

Remark 3.3. When r = 0 and p +q = 2n, which occurs when both P and Q are SPD, the 
term c(P, Q) = 2 is convenient for future use. It can be easily strengthened by using (2.1). 
The significance of Theorem 3.1 is that it gives a positive lower bound on λmin(P + Q)
for the case when both P and Q are rank deficient, for which the estimate of the theorem 
reads λmin(P +Q) ≥ (1 −cos θF ) min{λmin(P ), λmin(Q)}. Also, (3.18) is an optimal lower 
bound for k = 0, however, there is a scope of improvement when k, r > 0. This bound 
results from (3.12), which is carefully selected through analysis described in section 2 of 
[30], which also summarizes the cases for r = 0 in section 1.

Note that (3.1) utilizes the angle between the range spaces of matrices P, Q ∈ Rn×n, 
thus it can be extended to rectangular matrices with the same number of rows. The 
results stated below are relevant for describing the lower bounds on the minimum singular 
value of certain block matrices with full rank.

Proposition 3.4. For distinct non-zero matrices A ∈ Rn×p, B ∈ Rn×q

1. c(A, B) = c(AAT , BBT ).
2. c(A, B) = c(B, A).
3. c(A, On×k) = 1.
4. c(A, B) = 1 − cos θF , when both A, B are rank-deficient, where θF is the Friedrichs 

angle between R(A) and R(B).

The following result is derived to complete the analysis of PSD matrices P, Q. It 
reduces to (2.1) when at least one of P and Q is SPD. However, the result may be 
weaker or stronger than the estimate given by Theorem 3.1.

Theorem 3.5. Let P, Q ∈ Rn×n be PSD matrices of rank p, q ≤ n, respectively, so that 
P + Q is non-singular, then

λmin(P + Q) ≥ ψ(P,Q),

where, for r = 0
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ψ(P,Q) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2, p = n, q < n,

b2, p < n, q = n,

a2 + b2, p = q = n,

min
{
a2, b2

}
, otherwise,

and for r > 0,

ψ(P,Q) := 1
2

[
a2 + b2 − 1

2(a + b)
√

(a + b)2 − 4ab sin2 θk+1

− 1
2 |a− b|

√
(a− b)2 + 4ab sin2 θk+1

]
,

where a =
√

λmin(P ), b =
√
λmin(Q), k = p + q − n, 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θmin(p,q) ≤ π

2
represent the principal angles between R(P ), R(Q) ⊆ Rn, and r is the number of principal 
angles θi so that 0 < θi <

π
2 , for 1 ≤ i ≤ min(p, q).

Proof. Define M1 := R(P ), M2 := R(Q) and Pi ∈ Rn×n to be the orthogonal projection 
onto Mi, for i = 1, 2. On following the proof of Theorem 3.1, (3.3) gives

λmin(P + Q) ≥ inf
x∈Rn\{0}

λmin(P )|P1x|2 + λmin(Q)|P2x|2
|x|2

= inf
x∈Rn\{0}

a2|P1x|2 + b2|P2x|2
|x|2 (3.19)

= 1
2 inf

x∈Rn\{0}

|(aP1 + bP2)x|2 + |(aP1 − bP2)x|2
|x|2 (by (3.5))

≥ 1
2
[
σ2

min(aP1 + bP2) + σ2
min(aP1 − bP2)

]
. (3.20)

The results given in [19, p. 247] and [19, pp. 234–235] give the following expression,

aP1 + bP2 = Zdiag ((a + b)Ik, aS + bE(θk+i)(i = 1, . . . , r), aIn1 , bIn2 , On3)ZT ,

where Z is an orthogonal matrix, S =
[ 1 0

0 0

]
, E(θ) =

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
, and the expres-

sions for k, n1, n2, n3, n are given by (3.8). Thus, the set of singular values of aP1 ± bP2

are
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σ(aP1 + bP2) =
{

1
2

[
(a + b) ±

√
(a + b)2 − 4ab sin2 θk+i

]
(i = 1, . . . , r),

(a + b)(a + b)(a + b)k, aaan1 , bbbn2 ,0n3

}
,

σ(aP1 − bP2) =
{

1
2

[√
(a− b)2 + 4ab sin2 θk+i ± |a− b|

]
(i = 1, . . . , r),

|a− b||a− b||a− b|k, aaan1 , bbbn2 ,0n3

}
,

(3.21)

resulting in the following cases.
Case 1: Suppose r = 0, then (3.8) yields n1 = p −k and n2 = q−k for this case. Firstly, 

consider k = n1 = 0 and n2 > 0, then (3.8) implies p = 0 and q = n. Thus, P = O

and P +Q = Q is non-singular. Therefore, (3.19) leads to λmin(P +Q) = λmin(Q) = b2. 
Similarly, Q = O for k = n2 = 0 and n1 > 0, thus λmin(P + Q) = λmin(P ) = a2.

For k = 0 and n1, n2 > 0, (3.21) gives σmin(aP1±bP2) = min{a, b}. Thus, (3.20) gives 
λmin(P + Q) ≥ min{a2, b2}.

For k > 0 and n1 = n2 = 0, (3.8) implies k = p = q = n, that is, both P and Q are 
non-singular. By (3.21), σmin(aP1 + bP2) = a + b, σmin(aP1 − bP2) = |a − b|, therefore 
(3.20) gives

λmin(P + Q) ≥ 1
2
[
(a + b)2 + (a− b)2

]
= a2 + b2.

For k, n2 > 0 and n1 = 0, (3.8) gives p = k and q = n, which imply M1 ⊆ M2 = Rn, or 
Q is non-singular. Thus, (3.19) becomes

λmin(P + Q) = inf
x∈Rn\{0}

a2|P1x|2 + b2|x|2
|x|2 ≥ b2 = λmin(Q),

similarly k, n1 > 0 and n2 = 0 gives λmin(P + Q) ≥ a2 = λmin(P ). Finally, consider 
k, n1, n2 > 0, since dim(M1 ∩ M2) = k > 0, then M1 ∩ M2 is a non-trivial subspace. 
Consider M3 = M2 ∩ (M1 ∩ M2)⊥ �= {0} as defined in the proof of Theorem 3.1, then 
(3.12) in (3.19) gives

λmin(P + Q) = inf
x∈Rn\{0}

a2|P1x|2 + b2|PM1∩M2x|2 + b2|P3x|2
|x|2

≥ inf
x∈Rn\{0}

a2|P1x|2 + b2|P3x|2
|x|2

= 1
2 inf

x∈Rn\{0}

|(aP1 + bP3)x|2 + |(aP1 − bP3)x|2
|x|2 (by (3.5))

≥ 1
2
[
σ2

min(aP1 + bP3) + σ2
min(aP1 − bP3)

]
. (3.22)
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The set of singular values of aP1 ± bP3 are given by (3.21) as follows

σ(aP1 + bP3) =
{

1
2

[
(a + b) ±

√
(a + b)2 − 4ab sin2 αk̃+i

]
(i = 1, . . . , r),

(a + b)(a + b)(a + b)k̃, aaañ1 , bbbñ2 ,000ñ3

}
,

σ(aP1 − bP3) =
{

1
2

[√
(a− b)2 + 4ab sin2 αk̃+i ± |a− b|

]
(i = 1, . . . , r),

|a− b||a− b||a− b|k̃, aaañ1 , bbbñ2 ,000ñ3

}
,

(3.23)

where the parameters are the same as (3.15) with r = 0. Thus, σmin(aP1 ± bP3) =
min{a, b}. By (3.22), λmin(P + Q) ≥ min{a2, b2}.

Case 2: Suppose r > 0. Then for k = 0 and n1, n2 ≥ 0, by (3.21)

σmin(aP1 + bP2) = 1
2

[
(a + b) −

√
(a + b)2 − 4ab sin2 θ1

]
,

σmin(aP1 − bP2) = 1
2

[√
(a− b)2 + 4ab sin2 θ1 − |a− b|

]
.

Thus, (3.20) gives

λmin(P + Q) ≥ 1
2

[
a2 + b2 − 1

2(a + b)
√

(a + b)2 − 4ab sin2 θ1

− 1
2 |a− b|

√
(a− b)2 + 4ab sin2 θ1

]
.

For k > 0 and n1, n2 ≥ 0, (3.16), (3.17), and (3.23) yield

σmin(aP1 + bP3) = 1
2

[
(a + b) +

√
(a + b)2 − 4ab sin2 θk+1

]
,

σmin(aP1 − bP3) = 1
2

[√
(a− b)2 + 4ab sin2 θk+1 − |a− b|

]
,

hence (3.22) implies

λmin(P + Q) ≥ 1
2

[
a2 + b2 − 1

2(a + b)
√

(a + b)2 − 4ab sin2 θk+1

− 1
2 |a− b|

√
(a− b)2 + 4ab sin2 θk+1

]
. �

In the proofs of Theorems 3.1 and 3.5, a technique similar to the case of k = 0 and 
n1, n2 > 0 can be applied to the cases k = n1 = 0 and n2 > 0, and k = n2 = 0 and 
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n1 > 0, to get another positive lower bound; however, they turn out to be weaker than 
the stated results. On combining Theorems 3.1 and 3.5, another positive lower bound 
on λmin(P + Q) is given as follows.

Corollary 3.6. Let P, Q ∈ Rn×n be PSD matrices of rank p, q ≤ n, respectively, so that 
P + Q is non-singular. Then

λmin(P + Q) ≥ max [c(P,Q) min {λmin(P ), λmin(Q)} , ψ(P,Q)] .

For convenience of notation, define the function Ψ for matrices A ∈ Rn×p, B ∈ Rn×q:

Ψ(A,B) =
√
ψ(AAT , BBT ), (3.24)

where ψ is defined by Theorem 3.5. Note that ψ(AAT , BBT ) is a function defined in 
terms of a =

√
λmin(AAT ) = σmin(A), b =

√
λmin(BBT ) = σmin(B), and principal 

angles between R(AAT ) = R(A) and R(BBT ) = R(B). Thus, Ψ(A, B) is a function 
defined in terms of positive singular values of A and B, and principal angles between 
R(A) and R(B).

A positive lower bound, defined by Corollary 3.6, could be useful in several circum-
stances, such as for a full rank block 2 ×1 matrix, with rank deficient sub-blocks. Hence, 
the following applications are presented.

Corollary 3.7. For m ≥ n, let A =
[
A1
A2

]
∈ Rm×n be full rank, then

σmin(A) ≥ max
[√

c(AT
1 , A

T
2 ) min {σmin(A1), σmin(A2)} ,Ψ(AT

1 , A
T
2 )
]
.

Proof. Since A is a full rank matrix, σ2
min(A) = λn(ATA) = λmin(AT

1 A1 + AT
2 A2), thus 

Corollary 3.6 implies

σ2
min(A) ≥ max

[
c(AT

1 A1, A
T
2 A2) min

{
σ2

min(A1), σ2
min(A2)

}
, ψ
(
AT

1 A1, A
T
2 A2

)]
,

which gives the desired result after applying Property 1 of Proposition 3.4 and (3.24). �
Corollary 3.8. For m ≤ n, let A = [A1 A2 ] ∈ Rm×n be full rank, then

σmin(A) ≥ max
[√

c(A1, A2) min {σmin(A1), σmin(A2)} ,Ψ(A1, A2)
]
.

After securing the above lower bounds, our subsequent aim is to extend them to a 
non-singular 2 ×2 block matrix. While it could be tedious to estimate the singular values 
of 2 × 2 block matrices, it is easier to find the singular values of its blocks which are of 
smaller size. Thus, another significant application of Theorems 3.1 and 3.5 is the following 
result, which give four estimates on the minimum singular value of a non-singular matrix.
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Theorem 3.9. For a non-singular matrix

A =
[
A11 A12

A21 A22

]
∈ Rn×n,

where A11 ∈ Rp×k, A22 ∈ Rq×�, for 1 ≤ p, q, k, � ≤ n, the following hold

σmin(A) ≥
√

1 − cos θ · min {σmin ([A11, A12]) , σmin ([A21, A22])} , (3.25a)

σmin(A) ≥ Ψ
(
[A11, A12]T , [A21, A22]T

)
, (3.25b)

σmin(A) ≥
√

1 − cos θ · min {r1, r2} , (3.25c)

where

r1 := max [c1 min {σmin(A11), σmin(A12)} ,Ψ (A11, A12)] ,

r2 := max [c2 min {σmin(A21), σmin(A22)} ,Ψ (A21, A22)] ,

where c1 =
√

c(A11, A12), c2 =
√

c(A21, A22), and θ ∈
(
0, π

2
]

is the minimum principal 
angle between R 

(
[A11, A12]T

)
, R 

(
[A21, A22]T

)
⊆ Rn. Moreover,

σmin(A) ≥
√

1 − cos θ · min {c1, c2} · min
1≤i,j≤2

{σmin(Aij)} . (3.26)

Proof. Since A11 ∈ Rp×k, A22 ∈ Rq×�, then p + q = n = k + �. Let R1 = [A11 A12 ] ∈
Rp×n, and R2 = [A21 A22 ] ∈ Rq×n, then by a direct calculation

ATA =
[
RT

1 RT
2
] [R1

R2

]
= RT

1 R1 + RT
2 R2. (3.27)

Note that rank(R1) ≤ p and rank(R2) ≤ q, thus rank(R1) + rank(R2) ≤ p + q = n, 
also

rank(R1) + rank(R2) = rank(RT
1 R1) + rank(RT

2 R2)

≥ rank(RT
1 R1 + RT

2 R2)

= rank(ATA) = rank(A) = n.

Therefore, rank(R1) +rank(R2) = n, which implies that rank(R1) = p and rank(R2) =
q, that is, R1 and R2 are full rank matrices. And, ATA is an SPD matrix expressed a 
sum of two singular PSD matrices, thus by Theorem 3.1

σ2
min(A) = λmin(ATA)

≥ c(RT
1 R1, R

T
2 R2) min

{
λmin(RT

1 R1), λmin(RT
2 R2)

}
= c(RT

1 , R
T
2 ) min

{
σ2

min(R1), σ2
min(R2)

}
, (3.28)
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where the last equality results from Property 1 of Proposition 3.4. Let θ be the minimum 
principal angle between R(RT

1 ) and R(RT
2 ). Since A is non-singular, (3.27) gives N (R1) ∩

N (R2) = {0}, thus (2.3) implies R(RT
1 ) + R(RT

2 ) = N (R1)⊥ + N (R2)⊥ = (N (R1) ∩
N (R2))⊥ = {0}⊥ = Rn. Therefore,

dim(R(RT
1 ) ∩R(RT

2 )) = dim(R(RT
1 )) + dim(R(RT

2 )) − dim(R(RT
1 ) + R(RT

2 ))

= rank(R1) + rank(R2) − dim(Rn)

= p + q − n = 0,

or, R(RT
1 ) ∩ R(RT

2 ) = {0}. Hence, Rn = R(RT
1 ) ⊕ R(RT

2 ), that is, R(RT
1 ) and R(RT

2 )
are complementary subspaces so that 0 < θ ≤ π

2 , which implies if r = 0 then θ = π
2 . 

Therefore, (3.1) can simply be expressed as c(RT
1 , R

T
2 ) = 1 − cos θ, thus (3.28) yields

σ2
min(A) ≥ (1 − cos θ) min

{
σ2

min(R1), σ2
min(R2)

}
,

which leads to (3.25a). Also, applying Theorem 3.5 to (3.27) implies

σ2
min(A) = λmin

(
RT

1 R1 + RT
2 R2

)
≥ ψ

(
RT

1 R1, R
T
2 R2

)
,

which by (3.24) gives (3.25b). Since R1 has full rank, Corollary 3.8 for estimating 
σmin(R1) leads to

σmin(R1) ≥ max [c1 min {σmin(A11), σmin(A12)} ,Ψ (A11, A12)] =: r1,

where c1 =
√

c(A11, A12). Similarly, a lower bound on σmin(R2) is

σmin(R2) ≥ max [c2 min {σmin(A21), σmin(A22)} ,Ψ (A21, A22)] =: r2,

where c2 =
√

c(A21, A22), and hence (3.25a) is expressed as

σmin(A) ≥
√

1 − cos θ · min {r1, r2} ,

which on further simplification gives,

σmin(A) ≥
√

1 − cos θ · min [c1 min {σmin(A11), σmin(A12)} ,

c2 min {σmin(A21), σmin(A22)}]

≥
√

1 − cos θ · min {c1, c2} · min
1≤i,j≤2

{σmin(Aij)} . �
As σmin(A) = σmin(AT ), the above estimates yield the following result framed in 

terms of block columns of A.
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Corollary 3.10. For a non-singular matrix

A =
[
A11 A12

A21 A22

]
∈ Rn×n,

where A11 ∈ Rp×k, A22 ∈ Rq×�, for 1 ≤ p, q, k, � ≤ n,

σmin(A) ≥
√

1 − cos θ · min
{
σmin

([
A11
A21

])
, σmin

([
A12
A22

])}
, (3.29a)

σmin(A) ≥ Ψ
([

A11
A21

]
,
[
A12
A22

])
, (3.29b)

σmin(A) ≥
√

1 − cos θ · min {s1, s2} , (3.29c)

where

s1 := max
[
c1 min {σmin(A11), σmin(A21)} ,Ψ

(
AT

11, A
T
21
)]

,

s2 := max
[
c2 min {σmin(A12), σmin(A22)} ,Ψ

(
AT

12, A
T
22
)]

,

where c1 =
√

c(AT
11, A

T
21), c2 =

√
c(AT

12, A
T
22), and θ ∈

(
0, π

2
]

is the minimum principal 
angle between R 

([
A11
A21

])
, R 

([
A12
A22

])
⊆ Rn. Moreover,

σmin(A) ≥
√

1 − cos θ · min {c1, c2} · min
1≤i,j≤2

{σmin(Aij)} . (3.30)

Remark 3.11. The estimate given by (3.25a) is stronger than (3.25c), which is greater 
than (3.26), however, the sharpness of (3.25b) varies for different matrices (see Exam-
ple 5). The inequality (3.26) gives a lower bound on the minimum singular value of a 
non-singular 2 × 2 block matrix in terms of the minimum positive singular value of its 
blocks. The estimates from Theorem 3.9 and Corollary 3.10 may differ, so in practice, 
one may use the maximum of all of the bounds obtained from both of them. A Matlab

®

implementation for any 2 × 2 block matrix is given in [30].

Now, we simplify Theorem 3.9 for the special case of a saddle point matrix as follows.

Corollary 3.12. For a non-singular saddle point matrix

X =
[
A B
BT O

]
∈ R(m+n)×(m+n),

where A ∈ Rm×m is non-singular and B ∈ Rm×n is full rank,

σmin(X ) ≥
√

1 − cos θ · min {σmin(A), σmin(B)} ,

where θ is the minimum principal angle between R 
(
[A,B]T

)
and R 

(
[BT , O]T

)
.
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Proof. Since X is non-singular, according to (3.25a),

σmin(X ) ≥
√

1 − cos θ · min
{
σmin([A,B]), σmin([BT , O])

}
.

Since σ2
min([A, B]) = λmin([A, B][A, B]T ) = λmin(AAT +BBT ) ≥ σ2

min(A), and similarly 
σ2

min([BT , O]) = σ2
min(B), hence the desired result. �

In [31], we apply Corollary 3.12 to the global space-time spectral operator for the 
Stokes problem in an unsteady state, which is a saddle point matrix of the form X with 
a non-symmetric leading block A. Also, Corollary 3.10 can be applied to X to get an 
analogous result to Corollary 3.12.

After discussing lower bounds on the minimum singular value of a non-singular 2 × 2
block matrix, we divert our attention to constructing a lower bound on some other 
singular values such as the following result.

Theorem 3.13 ([23]). Let Aij ∈ Rm×n for i, j = 1, 2, and

A =
[
A11 A12
A21 A22

]
,

then

σj(A) ≥
√

2σj

(
A11AT

12 + A21AT
22
)
, j = 1, 2, . . . ,min(m,n).

We provide simpler proof for two similar lower bounds with more general sizes for 
their sub-blocks.

Theorem 3.14. For a block matrix

A =
[
A11 A12

A21 A22

]
,

where A11 ∈ Rm×� and A22 ∈ Rn×p, then

σj(A) ≥
√

2σj

(
A11AT

21 + A12AT
22
)
, j = 1, 2, . . . ,min(m,n, � + p),

also,

σj(A) ≥
√

2σj

(
AT

11A12 + AT
21A22

)
, j = 1, 2, . . . ,min(m + n, �, p).

Proof. Let R1 = [A11 A12 ] and R2 = [A21 A22 ], so that A =
[
R1
R2

]
. For j =

1, 2, . . . , min(m + n, � + p), σ2
j (A) = λj(ATA) = λj(RT

1 R1 +RT
2 R2). Therefore, by (2.2), 

for j = 1, 2, . . . , min(m, n, � + p)
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σ2
j (A) ≥ 2σj(R1R

T
2 ) = 2σj

(
A11A

T
21 + A12A

T
22
)
.

Also, let C1 =
[
A11
A21

]
and C2 =

[
A12
A22

]
, so that A = [C1 C2 ], then σ2

j (A) = λj(AAT ) =
λj(C1C

T
1 + C2C

T
2 ), for j = 1, 2, . . . , min(m + n, � + p). Therefore, by (2.2), for j =

1, 2, . . . , min(m + n, �, p)

σ2
j (A) ≥ 2σj(CT

1 C2) = 2σj

(
AT

11A12 + AT
21A22

)
. �

Corollary 3.15. For a saddle point matrix

X =
[
A B
BT O

]
,

where A ∈ Rm×m is non-singular and B ∈ Rm×n is full rank,

σj(X ) ≥
√

2σj (AB), j = 1, 2, . . . ,min(m,n).

4. Examples

In this section, we present some toy examples to illustrate the main results in sec-
tion 3. We explore the behavior of the new results, compare their performance with 
some existing ones in the literature, and apply these results to matrices occurring in 
well-known applications.

Example 1. Here, we consider four pairs of PSD matrices P , Q, so that P+Q is SPD. The 
exact value of λmin(P + Q) is compared with the lower bounds given by Theorems 3.1
and 3.5. The existing results in the literature give a trivial lower bound. See Remark 3.2
for the definition of matrix M used in these examples.

1. Let P = diag (5, 0, 0), Q = diag (0, 4, 9), so that rankP = 1 and rankQ = 2, and 
P + Q = diag (5, 4, 9) is SPD. Note that R(P ) = R(Q)⊥, thus k = r = 0 and 
p + q = 3 < 6, so that c(P, Q) = 1. Therefore, both Theorems 3.1 and 3.5 give the 
lower bound 4, which is optimal as λmin(P + Q) = 4.

2. Let P = diag (1, 1, 0), Q = diag (0, 1, 3), so that rankP = rankQ = 2, and P + Q =
diag (1, 2, 3) is SPD. Clearly, λmin(P + Q) = 1, let us calculate the lower bounds. 
Note that principal angles between R(P ) and R(Q) are θ1 = 0 and θ2 = π

2 , so that 
k = 1, r = 0 and p + q = 4 < 6, thus c(P, Q) = 1. Thus, both Theorems 3.1 and 3.5
give the optimal lower bound 1.

3. Consider the following PSD matrices P and Q so that rankP = rankQ = 1 and 
P + Q is SPD,

P =
[
2 2
2 2

]
, Q = diag (6, 0) , thus P + Q =

[
8 2
2 2

]
.
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Since the eigen-decomposition of P = EΛET and Q = IQIT , where E =
√

2
2

[
1 −1
1 1

]

and Λ = diag (4, 0), we get M =
√

2
2 [1 1]

[
1
0

]
=

√
2

2 . Note that k = 0 and r > 0, 

thus cos θ1 = σmax(M) =
√

2
2 and Theorem 3.1 implies that

λmin(P + Q) ≥
(

1 −
√

2
2

)
· 4 ≈ 1.1716,

which is stronger than the lower bound obtained by applying Theorem 3.5,

λmin(P + Q) ≥ 1.1270.

Thus, Corollary 3.6 gives the former result, that is, λmin(P + Q) ≥ 1.1716, whereas 
the exact value of λmin(P + Q) is approximately 1.3944.

4. Consider the following PSD matrices P and Q so that rankP = rankQ = 2 and 
P + Q is SPD,

P =
[10

5
0

]
, Q =

[12
3 9
9 27

]
, thus P + Q =

[22
8 9
9 27

]
.

Note that k = r = 1 > 0, so the orthonormal bases for P and Q define M as follows,

M =
[
1 0 0
0 1 0

]⎡⎢⎣
0 1
1√
10 0
3√
10 0

⎤
⎥⎦ =

[ 0 1
1√
10 0

]
.

Thus, c(P, Q) = 1 −cos θ2 = 1 −σ2(M) = 1 − 1√
10 , consequently Theorem 3.1 implies 

that

λmin(P + Q) ≥
(

1 − 1√
10

)
· 5 ≈ 3.4189,

which is weaker than the lower bound obtained by applying Theorem 3.5,

λmin(P + Q) ≥ 3.7770.

Thus, Corollary 3.6 also gives the above lower bound for λmin(P + Q), the exact 
value of which is approximately 4.4137.

Example 2 (Block diagonal matrix). For a non-singular block diagonal matrix D =[
A O

]
, use (3.25a) to get
O B
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σmin(D) ≥
√

1 − cos θ · min {σmin([A,O]), σmin([O,B])} ,

where θ is the minimum angle between R 
(
[A,O]T

)
and R 

(
[O,B]T

)
. Note that 

σmin([A, O]) = σmin(A) and σmin([O, B]) = σmin(B), and it is straightforward to see 
that θ = π

2 . Therefore, the result becomes

σmin(D) ≥ min {σmin(A), σmin(B)} .

In fact, the above inequality is an equality, thus the lower bound is sharp. Similar 
results can be obtained for a non-singular block anti-diagonal square matrix.

Example 3 (Block triangular matrix). For a non-singular block upper triangular matrix 
U =

[A11 A12
O A22

]
, the most simplified result of Theorem 3.9 is given by (3.26):

σmin(U) ≥
√

1 − cos θ · min
i=1,2

{ci} · min {σmin (A11) , σmin (A12) , σmin (O) , σmin (A22)} ,

where θ is the minimum angle between R 
(
[A11, A12]T

)
and R 

(
[O,A22]T

)
, c1 =√

c(A11, A12), and c2 =
√

c(O,A22) = 1 ≥ c1 by Property 3 of Proposition 3.4. Also, 
σmin(O) = ∞ by (1.2). Hence,

σmin(U) ≥
√

1 − cos θ · c1 · min {σmin(A11), σmin(A12), σmin(A22)} . (4.1)

Similarly, an estimate for a non-singular block lower triangular matrix can be derived.
When every block is a square matrix, then [8, p. 352] gives the following expression

U−1 =
[
A−1

11 −A−1
11 A12A

−1
22

O A−1
22

]
,

whose maximum singular value is (σmin(U))−1. This task could be challenging to perform 
due to the presence of the term A−1

11 A12A
−1
22 . Note that the blocks need not be square 

for (4.1). For instance, consider the matrix U given as follows:

U =
[10 0 0

4 2 0
1 1 6

]
,

then [50] gives σmin(U) ≥ 1.7087. Whereas, on placing the partitions on U to make it a 
2 × 2 block matrix so that its (1, 1) block is either of size 2 × 1 or 2 × 2, (3.25b) gives a 
stronger result 1.7473 ≤ 1.8285 ≈ σmin(U). A Matlab

® implementation is given in [30].

Example 4. Here, we explain the use of the new lower bounds with the help of two 2 × 2
block matrices denoted by A, where its (i, j)-th block is denoted by Aij and its i-th 
block row is denoted by Ri, where 1 ≤ i, j ≤ 2. Also, M represents the matrix defined in 
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Remark 3.2. Most of the existing results do not provide a bound in terms of the blocks 
of the matrices considered in this example.

1. First, we consider a non-singular matrix with singular blocks, given as follows:

A =

⎡
⎢⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎦ .

Note that σmin(A) = 1 = σmin(Aij) = σmin(Ri). It is straightforward to see that a 
basis for R(RT

1 ) is 
{
[0 1 0 0]T , [0 0 0 1]T

}
and for R(RT

2 ) is 
{
[1 0 0 0]T , [0 0 1 0]T

}
. 

Since θ = π
2 or r = 0, (3.25a) implies

σmin(A) ≥ (1 − 0) · min{1, 1} = 1,

and (3.25b) yields

σmin(A) ≥
√

min{1, 1} = 1.

Moreover, the same result is obtained on applying (3.25c), as r = 0 for both the 
pairs A1i and A2i for i = 1, 2, thus

σmin(A) ≥ (1 − 0) min{1, 1} = 1.

In order to use (3.26), note that a basis for R(A11), R(A21) is 
{
[0 1]T

}
, and for 

R(A12), R(A22) is 
{
[1 0]T

}
, therefore c1 = c2 = 1. Thus, (3.26) yields

σmin(A) ≥ (1 − 0) min{1, 1}min{1, 1, 1, 1} = 1.

To sum up, Theorem 3.9 gives the optimal lower bound as σmin(A) = 1.
2. Let us analyze the new lower bounds on a non-singular non-symmetric saddle point 

matrix with an indefinite leading block, given as follows:

A =

⎡
⎢⎣ 1 0 1

0 −1 1
1 0 0

⎤
⎥⎦

For using (3.25a), we use the orthonormal basis for R(RT
1 ) and R(RT

2 ) to define the 
following matrix,

M = 1√
2

[ 1√
3 − 1√

3
2√
3

1 1 0

] [1
0
]

= 1√
2

[ 1√
3

1

]
,

0
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which gives cos θ = σmax(M) =
√

2
3 ≈ 0.8165. Therefore, (3.25a) yields

σmin(A) ≥
√

1 − 0.8165 · min{1, 1} ≈ 0.4284.

Moreover, the same lower bound is obtained on applying other results. Since k =
rank(RT

1 ) +rank(RT
2 ) −3 = 0, and r = 1 with cos θ derived as above, (3.25b) implies

σmin(A) ≥
√

1
2

[
2 −

√
4(1 − sin2 θ)

]
=

√
1 − 0.8165 ≈ 0.4284.

Also, (3.25c) results in

σmin(A) ≥
√

1 − 0.8165 · min{1, 1} ≈ 0.4284.

For using (3.26), observe that c1 = c2 = 1 and σmin(A11) = 1, σmin(A12) =
√

2, 
σmin(A21) = 1 and σmin(A22) = ∞. Therefore, the inequality gives

σmin(A) ≥
√

1 − 0.8165 · 1 · min{min{1,
√

2},min{1,∞}} ≈ 0.4284.

Thus, Theorem 3.9 gives the best lower bound of value 0.4284 for the σmin(A), the 
exact value of which is 0.4450.

Example 5. Let us consider two different partitions on the same matrix as follows,

A =

⎡
⎢⎣ t 10 0

3 2 −2
2 0 6

⎤
⎥⎦ , Ã =

⎡
⎢⎣ t 10 0

3 2 −2
2 0 6

⎤
⎥⎦ , where t = 1, 2, . . . , 30.

Fig. 1 displays the result of best lower bounds from Theorem 3.9 and Corollary 3.10 for 
both partitions, along with the exact value of σmin(A).

Fig. 1a shows that Theorem 3.9 provides a decent estimate of σmin(A). The best lower 
bound on σmin(A) is given by (3.25b) for t = 1, and by (3.25a) for t = 2, 3, . . . 30. For 
Ã, the largest lower bound is given by (3.25b) for t = 1, 2, . . . 5, and by (3.25a) for 
t = 6, 7, . . . , 30. On increasing the value of t, the lower bound obtained from (3.25a)
improves up to t = 18, for which the absolute error in approximation for A is 0.008452
and for Ã is 0.008389. The results from Ã appear to be overall sharper than A. Thus, 
the sharpness of results may vary for distinct partitions of the same matrix.

Similarly, the trends for Corollary 3.10 are depicted by Fig. 1b. It is observed that 
Corollary 3.10 gives identical results for both matrix A and Ã. The minimum absolute 
error in approximation is 0.01469, which occurs when t = 18. The best lower bound is 
given by the first inequality of Corollary 3.10 for all t except for t = 1, for which it was 
obtained from the second inequality of Corollary 3.10. A Matlab

® implementation is 
given in [30].
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Fig. 1. Estimates of σmin(A) for Example 5.

Example 6 (M- and H-matrices). The following matrices are considered in [40],

A =
[ 8 −2 −1
−5 7 −3
−3 −4 5

]
, B =

[ 7 −3 −2
−2 5 −1
−3 −4 9

]
, C =

[−5 2 −4
3 −6 −2
−1 −4 −8

]
,

where A and B are M-matrices and C is an H-matrix, for which upper bounds on the 
minimum singular values were devised. We calculate the best lower bounds secured from 
Theorem 3.9 and Corollary 3.10 in Table 1 through a Matlab

® implementation given 
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Table 1
Lower bounds for M- and H-matrices.

Matrix σmin Best lower bound Size of leading block
A 0.7744 (3.29a):0.7354 1 × 2 or 2 × 2
B 1.8830 (3.29a):1.5855 1 × 2 or 2 × 2
C 0.9015 (3.29a):0.8770 1 × 1 or 2 × 1

Table 2
Comparison of new lower bounds with the existing results.

Matrix σmin Existing New Result Size of leading block
D 9.8608 9.6389 (3.25b):9.6932 1 × 2 or 2 × 1 or 2 × 2
E 9.0409 8.0731 (3.25b):8.1814 2 × 1 or 2 × 2
F 7.6233 5.6070 (3.25a):6.0553 1 × 1 or 1 × 2
G 6.7547 5.2107 (3.25a):5.2728 1 × 1 or 1 × 2
H 1.9619 1.4142 (3.29b):1.8651 1 × 1 or 2 × 1
I 1.0677 0.7898 (3.25a):0.8996 1 × 1 or 1 × 2
J 3.0786 2.2303 (3.25b):2.8220 1 × 1 or 1 × 2
K 2.5146 2.2170 (3.29b):2.3847 1 × 1 or 2 × 1

in [30]. In Table 1, the size leading block refers to the size of (1, 1) block of the matrix 
specifying the partition being placed, and more than one partition means that the same 
lower bound is obtained in all cases. It is evident that our results provide a good estimate 
for M- and H-matrices.

Example 7. In this example, we compare our results to some well-known existing results 
that give a lower bound on the minimum singular value of a matrix. The following 
matrices are strictly diagonally dominant (SDD) matrices, for which several lower bounds 
were analyzed in [40],

D =
[10 1 1

1 20 1
1 1 30

]
, E =

[10 1 1
1 20 1
10 1 30

]
, F =

[10 1 1
1 20 1
20 1 30

]
, G =

[10 1 1
10 20 1
20 1 30

]
.

Also, some lower bounds for following matrices were compared in [38],

H =
[3 2 0

1 9 5
0 5 7

]
, I =

[ 2 −1 0
2 1 0
−4 −4 5

]
, J =

[ 5 0 0
−4 9 4
−1 7 9

]
, K =

[ 4 0 0
−1 5 0
0 5 4

]
.

The third column of Table 2 states the best among all lower bounds evaluated for the 
above matrices in [40,38]. The findings mentioned in Table 2 indicate that the results 
obtained from Theorem 3.9 and Corollary 3.10 provide a sharper lower bound on the 
minimum singular value of all SDD matrices considered in [40], albeit they may not be 
optimal for all SDD matrices. A Matlab

® implementation is given in [30]. In the above 
examples, we have listed the partitions that lead to the best estimates, which may not be 
feasible if the matrix is large. Based on our numerical experiments, choosing the leading 
block of the matrix to be a square matrix of a suitable size often results in a partition 
that gives fine results.
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Example 8. One of the prominent problems consisting of a positive definite matrix ex-
pressed as a sum of two singular positive semi-definite matrices is solving the following 
linear system

(A + V V T )x = b, (4.2)

where A ∈ Rn×n is PSD, V ∈ Rn×m, b ∈ Rn, with m < n so that the matrix A + V V T

is non-singular, thus N (A) ∩ N (V T ) = {0}. Such linear systems arise in problems such 
as KKT systems in constrained optimization, least squares problems, partial differential 
equations, etc. A lower bound on λmin(A + V V T ) is required to estimate the condition 
number of A + V V T , which describes the difficulty of solving this problem.

Let us analyze a special case of this problem, A + vvT , where we define A =
diag(0, 1, a3, . . . , an) with ai ≥ 1 for all i ≥ 3, and v = [v1 v2 . . . vn]T ∈ Rn×1 with 
|v| = 1 and v1 �= 0. It is easily observed that λmin(A) = λmin(vvT ) = 1. Note that an or-
thonormal basis for R(A) and R(vvT ) is given as {e2, e3, . . . , en} and {v}, respectively, 
where ek represents the elementary basis vector of length n with the k-th component 
equals 1 and rest equal to 0. Therefore, M = [v2 v3 . . . vn] implying cos θ1 =

√
1 − v2

1 . 
Hence, Theorems 3.1 and 3.5 give the following result,

λmin(A + vvT ) ≥ 1 −
√

1 − v2
1 > 0.

Similarly, Theorems 3.1 and 3.5 can be applied for estimating the condition number of 
linear systems of the form (4.2).

Example 9. Consider the following Poisson problem, a second-order ordinary differential 
equation with some given boundary conditions, as stated in [36, p. 15]:

u′′(x) = f(x) on 0 < x < 1, (4.3a)

u(0) = α and u(1) = β. (4.3b)

Let N be a given discretization parameter and Uj represent the approximation to u(xj), 
where xj = jh and h = N−1, for all 0 ≤ j ≤ N . Then U0 = α and UN = β, and the rest 
of the approximations are obtained by solving the following second-order finite difference 
approximation to (4.3a),

Uj−1 − 2Uj + Uj+1

h2 = f(xj), for 1 ≤ j ≤ N − 1, (4.4)

which, according to [36, p. 34], can be written as follows for an odd N :
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Fig. 2. Estimates of σmin(G) for Example 9.

1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
−2 1 1

−2 1 1
. . . . . . . . .

−2 1 1
1 1 −2

1 1 −2
. . . . . . −2

1 1
. . .

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1
U3
U5
...

UN−2
U2
U4
U6
...

UN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1) − α
h2

f(x3)
f(x5)

...
f(xN−2)
f(x2)
f(x4)
f(x6)

...
f(xN−1) − β

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5)

Define the coefficient matrix for the above problem as G of size (N − 1) × (N − 1). 
Fig. 2 displays the results of the exact σmin(G) and the best lower bound obtained from 
Theorem 3.9 and Corollary 3.10 for N = 2k, where 3 ≤ k ≤ 9. For N = 16 and 512, 
the best lower bounds were obtained from (3.25a) and (3.29b), whereas (3.25c) produced 
the best estimate for N = 32, and the rest of them were obtained from (3.25b). It is 
concluded that the new lower bounds give an optimal estimate for σmin(G), that is, both 
the exact and approximate values are of O(N). See [30] for a Matlab

® implementa-
tion.
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5. Summary and future work

According to Sophie Germain, “Algebra is but written geometry and geometry is 
but figured algebra.” In this paper, we attempt to solve a long-standing edge case of 
the spectral problem of a symmetric matrix sum by inspecting it from a geometric 
perspective. Precisely, our aim was to formulate a positive lower bound for the minimum 
eigenvalue of an SPD matrix expressed as a sum of two singular PSD matrices, say P+Q, 
by exploring the separation between the range spaces of the matrices P and Q as their 
corresponding null spaces are disjoint. The existing results for such a case, including 
Weyl’s inequalities, yield a trivial lower bound on λmin(P + Q). Thus, we resolve this 
case by formulating two results generating a positive lower bound on λmin(P +Q), given 
in the form of Theorems 3.1 and 3.5 based upon the Friedrichs angle between R(P )
and R(Q). Since Example 1 illustrates that either one of two lower bounds could be 
stronger than the other under varied circumstances, the best lower bound is provided by 
Corollary 3.6. A significant application of such an edge case is discussed in Example 8.

Direct use of Corollary 3.6 results in lower bounds on the minimum singular value of 
full rank block column and block row matrices, given by Corollaries 3.7 and 3.8, respec-
tively. Moreover, Theorem 3.1 and Theorem 3.5 are applied recursively for developing 
eight lower bounds on the minimum singular value of a non-singular block 2 × 2 matrix, 
which are given by Theorem 3.9 and Corollary 3.10. As any full rank matrix can be 
partitioned in terms of block row or column matrix, and any non-singular matrix can be 
partitioned in terms of a block 2 × 2 matrix, the applications of the results derived for 
block matrices are numerous.

Example 5 illustrates that each partition yields different results for a matrix, thus 
several estimates can be obtained from the eight lower bounds formulated in Theorem 3.9
and Corollary 3.10, which sometimes are stronger than the ones existing in literature, as 
mentioned in Examples 3 and 6. These eight results satisfy the relations (3.25a) ≥ (3.25c)
≥ (3.26), and (3.29a) ≥ (3.29c) ≥ (3.30). No other relationships among the eight lower 
bounds can be established. Thus, we suggest taking the maximum of all lower bounds 
from Theorem 3.9 and Corollary 3.10, which for a partition described in Example 9
leads to an optimal estimate. Lastly, we give some estimates on the first few singular 
values of a block 2 × 2 matrix. We extend Theorem 3.13 to more general block sizes in 
Theorem 3.14 with the help of a much simpler proof.

The lower bounds described by Theorems 3.1 and 3.5 are sharp for the case of R(P ) ∩
R(Q) = {0} so that the parameter k = 0. However, there is a scope for improvement in 
these results for the case when r, k > 0. It may be possible to incorporate PM1∩M2 in
(3.22) to improve the lower bound. Since changing the partition of a matrix changes the 
lower bounds given by Theorem 3.9 and Corollary 3.10, thus one can try to determine the 
best partition for a certain class of matrices yielding optimal estimates on the minimum 
singular value.

Some techniques exist for calculating the principal angles between two subspaces, 
see [35]. A more efficient algorithm can be designed for calculating the Friedrichs angle 
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between two subspaces. Since it is defined for subspaces of Hilbert space in Definition 2.3, 
it may allow us to extend the main results to a more general setting.
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