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The Stokes equations are a linearized version of the Navier-Stokes equations and model 
incompressible viscous fluid flow with low Reynolds numbers. Several spectral methods, 
exhibiting exponential decay in error when the solution is analytic, are known to solve 
the steady-state Stokes problem numerically. A common strategy to solve such a problem 
in the time-dependent case involves extending the spectral scheme in spatial derivatives 
by implementing a low-order finite difference scheme for the time derivatives. Instead, 
we implement and analyze a space-time spectral method for the Stokes problem, which 
converges exponentially in both space and time. This numerical scheme imposes spectral 
collocation in time and P N − P N−2 spectral Galerkin scheme in space by using a 
recombined Legendre polynomial basis, resulting in a global spectral operator that is a 
saddle point matrix. The main objectives of the research are estimating the condition 
number of the global spectral operators and proving the spectral convergence of this 
scheme in space and time. The analysis is not quite complete because two of the estimates 
are based on numerical evidence. However, throughout the project, some intermediate 
results-such as the 2-norm of the pseudospectral derivative matrix for Chebyshev-Gauss-
Lobatto nodes as well as the condition number of the mass matrix and discrete Laplacian 
for a recombined Legendre basis-were proved to obtain the aforementioned findings. 
Numerical experiments of this scheme verify the theoretical results. Also, the numerical 
result of applying this scheme to the Navier-Stokes equations is presented.

© 2023 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

One of the topics investigated extensively in fluid dynamics is devising numerical schemes to solve the Stokes problem. 
The type of flow for which the Reynolds number is low, say Re � 1, i.e., the fluid velocity is extremely small, or the viscosity 
is very large, or an infinitesimal length scale is considered, is called the Stokes flow (or creeping flow). This type of flow is 
evident in many cases, such as swimming of a microorganism, flow of lava, flow of polymers, etc. The equations of motion 
for Stokes flow are called the Stokes equations, which along with suitable boundary and initial conditions are termed the 
Stokes problem:
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−�u + ∇p = f in � := (−1,1)2,

∇ · u = 0 in �,

u = 0 on ∂�,

(1)

where velocity field and pressure are denoted by u = [u; v] ∈ V := (H1
0(�))2 and p ∈ L2

0(�) :=
{

q ∈ L2(�)

∣∣∣ ∫� q = 0
}

, re-

spectively. In an unsteady state,

ut − �u + ∇p = f in �t := � × (−1,1),

∇ · u = 0 in �t ,

u = 0 on ∂� × (−1,1),

u(x, y,−1) = u0(x, y) in �,

(2)

where u(·, t) ∈ (H1
0(�))2, p(·, t) ∈ L2

0(�), and u0 ∈ (H1
0(�))2.

Spectral methods are numerical methods that solve differential and integral equations. These methods have been used ex-
tensively due to their fast convergence rates, i.e., the error decreases exponentially when the solution is analytic, also termed 
spectral convergence. In general, the error depends super-algebraically on the smoothness of the solution. For instance, Theo-
rem 4.1 and (4.77) on [34, p. 166] imply that the convergence rate in H1-norm for solution u ∈ H1

0(−1, 1), ∂xu ∈ Bm−1
0,0 (−1, 1)

of a second order differential equation by Legendre-Galerkin method is at least O(n1−m), where n is the discretization pa-
rameter. A considerable body of literature on spectral methods exist, including [23,28,34,44,43,11].

In [3], the authors describe three spectral methods for solving the Stokes problem. The first method is called the single 
grid scheme, a collocation type using the same degree of polynomials for velocity and pressure; however, it generates 
spurious modes for pressure and, hence, is not used. The second method, the P N − P N−2 scheme, is a spectral Galerkin 
scheme that uses polynomials of degree N for velocity and N − 2 for pressure. The third one, the staggered grid scheme, 
is a spectral collocation method that uses staggered grids for velocity and pressure. In this research work, we focus on the 
second scheme. For all three methods, the inf-sup condition is not bounded independently of the discretization parameter 
of the scheme that decreases the accuracy of the error for pressure, which has been improved in [4] by proposing smaller 
discrete spaces for pressure.

In the past few years, space-time spectral methods, exhibiting spectral convergence in both space and time, are be-
ing used to solve time-dependent PDEs. A set practice was to implement a low-order finite difference approximation 
of the time derivative, which does not give spectral convergence for the whole scheme due to the dominance of the 
time discretization error. See [22,15] for such schemes for linear PDEs, [27,42,7,2,6] and the references therein for prob-
lems related to the Stokes problem. The numerical schemes involving spectral collocation in space and finite difference 
schemes in time possess the fundamental and crucial theoretical difficulty of controlling the aliasing error. For incompress-
ible Navier-Stokes equations, long-time stability analysis for some semi-implicit numerical schemes in time and Fourier 
pseudospectral schemes in space was presented in [13,8], and that for Burgers’ equation was conducted in [12]. Growing 
appeals for faster convergence in time generated the class of space-time spectral methods, some references for which are 
[17,29,35,14,33,38,37,39,40,21,45,46]. A space-time spectral collocation method given in [41] was analyzed in [24] and [25]
for Legendre and Chebyshev polynomials, respectively, based on which schemes for some linear PDEs were analyzed in [26], 
which serves as the motivation for this paper.

The aim of this work is to perform a condition number estimate for a spectral method for the steady Stokes equations, 
and propose and analyze a space-time spectral method for the Stokes problem based upon an P N − P N−2 scheme. The Stokes 
equations are more difficult to handle than heat or wave equations because they are a system of PDEs possessing different 
spaces for velocity and pressure. Thus, it requires an analysis of various terms appearing in the discrete problem, which 
includes proving condition number estimates for the stiffness matrix, mass matrix and discrete Laplacian for a recombined 
Legendre basis derived in [32].

We also prove an estimate for the maximum singular value or the 2-norm for the Chebyshev-Gauss-Lobatto pseudospec-
tral derivative matrix. This matrix is non-symmetric with an indefinite symmetric part, which makes the analysis more 
challenging. We believe our analysis of spectral convergence of the unsteady Stokes equations is new. We have also laid 
the groundwork for a condition number estimate of the global space-time operator. Moreover, a scheme is designed for the 
unsteady Navier-Stokes problem, by considering Chebyshev collocation in time and the P N − P N−2 scheme in space.

A shortcoming of using such spectral in time schemes is that they do not allow time stepping, the unknowns for all time 
need to be solved simultaneously. However, far fewer unknowns are required in comparison to finite difference discretiza-
tions in time. The results of the numerical experiments found clear support for the spectral convergence for space-time 
spectral schemes for less than 20 spectral modes in each dimension, see the numerical results provided in [24].

We begin by summarizing some of the notations. Throughout this paper, the discretization parameter is denoted by N , 
besides, c and C denote some positive constants independent of N . A column vector x with n components is represented by 
x = [x1; x2; . . . ; xn] ∈Rn , and its 2-norm is denoted by | ·|, i.e., |x| =

√∑n
i=1 x2

i , whereas ∞-norm is given as |x|∞ = max |xi |.

1�i�n

207



A. Kaur and S.H. Lui Applied Numerical Mathematics 187 (2023) 206–234
For an n × n matrix M , let M] denote the n × (n − 1) matrix obtained from M by deleting the first column, [M denote 
the (n − 1) × n matrix obtained from M by deleting the first row, [[[M]]] denote the (n − 1) × (n − 1) matrix obtained from M
by deleting the first column and row, and �M� denote the (n − 2) × (n − 2) matrix obtained from M by deleting the first 
and last columns and rows. The spectrum of M is denoted by �(M). Let the eigenvalues of M be represented by λ1(M) �
λ2(M) � . . . � λn(M). Also, λmax(M) := λ1(M) and λmin(M) := λn(M) denote the maximum and minimum eigenvalues of M , 
respectively.

For any matrix, M ∈ Rm×n , σ(M) denotes the set of singular values of M , which are represented by σ1(M) � σ2(M) �
. . . � σmin(m,n)(M) � 0. The maximum and minimum singular values of M are represented by σmax and σmin, respectively. 
The 2-norm, 1-norm, and ∞-norm of a matrix M ∈ Rm×n are denoted by ‖M‖, ‖M‖1, and ‖M‖∞ , respectively. Also, the 
term SPD is used to refer to a symmetric positive definite matrix.

The Kronecker product of the matrices A = [aij] ∈ Rm×n and B = [bij] ∈ Rp×q is denoted by K = A ⊗ B ∈ Rmp×nq and 
is defined to be the block matrix with blocks Kij = aij B for 1 � i � m, 1 � j � n. Also, their direct sum is defined as 
A ⊕ B =

[
A O
O B

]
∈ R(m+p)×(n+q) . They satisfy the properties (A ⊗ B)T = AT ⊗ BT , and (A ⊗ B)(C ⊗ D) = AC ⊗ B D , where 

C ∈ Rn×r , D ∈ Rq×s . Also, rank(A ⊗ B) = rank(A) · rank(B), rank(A ⊕ B) = rank(A) + rank(B), σ(A ⊗ B) = σ(A) × σ(B), 
σ(A ⊕ B) = σ(A) ∪σ(B), thus, ‖A ⊗ B‖ = ‖A‖ ·‖B‖. For m = n and p = q, �(A ⊗ B) = �(A) ×�(B), �(A ⊕ B) = �(A) ∪�(B), 
including algebraic multiplicities in all cases.

Let P N be the space of polynomials of degree less than or equal to N , and P 0
N denote the polynomials in P N that 

vanish at the endpoints x = ±1. Let Pn1,n2 be the space of polynomials of degree at most n1, n2 in x, y, respectively and 
P 0

n1,n2
= Pn1,n2 ∩ V , i.e., they vanish on ∂�. Let Pn1,n2,m be the space of polynomials of degree at most n1, n2 in x, y, and 

degree at most m in time. Moreover, define P 0
n1,n2,m as the polynomials in Pn1,n2,m that vanish on the boundary of the 

spatial domain �. Let L j and T j denote the Legendre and Chebyshev polynomial of the first kind of degree j, respectively. 

The norm of p is given as ‖p‖0 = [∫
�

|p|2] 1
2 , and the inner product on the space L2

0(�) is defined to be the same as that 
for L2(�), which is defined as ((( f , g))) = ∫

�
f gdx, for f , g ∈ L2(�).

This paper is structured as follows. In section 2, we list some important existing results and derive Proposition 1, which 
will be used in the next sections. In section 3, we implement the P N − P N−2 scheme by using a recombined Legendre 
polynomial basis for the steady Stokes problem and prove the condition number estimates for the scheme in sections 3.1
and 3.2, respectively. We extend the P N − P N−2 scheme to the unsteady Stokes problem by using Chebyshev Gauss-Lobatto 
collocation in time in section 4.1. Moreover, in sections 4.2 and 4.3, we respectively prove the condition number estimates 
and spectral convergence in space and time. In section 5, we adapt the P N − P N−2 scheme for the unsteady Navier-Stokes 
equations. Section 6 describes the numerical experiments verifying the spectral convergence of all the schemes derived in 
the previous sections. Finally, we conclude the findings of this paper and discuss some future work in section 7.

2. Fundamentals

We begin by presenting some basic definitions, the first three of which are given in [34, p. 145–146]. For x ∈ [−1, 1]
and j ∈ N ∪ {0}, define the polynomial φ j(x) := L j(x) − L j+2(x), so that φ j(±1) = 0, thus φ j ∈ P 0

j+2. The stiffness matrix, 
denoted by S , is defined as s jk := − 

∫ 1
−1 φ′′

k (x)φ j(x)dx, is a diagonal matrix with entries given as follows,

skk = (4k + 6). (3)

The mass matrix, denoted by M , is defined as m jk = ∫ 1
−1 φ j(x)φk(x)dx. It is a symmetric penta-diagonal matrix whose 

non-zero elements are given as follows,

m jk = mkj =
{

2
2k+1 + 2

2k+5 , j = k,

− 2
2k+5 , j = k + 2.

(4)

For N � 4, let x j be the Chebyshev Gauss-Lobatto quadrature nodes, defined as x j = − cos( π j
N ) for 0 � j � N . Let 

c̃0 = c̃N = 2 and c̃ j = 1 for 1 � j � N1. The Chebyshev Gauss-Lobatto pseudospectral derivative matrix is defined as 
D := [dkj]0�k, j�N+1, where dkj = 
′

j(xk) given as follows in [34, p. 110].

dkj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 2N2+1
6 , j = k = 0,

c̃k(−1)k+ j

c̃ j(xk−x j)
, 0 � k = j � N,

− xk

2(1−x2
k )

, 1 � k = j � N − 1,

2N2+1
6 , k = j = N.

(5)

Some results from matrix analysis play a vital role for proving the results in sections 3 and 4, such as Weyl’s inequalities 
in [16, p. 239] for symmetric matrices A, E ∈Rn×n:
208
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λk(A) + λn(E) � λk(A + E)� λk(A) + λ1(E), 1 � k � n, (6)

and the spectrum of a symmetric saddle point matrix, X =
[

A BT

B O

]
such that B ∈ Rm×n is full rank and its Schur comple-

ment B A−1 BT is SPD, then [1] proves that

�(X ) ⊆
⎡
⎢⎣ −λ1

1
2

(
1 +

√
1 + 4 λ1

μ1

) ,
−λm

1
2

(
1 +

√
1 + 4 λm

μn

)
⎤
⎥⎦∪

⎡
⎢⎣μn,μ1

1 +
√

1 + 4 λ1
μ1

2

⎤
⎥⎦ , (7)

where 0 < μn � . . . �μ1 denote the eigenvalues of A and 0 < λm � . . . � λ1 are the eigenvalues of B A−1 BT . In general, for 
a non-singular X =

[
A BT

B O

]
, so that A and B are full rank, [18, Chap. 5] and [20] give the following estimate

σmin(X ) �
√

1 − cos θ · min {σmin(A),σmin(B)} , (8)

where θ is the minimum principal angle3 between the range space R 
(
[ A BT ]T ) and R 

(
[ B O ]T ). Finally, we derive the 

following result for assistance in the analysis performed in the next sections.

Proposition 1. For 0 � j, k � N − 1, the matrices R and Q defined by r jk := ∫ 1
−1 Lk(x)φ′

j(x)dx and q jk := ∫ 1
−1 Lk(x)φ j(x)dx, 

respectively, satisfy

r j, j+1 = −2, q jk =
{
γ j, k = j,

−γ j+2, k = j + 2,
(9)

where γ j = ‖L j‖2
0 = 2

2 j+1 .

Proof. Since φ j = L j − L j+2,

r jk =
1∫

−1

Lk(x)φ′
j(x)dx =

1∫
−1

Lk(x)(L′
j(x) − L′

j+2(x))dx.

Using the recurrence relation, (2 j + 1)L j(x) = L′
j+1(x) − L′

j−1(x), for j ∈N ,

r jk = −(2 j + 3)

1∫
−1

Lk(x)L j+1(x)dx = −(2 j + 3)
2δk, j+1

2 j + 3
.

Similarly,

q jk =
1∫

−1

Lk(x)(L j(x) − L j+2(x))dx = δk, jγ j − δk, j+2γ j+2. �

3. Steady state

The Stokes problem in the steady state is given by (1), which in component form can be expressed as:

−�u + px = f1 in �, (10a)

−�v + p y = f2 in �, (10b)

ux + v y = 0 in �, (10c)

u = 0, v = 0 on ∂�, (10d)

We first describe a spectral discretization, the analysis for which will come into play in the later sections.

3 cos θ = σmin(Q T
1 Q 2), where Q 1 ∈ Rm×p and Q 2 ∈ Rm×q represent a orthogonal bases for R ([ A BT ]T ) and R ([ B O ]T ), see [18, p. 123] or [20] for 

details.
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3.1. Discretization

We implement the P N − P N−2 scheme described in [3], by defining the variables as follows:

uN(x, y) =
N−2∑
i=0

N−2∑
j=0

uijφi(x)φ j(y) ∈ P 0
N,N ,

v N(x, y) =
N−2∑
i=0

N−2∑
j=0

vijφi(x)φ j(y) ∈ P 0
N,N ,

pN−2(x, y) =
N−2∑
i=0

N−2∑
j=0

i+ j>0

pij Li(x)L j(y) ∈ PN−2,N−2 ∩ L2
0(�),

so that 
∫
�

pN−2 = 0, i.e., it has zero average. Define ϑ = (N − 1)2, the number of unknowns for uN and v N each, and 
℘ = (N − 1)2 − 1, the number of unknowns for pN−2. The total number of unknowns in the discrete Stokes equations are 
2ϑ + ℘ = 3(N − 1)2 − 1.

Define the discrete unknowns as uh = [u00; u10; . . . ; uN−2,0; u01; . . . ; uN−2,N−2] ∈ Rϑ , and similarly define vh , ph =
[p10; p20; . . . ; pN−2,0; p01; . . . ; pN−2,N−2] ∈R℘ , and Fk = [ f k

00; f k
10; . . . ; f k

N−2,0; f k
01; . . . ; f k

N−2,N−2] ∈Rϑ , where

fk =
N−2∑
i=0

N−2∑
j=0

f k
i j Li(x)L j(y),

for k = 1, 2. Then, the discrete Stokes problem for the weak form of (10) is

(M ⊗ S + S ⊗ M) uh − (Q ⊗ R)]ph = (Q ⊗ Q ) F1,

(M ⊗ S + S ⊗ M) vh − (R ⊗ Q )]ph = (Q ⊗ Q ) F2,

−[
(

Q T ⊗ RT
)

uh − [
(

RT ⊗ Q T
)

vh = O ℘,1,

where S = [si j], M = [mij], Q = [qij], and R = [ri j], for 0 � i, j � N − 2. Define the discrete Laplacian A = M ⊗ S + S ⊗ M ∈
Rϑ×ϑ , B1 = − (Q ⊗ R)] ∈Rϑ×℘ , and B2 = − (R ⊗ Q )] ∈Rϑ×℘ , recall that ] means the first column is deleted. The spectral 
convergence of this scheme is suggested by Fig. 1. Furthermore, the global spectral operator of the discrete Stokes problem 
is defined as,

G =
[

A B
BT O ℘,℘

]
∈R(2ϑ+℘)×(2ϑ+℘), where B =

[
B1
B2

]
∈R2ϑ×℘, (11)

and A = A ⊕ A ∈R2ϑ×2ϑ .
Although for (1) the velocity u is divergence-free or ∇ · u = 0, that is not the case for the approximate solution obtained 

from the P N − P N−2 scheme. Observe that this method implements the weak form of the continuity equation, that is (10c), 
which is given as follows,

(((qN−2, uNx + v N y))) = 0, (12)

for all qN−2 ∈PN−2,N−2 ∩ L2
0(�). Therefore, uN = [uN ; v N ] are not divergence-free, however, all divergence-free polynomials 

satisfy the above equation. This is not a drawback as it is overpowered by the property that this scheme eliminates the 
presence of any spurious modes on pressure. For more details, see [3, p. 416].

3.2. Analysis

In this section, we estimate the condition number of the global matrix G for the discretized steady Stokes problem given 
by (11). Since G is a symmetric saddle point matrix with an SPD leading block and full rank matrix B , finding the bounds 
for the spectrum of G is facilitated by the theory of the spectrum of a symmetric saddle point matrix with the desired 
properties. This analysis requires bounds on the spectrum of the sub-blocks of G , thus we proceed as follows.

Lemma 1. For N � 2, let S ∈ R(N−1)×(N−1) be the Stiffness matrix defined by (3), then it is SPD with λmin(S) = 6 and λmax(S) =
4N − 2, thus κ(S) = 2N−1

3 .

Proof. By (3), S is a diagonal matrix with entries skk = 4k + 6 for 0 � k � N − 2, thus λmin(S) = 6 and λmax(S) = 4N − 2. 
Since the stiffness matrix S is an SPD, its condition number is κ(S) = σmax(S) = λmax(S) = 4N−2 . �
σmin(S) λmin(S) 6

210
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Fig. 1. Convergence for the P N − P N−2 scheme for the Stokes problem in a steady state.

The following results give optimal condition number estimates for the mass matrix and discrete Laplacian matrix in two 
dimensions for the recombined Legendre basis considered in this scheme, derived in [34] for Dirichlet boundary conditions. 
These results appear to be new.

Lemma 2. For N � 4, let M ∈ R(N−1)×(N−1) be the mass matrix defined by (4). Then, M is SPD and 
c

N3 � �(M) � C , thus κ(M) �
cN3 .

Proof. Let u(x) = ∑N−2
k=0 ukφk(x) ∈ P 0

N , where φk represent recombined Legendre basis functions and define uh :=
[u0; u1; . . . ; uN−2] ∈RN−1, then

‖u‖2
0 =

1∫
−1

u(x)2dx =
N−2∑
j=0

N−2∑
k=0

u jukm jk = uT
h Muh.

Hence M is SPD, for any x ∈RN−1 \ {0}, the bounds on the eigenvalues of M by estimating xT Mx are derived as follows

xT Mx =
N−2∑
k=0

x2
kmkk + 2

N−4∑
k=0

xkxk+2mk,k+2

= 2
N−2∑
k=0

x2
k

(
1

2k + 1
+ 1

2k + 5

)
− 4

N−4∑
k=0

xkxk+2

2k + 5
, (13)

� 2
N−2∑
k=0

x2
k

(
1 + 1

5

)
+ 4

5

N−4∑
k=0

|xk||xk+2|

� 12

5

N−2∑
k=0

x2
k + 4

5

N−2∑
k=0

x2
k = 16

5

N−2∑
k=0

x2
k .

Hence, xT Mx � C |x|2, therefore λmax(M) � C .
Note that

4
N−4∑
k=0

xkxk+2

2k + 5
� 4

N−4∑
k=0

√
2k + 9 · |xk|

2k + 5
· |xk+2|√

2k + 9

� 2
N−4∑
k=0

(
(2k + 9)|xk|2

(2k + 5)2
+ |xk+2|2

(2k + 9)

)

= 2
N−4∑
k=0

(2k + 9)x2
k

(2k + 5)2
+ 2

N−2∑
k=2

x2
k

(2k + 5)
. (14)
211
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Fig. 2. Numerical results for �(M).

Thus, the above result in (13) leads to

xT Mx � 2
N−2∑
k=0

x2
k

(
1

2k + 1
+ 1

2k + 5

)
− 2

N−4∑
k=0

(2k + 9)x2
k

(2k + 5)2
− 2

N−2∑
k=2

x2
k

(2k + 5)

� 2
N−2∑
k=0

x2
k

(
1

2k + 1
+ 1

2k + 5
− (2k + 9)

(2k + 5)2
− 1

(2k + 5)

)

= 32
N−2∑
k=0

x2
k

(2k + 1)(2k + 5)2
� c

N3
|x|2.

Therefore, λmin(M) � c

N3 and κ(M) = λmax(M)

λmin(M)
� cN3. �

Note that the optimality of bounds derived in the above theorem is suggested by the results of the numerical experiments 
presented in Fig. 2. Since the discrete Laplacian matrix A, given in section 3.1, is defined in terms of the stiffness and mass 
matrices, thus we are ready to analyze the spectrum of A.

Theorem 1. For N � 4, let A ∈ Rϑ×ϑ be the discrete Laplacian matrix defined by (11). Then, it is SPD and 
c

N2 � �(A) � C N, thus 

κ(A) � cN3 .

Proof. Since A ∈Rϑ×ϑ and is defined as A = M ⊗ S + S ⊗ M , it is SPD, as both M and S are SPD. Hence, (6) yields

λmax(A) � λmax(M ⊗ S) + λmax(S ⊗ M)

= λmax(M)λmax(S) + λmax(S)λmax(M) = 2λmax(M)λmax(S),

where the last equality results from a property of the spectrum of a Kronecker product. Thus, Lemmas 1 and 2 give 
λmax(A) � C(4N − 2) � C N .

The definition of S and M , given by the equations (3) and (4) respectively, implies that A ∈Rϑ×ϑ is a symmetric block 
matrix with non-zero 0, 2 and −2 block diagonals with blocks defined as

A jk = Akj =
{

s j j M + m jj S, j = k,

m jk S, j = k + 2,
(15)

for 0 � j, k � N − 2. Let x = [x0; x1; . . . ; xN−2] ∈Rϑ \ {0}, xk =
[

x0
k ; x1

k ; . . . ; xN−2
k

]
∈RN−1 \ {0} for each 0 � k � N − 2. Then

xT Ax =
N−2∑

xT
k (skk M + mkk S) xk + 2

N−4∑
xT

k mk,k+2 Sxk+2
k=0 k=0
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=
N−2∑
k=0

(4k + 6) xT
k Mxk +

N−2∑
k=0

(
2

2k + 1
+ 2

2k + 5

)
xT

k Sxk + 2
N−4∑
k=0

−2xT
k Sxk+2

2k + 5
(by eqs. (3) and (4))

=
N−2∑
k=0

(4k + 6)

⎛
⎝N−2∑

j=0

(x j
k)

2
(

2

2 j + 1
+ 2

2 j + 5

)
− 4

N−4∑
j=0

x j
kx j+2

k

2 j + 5

⎞
⎠ (by eqs. (3) and (13))

+
N−2∑
j=0

(4 j + 6)

(
N−2∑
k=0

(x j
k)

2
(

2

2k + 1
+ 2

2k + 5

)
− 4

N−4∑
k=0

x j
kx j

k+2

2k + 5

)

� 2
N−2∑
k=0

(4k + 6)

(
N−2∑
j=0

(x j
k)

2
(

1

2 j + 1
+ 1

2 j + 5

)
−

N−4∑
j=0

(2 j + 9)(x j
k)

2

(2 j + 5)2
(by eq. (14))

−
N−2∑
j=2

(x j
k)

2

(2 j + 5)

)
+ 2

N−2∑
j=0

(4 j + 6)

(
N−2∑
k=0

(x j
k)

2
(

1

2k + 1
+ 1

2k + 5

)

−
N−4∑
k=0

(2k + 9)(x j
k)

2

(2k + 5)2
−

N−2∑
k=2

(x j
k)

2

(2k + 5)

)

= 2
N−2∑
k=0

(4k + 6)

(
1∑

j=0

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)
(x j

k)
2

+
N−4∑
j=2

16(x j
k)

2

(2 j + 1)(2 j + 5)2
+

N−2∑
j=N−3

(x j
k)

2

2 j + 1

)

+ 2
N−2∑
j=0

(4 j + 6)

(
1∑

k=0

(
1

2k + 1
+ 1

2k + 5
− 2k + 9

(2k + 5)2

)
(x j

k)
2

+
N−4∑
k=2

16(x j
k)

2

(2k + 1)(2k + 5)2
+

N−2∑
k=N−3

(x j
k)

2

2k + 1

)
.

The above expression can be expressed in terms of nine double summations as

xT Ax � 2
9∑

m=1

Sm, (16)

which along with eqs. (A.1) to (A.7) imply xT Ax � c

N2 xT x, hence the desired result. �
Since �(A ⊕ A) = �(A), the above theorem gives the following estimate.

Corollary 1. For N � 4, A ∈R2ϑ×2ϑ defined by (11) is SPD and satisfies 
c

N2 ��(A) � cN, thus κ(A) � cN3 .

Remark 1. Note that the best upper bound for λmax(A), as seen in Fig. 3a, is obtained by (6), which can also be applied 
for estimating the λmin(A). However, (6) does not provide an optimal lower bound as by reiterating the process used for 
estimating λmax(A),

λmin(A) � λmin(M ⊗ S) + λmin(S ⊗ M) = 2λmin(S)λmin(M) � 12
c

N3
.

While on the contrary, Fig. 3b suggests a lower bound of 
c

N2 , thus implying the need for more careful analysis.

We now proceed to analyze the matrix B ∈ R2ϑ×℘ , a sub-block of G defined by (11), which is a rectangular matrix 
defined in terms of matrices R and Q given by Proposition 1. Singular value estimates of G require sharp bounds on 
singular values of B as well, thus we proceed to derive them as follows.

Lemma 3. Let N � 4, R, Q ∈R(N−1)×(N−1) be defined by Proposition 1, then σmin(R) = 0, σmax(R) = 2, and c
2 � σ(Q ) � C.
N
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Fig. 3. Numerical results for �(A).

Proof. The definition of R and (9) implies that RT R is a diagonal matrix with entries (RT R)00 = 0, and (RT R) j j = 4, for 
1 � j � N − 2. Therefore, σmin(R) = 0 and σmax(R) =√

λmax(RT R) = 2.
Recall (9), since the 1-norm of a matrix is its maximum absolute column sum, ‖Q ‖1 = max{γ0, γ1, 2γ2, 2γ3, . . . , 2γN−2} =

γ0 = 2. Also, the maximum absolute row sum, ‖Q ‖∞ = max{γ0 + γ2, γ1 + γ3, . . . , γN−4 + γN−2, γN−3, γN−2} = γ0 + γ2 =
2 + 2

5 = 12
5 , hence σmax(Q ) = ‖Q ‖ �

√‖Q ‖1‖Q ‖∞ = √
4.8.

We now estimate σmin(Q ) = ‖Q −1‖−1. It is easily verified that Q −1 is upper triangular and is non-zero along every 
other diagonal:

Q −1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ −1
0 0 γ −1

0 0 γ −1
0 0 . . .

γ −1
1 0 γ −1

1 0 γ −1
1 . . .

γ −1
2 0 γ −1

2 0 . . .

. . .
. . .

. . .

γ −1
N−4 0 γ −1

N−4
γ −1

N−3 0
γ −1

N−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈R(N−1)×(N−1).

Label the columns of Q −1 as C0, C1, . . . , CN−2. Note that the maximum absolute column sum of Q −1 is attained at either 
CN−3 or CN−2, denoted by SCN−3 or SCN−2 , respectively, and are given as follows,

SCN−3 =
⎧⎨
⎩
∑� N−2

2 �
k=0 γ −1

2k , N is odd,∑� N−3
2 �

k=0 γ −1
2k+1, N is even,

SCN−2 =
⎧⎨
⎩
∑� N−3

2 �
k=0 γ −1

2k+1, N is odd,∑� N−2
2 �

k=0 γ −1
2k , N is even.

Since

� N−2
2 �∑

k=0

1

γ2k
=

� N−2
2 �∑

k=0

2(2k) + 1

2
= 1

2

� N−2
2 �∑

k=0

(4k + 1) � cN2,

and similarly, 
∑� N−3

2 �
k=0

1
γ2k+1

� cN2, it follows that ‖Q −1‖1 � cN2.

For 0 � k � N − 2, the absolute sum of the kth row of Q −1 is 1
γk

⌊
N−k

2

⌋
, thus

‖Q −1‖∞ = max
0�k�N−2

1

γk

⌊
N − k

2

⌋
� max

0�k�N−2

1

γk
max

0�k�N−2

⌊
N − k

2

⌋

= 1

γN−2

⌊
N

2

⌋
= 2(N − 2) + 1

2

⌊
N

2

⌋
� cN2.

Therefore, ‖Q −1‖ �
√‖Q −1‖1‖Q −1‖∞ �

√
cN2 · cN2 = cN2, hence the result. �
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Lemma 4. For N � 4, the matrix B ∈R2ϑ×℘ defined by (11) is full rank, that is, rank(B) = ℘ and 
c

N2 � σ(B) � C.

Proof. Let Ri be the rows of B for 1 � i � 2ϑ . On exchanging Rk(N−1) with Rϑ+1+(k−1)(N−1) , for all 1 � k � N − 2, the first 
℘ rows of B form an upper triangular matrix of size ℘ × ℘ with non-zero diagonal entries, hence rank(B) = ℘ .

We now estimate the singular values of B , which are the square-root of the eigenvalues of B T B ∈ R℘×℘ . Note that 
rank(BT B) = rank(B) = ℘ , and BT B = BT

1 B1 + BT
2 B2. So we consider the blocks B1 and B2.

Since B1 = −Q ⊗ R] and B2 = −R ⊗ Q ], that is, their first column is deleted, which only contains zero, therefore 
rank(Bi) = rank(Q )rank(R) = (N − 1)(N − 2) < ℘ , for i = 1, 2. Thus, Bi are rank deficient, so that σmin(Bi) = 0 for i = 1, 2. 
Furthermore, σ(Bi) = σ(Q ) × σ(R), so Lemma 3 implies that σmax(Bi) = σmax(R)σmax(Q ) � 2C , for i = 1, 2. Therefore, (6)
gives

λmax(BT B) � λmax(BT
1 B1) + λmax(BT

2 B2) = σ 2
max(B1) + σ 2

max(B2) � 4C2 + 4C2,

thus, σmax(B) � C . However, (6) gives a trivial bound for the minimum singular value of B , but we need a positive value as 
BT B is full rank. To this end, we perform the following analysis.

Let α jk := (Q T Q ) jk and β jk := (RT R) jk , where 0 � j, k � N − 2. Note that Q T Q is a symmetric matrix, so that for 
0 � j, k � N − 2

α jk = (Q T Q ) jk =

⎧⎪⎨
⎪⎩

γ 2
j , j = k = 0,1,

2γ 2
j , 2 � j = k � N − 2,

−γ jγ j+2, k = j + 2.

Since Lemma 3 implies that σmin(Q ) � c

N2 , for y ∈RN−1 \ {0}

c

N4
yT y � yT Q T Q y =

N−2∑
j=0

N−2∑
k=0

y jα jk yk =
N−2∑
j=0

α j j(y j)
2 + 2

N−4∑
j=0

α j, j+2 y j y j+2. (17)

Recall that RT R is a diagonal matrix, with β00 = 0, and β j j = 4 for 1 � j � N − 2. By a direct calculation, B T B = [[[Q T Q ⊗
RT R + RT R ⊗ Q T Q ]]], that is, delete the first row and first column, then the ( j, k)-th block of B T B is given as

(BT B) jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α00[[[RT R]]], j = k = 0,

α j j RT R + 4Q T Q , 1 � j = k � N − 2,

α02[RT R, j = 0,k = 2,

α j, j+2 RT R, k = j + 2,1 � j � N − 4.

Let x = [x0; x1; . . . ; xN−2] ∈R℘ \ {0}, where x0 = [x1
0; x2

0; . . . ; xN−2
0 ] ∈RN−2 \ {0} and x j = [x0

j ; x1
j ; . . . ; xN−2

j ] ∈RN−1 \ {0} for 
1 � j � N − 2, then

xT BT Bx =
N−2∑
j=0

xT
j (BT B) j j x j + 2

N−4∑
j=0

xT
j (BT B) j, j+2x j+2

= xT
0 α00[[[RT R]]]x0 +

N−2∑
j=1

xT
j (α j j RT R + β j j Q T Q )x j + 2xT

0 α02[RT R · x2

+ 2
N−4∑
j=1

xT
j α j, j+2 RT Rx j+2

= α00

N−2∑
k=1

4(xk
0)

2 +
N−2∑
j=1

α j j

N−2∑
k=1

4(xk
j)

2 +
N−2∑
j=1

β j jx
T
j Q T Q x j

+ 2α02

N−2∑

=1

N−2∑
k=0

x

0([RT R)
kxk

2 + 2
N−4∑
j=1

α j, j+2

N−2∑
k=1

4xk
j x

k
j+2

= α00

N−2∑
4(xk

0)
2 +

N−2∑
α j j

N−2∑
4(xk

j)
2 +

N−2∑
4xT

j Q T Q x j
k=1 j=1 k=1 j=1
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Fig. 4. Numerical results for σ(B).

+ 2α02

N−2∑
k=1

4xk
0xk

2 + 2
N−4∑
j=1

α j, j+2

N−2∑
k=1

4xk
jx

k
j+2

= 4
N−2∑
k=1

⎛
⎝N−2∑

j=0

α j j(xk
j)

2 + 2
N−4∑
j=0

α j, j+2xk
j x

k
j+2

⎞
⎠+

N−2∑
j=1

4xT
j Q T Q x j .

Define ξk = [xk
0; xk

1; xk
2; . . . ; xk

N−2] ∈RN−1 \ {0}, then

xT BT Bx = 4
N−2∑
k=1

ξ T
k Q T Q ξk +

N−2∑
j=1

4xT
j Q T Q x j (18)

� 4
c

N4

N−2∑
k=1

ξ T
k ξk + 4

c

N4

N−2∑
j=1

xT
j x j (by eq. (17))

= 4
c

N4

N−2∑
k=1

N−2∑
j=0

(xk
j)

2 + 4
c

N4

N−2∑
j=1

N−2∑
k=0

(xk
j)

2

= 4
c

N4

N−2∑
k=1

(xk
0)

2 + 4
c

N4

N−2∑
j=1

(
(x0

j )
2 +

N−2∑
k=1

2(xk
j)

2

)

� 4
c

N4

N−2∑
k=1

(xk
0)

2 + 4
c

N4

N−2∑
j=1

N−2∑
k=0

(xk
j)

2 = 4c

N4
xT x.

Thus, σ 2
min(B) = λmin(BT B) � c

N4 , which gives us the desired result. �
Fig. 4 suggests that the estimates on the singular values of B derived above are sharp. Note that the Schur complement 

matrix of the global spectral operator G , defined by (11), is defined as ϒh := BTA−1 B ∈ R℘×℘ . This matrix is essential 
because we need bounds on the spectrum of ϒh in order to use (7) to estimate the spectrum of G , which leads us to the 
following results.

Lemma 5. For given N � 4, let ϒh = BTA−1 B ∈R℘×℘ , where A and B are defined by (11), then 
c

N3
� λmin(ϒh) � cλmin(A).

Proof. Consider M ∈R℘×℘ defined by (B.1). Since ϒh is symmetric,

λmin(ϒh) = min
℘

pT ϒh p

pTMp
· pTMp

pT p
p∈R \0
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Fig. 5. Minimum eigenvalue of ϒh .

� min
p∈R℘\0

pT ϒh p

pTMp
· min

p∈R℘\0

pTMp

pT p
� c

N
· c

N2 = c

N3 . (by eqs. (B.1) and (B.2))

Since B ∈Rϑ×℘ is full rank, therefore Corollary 1 and Lemma 7 imply

λmin(ϒh) = min
x∈R℘\{0}

xT BTA−1 Bx

xT BT Bx
· xT BT Bx

xT x

� max
x∈R℘\{0}

xT BTA−1 Bx

xT BT Bx
· min

x∈R℘\{0}
xT BT Bx

xT x

= max
y∈Rϑ\{0}

yT A−1 y

yT y
· min

x∈R℘\{0}
xT BT Bx

xT x

= λ−1
min(A) · σ 2

min(B)

� cN2 · c

N4

� c

N2
� cλmin(A). �

Fig. 5 suggests that the bounds proved above are strong. Hence, the above results aid us to prove our main goal of this 
section, that is, an optimal bound for the condition number of the global spectral operator G for the steady Stokes problem 
as depicted by Fig. 6.

Theorem 2. For N � 4, let G ∈R(2ϑ+℘)×(2ϑ+℘) be defined by (11), then 
c

N2 � σ(G) � cN2 and κ(G) � cN4 .

Proof. Note that G =
[A O

O O℘,℘

]
+
[

O B
BT O℘,℘

]
=: G1 + G2, thus it is a sum of two symmetric matrices. Hence, by (6)

λmax(G) � λmax(G1) + λmax(G2). (19)

Note that λmax(G1) = λmax(A), thus Corollary 1 implies λmax(G1) � cN2. Also, a simple triangle inequality4 for 2-norm 
implies that λmax(G2) = σmax(B) � C by Lemma 4. Hence, these results along with (19) yield λmax(G) � cN .

It remains to estimate the absolute minimum value of the eigenvalues of G , denoted by |λ|min(G), for which (7) gives,

|λ|min(G) � min

⎧⎪⎨
⎪⎩λmin(A),

λmin(ϒh)

1
2

(
1 +

√
1 + 4λmin(ϒh)

λmin(A)

)
⎫⎪⎬
⎪⎭ ,

and by Lemma 5, λmin(ϒh)
λmin(A)

� c, leading to 1
2

(
1 +

√
1 + 4λmin(ϒh)

λmin(A)

)
� c, thus

4 Moreover, [5] gives �(G2) = σ(B) ∪ −σ(B) ∪ 0|2ϑ−℘| .
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Fig. 6. Numerical results for �(G).

λmin(ϒh)

1
2

(
1 +

√
1 + 4λmin(ϒh)

λmin(A)

) � cλmin(ϒh).

Hence, the minimum absolute value of eigenvalues of G satisfies,

|λ|min(G) � min {λmin(A), cλmin(ϒh)}� min
{ c

N2
,

c

N3

}
= c

N3
.

Since κ(G) = |λ|max(G)

|λ|min(G)
, therefore κ(G) � cN · N3 = cN4. �

4. Unsteady state

Consider the unsteady Stokes problem, given by equation (2), which can also be written as:

ut − �u + px = f1 in �t, (20a)

vt − �v + p y = f2 in �t, (20b)

ux + v y = 0 in � × (−1,1), (20c)

u = 0, v = 0 on ∂� × (−1,1), (20d)

u(x, y,−1) = u0(x, y), v(x, y,−1) = v0(x, y) in �. (20e)

We extend the P N − P N−2 scheme of the last section to the unsteady case by applying Chebyshev Gauss-Lobatto spectral 
collocation in time. These particular polynomial bases are chosen for simplicity of analysis of this scheme. In practice, 
Chebyshev recombined basis given in [34, p. 149] or Jacobi collocation can be chosen in place of Legendre recombined basis 
or Chebyshev collocation, respectively, without any difficulties. The goal is to show spectral convergence of a space-time 
spectral method and a condition number estimate for the scheme. The analysis of the latter is incomplete because two of 
the estimates are based on numerical evidence.

4.1. Discretization

For given N � 4, consider the Chebyshev Gauss-Lobatto nodes tk for 0 � k � N , so that t0 = −1 and tN = 1. Let 
k denote 
the Lagrange basis polynomials for tk , therefore 
k(t j) = δkj for 0 � k, j � N . Let D denote the Chebyshev Gauss-Lobatto 
pseudospectral derivative matrix of size (N + 1) × (N + 1), defined by (5). Additionally, we denote the first column of [[[D]]]
by d = [d10; d20; . . . ; dN0] ∈RN×1. For this scheme, we define the velocity u, v and the pressure p as follows,
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uN(x, y, t) =
N−2∑
i=0

N−2∑
j=0

N∑
k=0

uijkφi(x)φ j(y)
k(t) ∈ P 0
N,N,N ,

v N(x, y, t) =
N−2∑
i=0

N−2∑
j=0

N∑
k=0

vijkφi(x)φ j(y)
k(t) ∈ P 0
N,N,N ,

pN(x, y, t) =
N−2∑
i=0

N−2∑
j=0

i+ j>0

N∑
k=0

pijk Li(x)L j(y)
k(t) ∈ PN−2,N−2,N .

(21)

The number of unknowns for u and v each are Nϑ , and the number of unknowns for p are N℘ . The total num-
ber of unknowns in the discrete Stokes equations is 2Nϑ + N℘ = 3N(N − 1)2 − N . Define the discrete unknowns 
as uh = [u1

h; u2
h; . . . ; uN

h ], where u

h = [u0,0,
; u1,0,
; . . . uN−2,0,
; u0,1,
; . . . uN−2,N−2,
], similarly define vh , ph . Also, Fk =

[F 1
k ; F 2

k ; . . . ; F N
k ], where

F 

k = [ f k,


00 ; f k,

10 ; . . . f k,


N−2,0; f k,

01 ; . . . ; f k,


N−2,N−2],
so that fk(x, y, t
) =∑N−2

i=0

∑N−2
j=0 f k,


i j Li(x)L j(y) for k = 1, 2, 1 � 
 � N .

Note that the initial condition u(x, y, −1) = u0(x, y) gives uij0 = u0
i j , where the truncated Legendre series gives

u0(x, y) ≈
N−2∑
i=0

N−2∑
j=0

uijφi(x)φ j(y) =
N∑

i=0

N∑
j=0

u0
i j Li(x)L j(y), (22)

which implies (L ⊗ L)u0h = u0h , where L is a Toeplitz matrix of size (N + 1) × (N − 1) with 1 on the main diagonal 
and −1 on the -2-diagonal. The coefficient vectors are defined as u0h = [

u0
00; u0

10; . . . u0
N−20; u0

01; . . . u0
N−2N−2

] ∈ Rϑ , and 
u0h = [

u0
00;u0

10; . . .u0
N0;u0

01; . . .u0
N N

] ∈ RN2
. Similarly, v0h is obtained. Consequently, for given N � 4, the discrete weak 

formulation of the unsteady Stokes problem becomes

([[[D]]] ⊗M+ IN ⊗ A) uh + (IN ⊗ B1) ph = (IN ⊗Q)F1 − d ⊗ (Mu0h)

([[[D]]] ⊗M+ IN ⊗ A) vh + (IN ⊗ B2) ph = (IN ⊗Q)F2 − d ⊗ (Mv0h)(
IN ⊗ BT

1

)
uh +

(
IN ⊗ BT

2

)
vh = 0N℘,

(23)

where M = M ⊗ M, Q = Q ⊗ Q ∈ Rϑ×ϑ . The space-time spectral convergence of the above scheme is observed in Fig. 7. 
Thus, the coefficient matrix of the discrete Stokes problem or the global space-time spectral operator becomes,

Gt =
[
At B
BT O

]
,where B =

[
IN ⊗ B1
IN ⊗ B2

]
∈R2Nϑ×N℘, (24)

and At = At ⊕ At ∈R2Nϑ×2Nϑ with At =[[[D]]] ⊗M + IN ⊗ A ∈RNϑ . Analogous to the steady case, the main features of this 
scheme for the unsteady Stokes problem are: the velocity is not exactly divergence-free, this method is a spectral-Galerkin 
scheme in space and collocation in time, and there are no spurious modes for pressure.

4.2. Analysis

In this section, we undertake an analysis of the proposed scheme for the unsteady Stokes problem, with the objective 
of formulating a condition number estimate for the global space-time spectral operator. We begin our analysis by proving a 
well-known conjecture about the norm of the Chebyshev derivative matrix, stated in [9, p. 499] and depicted by Fig. 8.

Lemma 6. For N � 2, let D ∈R(N+1)×(N+1) be the Chebyshev Gauss-Lobatto pseudospectral derivate matrix, then ‖[[[D]]]‖ � cN2 .

Proof. Since ‖[[[D]]]‖ �
√‖[[[D]]]‖1‖[[[D]]]‖∞ , we evaluate the maximum absolute row and column sum of [[[D]]] by using (5). Let Ck

and Rk denote the absolute sum of k-th column and k-th row respectively, for 1 � k � N , then

Ck = |dkk| +
N∑

k=1
k = j

|dkj|. (25)

On simplification of the diagonal terms,
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Fig. 7. Convergence for the P N − P N−2 scheme for the unsteady Stokes problem.

|dkk| =
∣∣∣∣∣ −xk

2(1 − x2
k )

∣∣∣∣∣= cos πk
N

2
(

1 − cos2 πk
N

) � 1

2 sin2 πk
N

.

Note that 
πk

N
� π

2
for 1 � k � N

2
, and since for 0 � x � π

2
,

2x

π
� sin x � x, (26)

thus for 1 � k � N

2
, |dkk| � 1

2
(

2
N

)2 � N2

8
, and for 

N

2
< k � N − 1, 

π

N
� π(N − k)

N
<

π

2
, (26) yields

|dkk| � 1

2 sin2 πk
N

= 1

2 sin2 (π
N (N − k)

) � 1

2
(

2
N

)2
= N2

8
.

Also, for k = N , |dN N | = 2N2 + 1

6
� cN2, thus for all 1 � k � N ,

|dkk| � cN2. (27)

For a fixed 1 � j � N ,

N∑
k=1
k = j

|dkj| =
N∑

k=1
k = j

∣∣∣∣∣ c̃k(−1)k+ j

c̃ j(xk − x j)

∣∣∣∣∣� 2
N∑

k=1
k = j

1

|xk − x j| =
N∑

k=1
k = j

1∣∣∣sin ( j+k)π
2N sin ( j−k)π

2N

∣∣∣ .

Using (26), for all k = j and 1 � k � N , 
1∣∣∣∣sin

(
( j − k)π

2N

)∣∣∣∣
� N

| j − k| , thus

N∑
k=1
k = j

|dkj| � N
N∑

k=1
k = j

1∣∣∣∣sin

(
( j + k)π

2N

)∣∣∣∣ | j − k|
.

Since ( j + k)
π

2N
� π

2
implies k � N − j, split the above sum as follows

N∑
k=1
k = j

|dkj| � N
N− j∑
k=1
k = j

1∣∣∣∣sin

(
( j + k)π

2N

)∣∣∣∣ | j − k|
+ N

N∑
k=N− j+1

k = j

1∣∣∣∣sin

(
( j + k)π

2N

)∣∣∣∣ | j − k|
=: N S1 + N S2. (28)
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Fig. 8. Maximum singular value of [[[D]]].

Note that 1 � k � N − j gives 
π

N
� (k + j)π

2N
� π

2
, by applying (26)

sin

(
(k + j)π

2N

)
� 2

π

(k + j)π

2N
= (k + j)

N
,

which implies

S1 � N
N− j∑
k=1
k = j

1

(k + j)| j − k| � N
N− j∑
k=1
k = j

1

| j − k|2 � N
π2

6
,

as | j − k| � k + j and 
∑∞

n=1
1

n2 = π2

6 . A similar analysis gives S2 � π2

6 N , which along with (28) gives, 
∑N

k=1
k = j

|dkj | � cN2. 

Therefore, (27) in (25) yields Ck � cN2, for all 1 � k � N . Hence, ‖[[[D]]]‖1 = max1�k�N Ck � cN2, and similarly ‖[[[D]]]‖∞ =
max1�k�N Rk � cN2, which gives the desired result. �
Remark 2. The above proof is easily extended to prove that σmax(D) � cN2, since we only need to add the contribution of 
|d0k| � cN2 to each Ck . For details on the proof see [18, p. 70–74].

The analysis of the unsteady Stokes problem is much harder than in the steady state because of the presence of the 
Chebyshev derivative matrix D , which is a non-symmetric matrix with an indefinite symmetric part. These properties are 
inherited by the leading block At of the global space-time spectral operator Gt . We could not find any results in the 
literature for approximating the spectrum of a saddle point matrix with the leading block of the form At . Several results 
exist for estimating the spectrum of a symmetric saddle point matrix, thus creating scope for approximating the singular 
values of Gt , as they are the square-root of the eigenvalues of G T

t Gt . In the following, we provide a condition number 
estimate for Gt by using computational and theoretical techniques. Note that (8) gives

σmin(Gt) �
√

1 − cos θ · min {σmin(At),σmin(B)} . (29)

We could not estimate the term 
√

1 − cos θ , for which a numerical evidence Fig. 9a suggests

√
1 − cos θ � c

N2
. (30)

Another estimate that has been difficult to show is

σmin
([[[D]]] ⊗MA−1 + INϑ

)
� c1, (31)

where 0 < c1 < 1 is a constant, as portrayed by numerical evidence Fig. 9b.

Theorem 3. For N � 4, let Gt be defined by (24). Assume (30) and (31) hold, then κ(Gt) � cN6 .
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Fig. 9. Numerical results for (30) and (31).

Proof. We begin by estimating the maximum singular value of At ,

σmax(At) = ‖At‖ = ‖[[[D]]] ⊗M+ IN ⊗ A‖
� ‖[[[D]]] ⊗ M ⊗ M‖ + ‖IN ⊗ A‖ (since M = M ⊗ M)

= ‖[[[D]]]‖‖M‖2 + ‖A‖
� cN2 · c + cN � cN2,

which is obtained by using Lemmas 2 and 6, and Theorem 1. It remains to estimate the minimum singular value of At .

σmin(At) = σmin
(([[[D]]] ⊗MA−1 + INϑ

)
(IN ⊗ A)

)
� σmin

([[[D]]] ⊗MA−1 + INϑ

)
σmin (IN ⊗ A)

� c1σmin(A),

is obtained by using (31), thus applying Theorem 1 leads to the desired result σmin(At) �
c

N2 , and σ(At ⊕ At) = σ(At)

implies σmin(At) �
c

N2 .

Next, we estimate the singular values of B. Since BTB = IN ⊗ BT B , Lemma 4 gives rank(BTB) = rank(IN ) · rank(BT B) =
N · rank(B) = N℘ . Hence, B is full rank. Also, �(BT B) = �(IN )�(BT B) = �(BT B), hence σ(B) = σ(B), thus Lemma 4

implies σmax(B) � c and σmin(B) � c

N2
.

Finally, for Gt , by following the proof of (19), σmax(Gt) = ‖Gt‖ � σmax(At) +σmax(B) � cN2 + c � cN2. For the minimum 

singular value of Gt , (29) and (30) imply σmin(Gt) �
c

N2 min
( c

N2 ,
c

N2

)
� c

N4 , thus κ(Gt) = σmax(Gt)

σmin(Gt)
� cN6. �

The above estimate is not sharp, as numerically Fig. 10d hints that σmin(Gt) behaves at least like O
(

N−2.5
)
, suggesting 

κ(Gt) is at least O(N4.5). The main objective of the above result is its application in deriving proof of convergence for the 
scheme devised and analyzed in this section.

4.3. Convergence

In this section, we discuss the space-time spectral convergence of our method for the unsteady Stokes problem, as 
spectral convergence of the P N − P N−2 scheme for the Stokes problem in steady state was proved in [3].

Let ‖ · ‖0,ω denote a weighted L2-norm defined as

‖ f ‖2
0,ω =

∫
f (x, y, t)

1√
1 − t2

dxdydt.
�t
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Fig. 10. Numerical results for Theorem 3.

The above norm is designed to incorporate the weight functions for the Legendre polynomials in space and Chebyshev 
polynomials in time. Recall that the velocity obtained by the scheme devised in this section for the unsteady Stokes problem 
is not exactly divergence-free, as implied by (12). Moreover, the uniqueness of the solution for this scheme is a direct 
consequence of Theorem 3, thus we prove the following result by infusing the conditions of the aforementioned result.

Theorem 4. Let u, v, and p be the solution of (2). Assume u, v, and p are separately analytic in each variable. Let N � 4 and uN , v N , 
and pN be the solution of the space-time method of the form (21), with matrix defined by (24). Assume (30) and (31) hold, then the 
following holds

‖u − uN‖0,ω + ‖v − v N‖0,ω + ‖p − pN−2‖0,ω � cN8e−C N .

Proof. Consider the exact solution and its truncation as follows,

u(x, y, t) =
∞∑

i=0

∞∑
j=0

ûi j(t)φi(x)φ j(y), �N u(x, y, t) =
N−2∑
i=0

N−2∑
j=0

ûi j(t)φi(x)φ j(y),

v(x, y, t) =
∞∑ ∞∑

v̂ i j(t)φi(x)φ j(y), �N v(x, y, t) =
N−2∑ N−2∑

v̂ i j(t)φi(x)φ j(y),
i=0 j=0 i=0 j=0
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p(x, y, t) =
∞∑

i=0

∞∑
j=0

i+ j>0

p̂i j(t)Li(x)L j(y), �N−2 p(x, y, t) =
N−2∑
i=0

N−2∑
j=0

i+ j>0

p̂i j(t)Li(x)L j(y).

Let TN u denote the truncation error in velocity u, that is, TN u(x, y, t) = (u − �N u)(x, y, t), similarly, let TN v and TN−2 p
denote the truncation error of velocity v and pressure p, defined as v − �N v and p − �N−2 p, respectively.

Define semi-discrete solutions for (2) representing (21) as follows

uN(x, y, t) =
N−2∑
i=0

N−2∑
j=0

uij(t)φi(x)φ j(y),

v N(x, y, t) =
N−2∑
i=0

N−2∑
j=0

vij(t)φi(x)φ j(y),

pN−2(x, y, t) =
N−2∑
i=0

N−2∑
j=0

i+ j>0

pij(t)Li(x)L j(y),

where uij(t) =
N∑

k=0

uijk
k(t), and similarly vij(t) and pij(t) are defined, which imply uij(tk) = uijk , vij(tk) = vijk , and pij(tk) =

pijk , for tk are Chebyshev Gauss-Lobatto nodes, 1 � k � N . Also, define th = [t1; t2; . . . ; tN ] ∈RN .
Define the error in truncated and approximated solutions as

eu(x, y, t) = (�N u − uN)(x, y, t),

ev(x, y, t) = (�N v − v N)(x, y, t),

ep(x, y, t) = (�N−2 p − pN−2)(x, y, t).

Also, define the error vectors as Eu = [Eu
1; Eu

2; . . . ; Eu
N ], E v = [E v

1 ; E v
2 ; . . . ; E v

N ], E p = [E p
1 ; E p

2 ; . . . ; E p
N ], where for 0 � i, j �

N − 2 and 1 � k � N , Eu
k = [ûi j(tk) − uijk], E v

k = [v̂ i j(tk) − vijk], and only E p
k = [p̂i j(tk) − pijk] is considered along with the 

condition i + j > 0.
Recall that for given fr in (20a) and (20b), for r = 1, 2, so that at time t = tk , for 1 � k � N , fr(x, y, tk) is analytic in �, 

then it can be expressed as

fr(x, y, tk) =
∞∑

i=0

∞∑
j=0

f r,k
i j φi(x)φ j(y), �N fr(x, y, tk) =

N−2∑
i=0

N−2∑
j=0

f r,k
i j φi(x)φ j(y),

where �N fr is the truncation for fr and the truncation error is defined as TN f k
r = ( fr − �N fr)(x, y, tk), for r = 1, 2 and 

1 � k � N .
For w ∈ V , the first equation of the Stokes problem implies that the exact solution u, p satisfy the following weak form, 

for all t ∈ (−1, 1), thus at time t = tk , where 1 � k � N

((((ut − �u)(x, y, tk), w))) − (((p(x, y, tk), wx))) = ((( f1(x, y, tk), w))) (32)

and the approximated solution uN , pN−2 satisfy

(((((uN)t − �uN)(x, y, tk), w N))) − (((pN−2(x, y, tk), (w N )x))) = (((�N f1(x, y, tk), w N))), (33)

for all w N ∈PN,N ∩ V . Subtracting (32) and (33) for all 0 � m, n � N − 2 gives

(((((u − uN)t − �(u − uN))(x, y, tk),φm(x)φn(y))))

− ((((p − pN−2)(x, y, tk),φ
′
m(x)φn(y)))) = (((( f1 − �N f1)(x, y, tk),φm(x)φn(y))))

which gives

((((eu
t − �eu)(x, y, tk),φm(x)φn(y)))) − (((ep(x, y, tk),φ

′
m(x)φn(y))))

= (((TN f k
1 − ((TN u)t + �(TN u))(x, y, tk),φm(x)φn(y))))

+ ((((TN−2 p)(x, y, tk),φ
′
m(x)φn(y)))).

(34)

Define g(t) as follows,
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g(t) = (((eu(x, y, t),φm(x)φn(y))))

=
N−2∑
i=0

N−2∑
j=0

(
ûi j(t) − uij(t)

)
(((φi(x)φ j(y),φm(x)φn(y)))), (35)

then (34) becomes

g′(tk) + ((( − �eu(x, y, tk),φm(x)φn(y)))) − (((ep(x, y, tk),φ
′
m(x)φn(y))))

= (((TN f k
1 − ((TN u)t + �(TN u))(x, y, tk),φm(x)φn(y))))

+ ((((TN−2 p)(x, y, tk),φ
′
m(x)φn(y)))).

(36)

For any analytic z such that z(−1) = 0, recall the definition of the interpolant IN z(t) =
N∑

i=1

z(ti)
i(t). For 0 � k � N − 1,

z′(tk) = (IN z)′ (tk) + ε̃k

= ([[[D]]] (IN(z)(th)))k + ε̃k

= ([[[D]]] (z(th)))k + ε̃k,

where ε̃k = (z − IN z)′(tk), according to [30],5 satisfies

|ε̃k| � cN2e−C N . (37)

Since the initial condition is u(x, y − 1) = u0(x, y), recall that ûi j(−1) = uij0 = u0
i j , therefore g(−1) = ûi j(−1) − uij(−1) =

u0
i j − u0

i j = 0. Hence, the above expression and (35) imply

g′(tk) = ([[[D]]]g(th))k + ε1
k

=
⎛
⎝[[[D]]] ·

N−2∑
i=0

N−2∑
j=0

(
ûi j(th) − uij(th)

)
(((φi(x)φ j(y),φm(x)φn(y))))

⎞
⎠

k

+ ε1
k ,

thus (36) gives the first (N − 1)2 equations for each time step tk for 1 � k � N and 0 � m, n � N − 2 as follows,([[[D]]] · (((eu(x, y, th),φm(x)φn(y))))
)

k + ((( − �eu(x, y, tk),φm(x)φn(y))))

− (((ep(x, y, tk),φ
′
m(x)φn(y)))) = −ε1

k

+ (((TN f k
1 − ((TN u)t − �(TN u))(x, y, tk),φm(x)φn(y))))

+ ((((TN−2 p)(x, y, tk),φ
′
m(x)φn(y)))).

(38)

Thus, the (N − 1)2 equations together for all time steps 1 � k � N give

([[[D]]] ⊗M+ IN ⊗A) Eu + (IN ⊗ B1) E p = −ε1 + Ru
1 + Ru

2, (39)

where we define ε1 = [
ε1

1 ;ε1
2 ; . . . ;ε1

N

]
, and for 1 � i � 2

Ru
i = [

ru
i (t1); ru

i (t2); . . . ; ru
i (tN)

]
,

with the following two vectors of length ϑ ,

ru
1 (tk) = [(((TN f k

1 − ((TN u)t − �(TN u))(x, y, tk),φm(x)φn(y))))],
ru

2 (tk) = [
((((TN−2 p)(x, y, tk),φ

′
m(x)φn(y))))

]
,

for 0 � m, n � N − 2 and 1 � k � N .
Similarly, the error equation for the velocity v in matrix form is given as

([[[D]]] ⊗M+ IN ⊗A) E v + (IN ⊗ B2) E p = −ε2 + R v
1 + R v

2 , (40)

5 which was an improvement of a factor of O(N1.5) over the one derived in [36], however, the latter also provides results for more general Sobolev 
spaces.
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where rv
2 (tk) =

[
(((TN−2 p)(x, y, tk),φm(x)φ′

n(y))))
] ∈Rϑ , as 0 � m, n � N − 2. The exact solution u, v satisfy the weak form of 

the third equation of the Stokes problem, for all q ∈ L2
0(�) and time t = tk ,

(((q, (ux + v y)(x, y, tk)))) = 0, (41)

also, the approximate solutions satisfy the following for all qN−2 ∈PN−2,N−2 ∩ L2
0(�),

(((qN−2, ((uN )x + (v N)y)(x, y, tk)))) = 0, (42)

for all qN−2 ∈ PN−2,N−2 ∩ L2
0(�). Thus, subtracting (41) and (42) for all 0 � m, n � N − 2 with m + n > 0 and incorporating 

the truncated solution yields

−(((Lm(x)Ln(y), (eu
x − ev

y)(x, y, tk)))) = (((Lm(x)Ln(y), ((TN u)x + (TN v)y)(x, y, tk)))).

Hence, the following linear system is obtained.

(IN ⊗ BT
1 )Eu + (IN ⊗ BT

2 )E v = R p
2 , (43)

where R p
2 = [

r p
2 (t1); r p

2 (t2); . . . ; r p
2 (tN )

]
, and for 1 � k � N ,

r p
2 (tk) = [(((Lm(x)Ln(y),

(
(TN u)x + (TN v)y

)
(x, y, tk))))] ∈R℘,

as 0 � m, n � N − 2 and m + n > 0. Thus, (36), (40), and (43) imply⎡
⎣ At O Nϑ,Nϑ IN ⊗ B1

O Nϑ,Nϑ At IN ⊗ B2

IN ⊗ BT
1 IN ⊗ BT

2 O ℘,℘

⎤
⎦
⎡
⎣ Eu

E v

E p

⎤
⎦= −

⎡
⎣ε1

ε2
0

⎤
⎦+

⎡
⎣ Ru

1
R v

1
0

⎤
⎦+

⎡
⎣ Ru

2
R v

2
R p

2

⎤
⎦

which is expressed as the following linear system

Gt E = −ε +
2∑

i=1

Ri, (44)

by (C.3), |Gt E|∞ � cN3e−C N .
The next stage is to estimate the norm of error between the truncated and approximated solution defined eu , ev and ep

in the beginning of this proof. Since φi = Li − Li+2,

eu(x, y, tk) =
N∑

i=0

N∑
j=0

ck
i j Li(x)L j(y),

where ck
i j = (L⊗L) Eu

k , 1 � k � N as defined from (22). Moreover, it is easy to prove that

‖L‖ �√‖L‖1‖L‖∞ �
√

2 · 2 = 2. (45)

Let the Chebyshev Gauss-Lobatto quadrature weights be denoted by ωi = π

Ndi
, where d0 = 2 = dN and di = 1 for 1 � i �

N − 1, and W denote the diagonal matrix containing the weights, W ii = ωi , for 0 � i � N , thus ‖[W ]‖ � c
N . The weighted 

norm of eu is given as

‖eu‖2
0,ω =

∫
�

|eu |2 1√
1 − t2

dxdydt

� c
N∑

i=0

N∑
j=0

N∑
k=1

|ck
i j|2ωk (since ‖L j(x)‖0 � c, for j � 0)

= c
∣∣∣([W ] 1

2 ⊗L⊗L
)

Eu
∣∣∣2 .

Similarly, the other two error estimates can be derived to get the following

‖ev‖2
0,ω � c

∣∣∣([W ] 1
2 ⊗L⊗L

)
E v
∣∣∣2

‖ep‖2
0,ω � c

∣∣∣([W ] 1
2 ⊗ IN℘

)
E p
∣∣∣2
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Define Wh =
(
[W ] 1

2 ⊗L⊗L
)

⊕
(
[W ] 1

2 ⊗L⊗L
)

⊕
(
[W ] 1

2 ⊗ IN℘

)
, then

‖Wh‖ � max
{
‖[W ] 1

2 ⊗L⊗L‖,‖[W ] 1
2 ⊗ IN℘‖

}
� c√

N
.

Define ‖e‖2 =
√

‖eu‖2
0,ω + ‖ev‖2

0,ω + ‖ep‖2
0,ω , then addition of the three estimates for weighted norms of eu , ev , and ep

yields,

‖e‖2 � c |Wh E|
� c‖Wh‖|Eh|
� c√

N
‖G−1

t ‖|Gt E|

� c√
N

‖G−1
t ‖

√
N(2(N − 1)2 − 1)|Gt E|∞ (as |x| � √

m|x|∞, for any x ∈ Rm)

� cN8e−C N ,

the last inequality results from Theorem 3 and (C.3). Thus, ‖e‖2 � cN8e−C N and Theorem 5.12 in [23, p. 248] for the 
Legendre truncation error estimate yields the following estimate on the error in exact and approximate solution

‖u − uN‖0,ω + ‖v − v N‖0,ω + ‖p − pN−2‖0,ω � ‖TN u‖0,ω + ‖eu‖0,ω + ‖TN v‖0,ω

+ ‖ev‖0,ω + ‖TN−2 p‖0,ω + ‖ep‖0,ω

� ce−C N + c‖e‖2

� cN8e−C N . �
This concludes the proof of the spectral convergence in both space and time of the P N − P N−2 scheme in space and 

Chebyshev Gauss-Lobatto collocation in time. Thus, completing the analysis for a space-time spectral method for the Stokes 
problem.

Remark 3. In [18, Chap. 4], a space-time spectral scheme with spectral collocation in time and staggered-grid spectral 
collocation in space for (20) is presented. It may be difficult to perform the theoretical analysis presented in this paper 
to the aforementioned scheme. The main challenge of performing such an analysis is estimating the singular values of its 
global space-time spectral operator in terms of the sub-blocks which consist of dense interpolation matrices.

5. The Navier-Stokes equations

One of the most significant problems in fluid dynamics is the Navier-Stokes equations, which model the conservation of 
momentum and conservation of mass for Newtonian fluids. Its applications include modeling water flow in a pipe, ocean 
currents, airflow around a wing, weather, etc. Therefore, they help in the design process of vehicles and airplanes, the study 
of blood flow, the area of magneto-hydrodynamics, and the analysis of pollution, among others. We extend the space-time 
spectral scheme discussed in section 4 to the unsteady Navier-Stokes equations, which are given as:

ut + u
∂u

∂x
+ v

∂u

∂ y
− 1

Re
�u + px = f1 in �t,

vt + u
∂v

∂x
+ v

∂v

∂ y
− 1

Re
�v + p y = f2 in �t,

ux + v y = 0 in �t,

u = 0, v = 0 on ∂�,

u(x, y,−1) = u0(x, y), v(x, y,−1) = v0(x, y) in �.

(46)

Since (23) is a linearized version of the above problem, we define square matrices P(
) and T(
) of size N − 1 for for-
mulating the non-linear terms. For a given index 0 � 
 � N − 2, (i, j) entries of P(
) and T(
) are defined as P(
)

i j =∫ 1
−1 φi(x)φ′

j(x)φ
(x)dx and T(
)
i j = ∫ 1

−1 φi(x)φ j(x)φ
(x)dx, respectively, for 0 � i, j � N − 2. A simple fixed point scheme yields 
the following linear system,
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Fig. 11. Convergence for the P N − P N−2 scheme for the unsteady Navier-Stokes problem with Re = 1.(
W (k−1) +[[[D]]] ⊗M+ 1

Re
IN ⊗ A

)
u(k)

h + (IN ⊗ B1) p(k)

h = (IN ⊗Q)F1 − d ⊗ (Mu0h),(
W (k−1) +[[[D]]] ⊗M+ 1

Re
IN ⊗ A

)
v(k)

h + (IN ⊗ B2) p(k)

h = (IN ⊗Q)F2 − d ⊗ (Mv0h),(
IN ⊗ BT

1

)
u(k)

h +
(

IN ⊗ BT
2

)
v(k)

h = O ,

(47)

where the non-linear term W (k−1) is a block diagonal matrix with N blocks and is defined as

W (k−1) = ⊕N
j=1

(
(Iϑ ⊗ (u j,(k−1)

h )T )W1 + (Iϑ ⊗ (v j,(k−1)

h )T )W2

)
and W1, W2 ∈ Rϑ2×ϑ are defined as the block column ma-

trices with (m, n) × 1 block as T(n) ⊗P(m), P(n) ⊗T(m) ∈Rϑ×ϑ , respectively, for 0 � m, n � N − 2. Also, u j,(k−1)

h and v j,(k−1)

h , 
vectors of length ϑ , represent the components of uh and vh , vectors of length Nϑ , for time t = t j at (k − 1)st iteration, for 
1 � j � N . The space-time spectral convergence of the scheme given by (47) is observed in Fig. 11. For more details, see 
[18, Chap. 4]. We expect that the result of Theorem 4 can be extended to (46) provided that Re is kept sufficiently small.

6. Numerical results

For the Stokes problem in the steady state, given by (1), we implemented the proposed P N − P N−2 scheme in space by 
using recombined Legendre basis functions on Matlab

®. Take f1, f2 so that the exact solutions are u(x, y) = (cos(πx) +
1) sin(2π y), v(x, y) = 0.5 sin(πx)(1 − cos(2π y)), and p(x, y) = sin(πx) cos(π y). The spectral convergence of the P N − P N−2
scheme analyzed in section 3 for the Stokes problem in the steady state is depicted by Fig. 1.

For the unsteady state, we implemented the scheme derived in section 4 for the Stokes problem defined by (2). Based on 
our interest in the analysis, we selected Chebyshev Gauss-Lobatto collocation in time, which can easily be replaced by other 
polynomials. For our implementation on Matlab

®, we take f1, f2, so that the exact solutions are u(x, y, t) = (cos(πx) +
1) sin(2π y) sin(0.5πt), v(x, y, t) = 0.5 sin(πx)(1 − cos(2π y)) sin(0.5πt), and p(x, y, t) = sin(πx) cos(π y) sin(0.5πt). The 
space-time spectral convergence of the unsteady Stokes scheme is depicted by Fig. 7. The same set of exact solutions is 
used for the Matlab

® implementation of (46), the Navier-Stokes problem in an unsteady state. The spectral convergence of 
the unsteady Navier-Stokes problem, using the same scheme as before, in section 5 is evident from Fig. 11. The iteration is 
stopped whenever the infinity norm of the difference between two consecutive iterates is smaller than ε = 10−12. All our
Matlab

® implementations are provided in [19].

7. Conclusion and future work

In this paper, we proposed a space-time spectral method for the Stokes problem, which implements the P N − P N−2
scheme in space and spectral collocation in time. For simplicity of analysis, we considered a recombined Legendre basis in 
space and implemented Chebyshev collocation in time. Note that this scheme can easily be adapted to other orthogonal 
polynomial bases. The optimal condition number estimates were derived for the sub-block appearing in the global spectral 
operator for the Stokes problem in the steady state. Analysis of the scheme in the unsteady state required a new estimate 
of the maximum singular value (or 2-norm) of the Chebyshev Gauss-Lobatto pseudospectral derivative matrix, as per our 
knowledge, which appeared in existing literature solely through numerical experiments. The condition number estimate of 
the global space-time operator is still incomplete because we relied on numerical results for two estimates. We proved the 
spectral convergence of this scheme in space and time. Furthermore, space-time spectral convergence is evident for the 
scheme presented for the unsteady Navier-Stokes problem.
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The global space-time spectral operator of the scheme analyzed in this paper is a non-symmetric saddle point matrix 
so that the symmetric part of its leading block is indefinite. This problem highlights a potential linear algebra problem. We 
desire some estimates on the spectrum of such type of a saddle point matrix, which will be significant for deriving spectral 
condition numbers for such schemes as seen in [26]. Since the linear systems arising from space-time spectral methods are 
coupled at all times, another future question to be studied is whether these schemes can be formulated as parallel in time. 
A problem of great interest is to study and estimate the high limit of the Reynolds number for the P N − P N−2 scheme 
derived in section 5 for the unsteady Navier-Stokes problem.

In [31], pseudo-spectral collocation methods on finite domains for initial value problems were reformulated in terms of 
the summation-by-parts and simultaneous-approximation-terms (SBP–SAT). Thus, another step towards the advancement of 
high-order time-dependent schemes is the application of SBP approximations, for which the presence of space-time stability 
is a merit.
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Appendix A. Double summations in Theorem 1

The nine double summations denoted by Sk , for 1 � k � 9, in (16) are defined as follows

S1 =
1∑

k=0

1∑
j=0

(x j
k)

2

(
(4k + 6)

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)

+ (4 j + 6)

(
1

2k + 1
+ 1

2k + 5
− 2k + 9

(2k + 5)2

))
,

S2 =
N−4∑
k=2

1∑
j=0

(x j
k)

2
(

(4k + 6)

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)
+ 16(4 j + 6)

(2k + 1)(2k + 5)2

)
,

S3 =
N−2∑

k=N−3

1∑
j=0

(x j
k)

2
(

(4k + 6)

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)
+ 4 j + 6

2k + 1

)
,

S4 =
1∑

k=0

N−4∑
j=2

(x j
k)

2
(

16(4k + 6)

(2 j + 1)(2 j + 5)2
+ (4 j + 6)

(
1

2k + 1
+ 1

2k + 5
− 2k + 9

(2k + 5)2

))
,

S5 =
N−4∑
k=2

N−4∑
j=2

(x j
k)

2
(

16(4k + 6)

(2 j + 1)(2 j + 5)2
+ 16(4 j + 6)

(2k + 1)(2k + 5)2

)
,

S6 =
N−2∑

k=N−3

N−4∑
j=2

(x j
k)

2
(

16(4k + 6)

(2 j + 1)(2 j + 5)2
+ 4 j + 6

2k + 1

)
,

S7 =
1∑

k=0

N−2∑
j=N−3

(x j
k)

2
(

4k + 6

2 j + 1
+ (4 j + 6)

(
1

2k + 1
+ 1

2k + 5
− 2k + 9

(2k + 5)2

))
,

S8 =
N−4∑
k=2

N−2∑
j=N−3

(x j
k)

2
(

4k + 6

2 j + 1
+ 16(4 j + 6)

(2k + 1)(2k + 5)2

)
,
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and, finally S9 =
N−2∑

k=N−3

N−2∑
j=N−3

(x j
k)

2
(

4k + 6

2 j + 1
+ 4 j + 6

2k + 1

)
. We claim that Sm � c

N2
, for all 1 � m � 9. First of all, the sum S1

contains only constants independent of N , therefore

S1 �
c

N2

1∑
k=0

1∑
j=0

(x j
k)

2. (A.1)

For the second one, note that

S2 �
N−4∑
k=2

1∑
j=0

(x j
k)

2 (4(2) + 6)

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)

� c

N2

N−4∑
k=2

1∑
j=0

(x j
k)

2. (A.2)

Similarly,

S3 �
N−2∑

k=N−3

1∑
j=0

(x j
k)

2 (4(N − 3) + 6)

(
1

2 j + 1
+ 1

2 j + 5
− 2 j + 9

(2 j + 5)2

)

� cN
N−2∑

k=N−3

1∑
j=0

(x j
k)

2 � c

N2

N−2∑
k=N−3

1∑
j=0

(x j
k)

2. (A.3)

Since 2 � k, j � N − 4 implies (2 j + 5) � 6 j, 
16(4k + 6)

(2 j + 1)(2 j + 5)2 � 16 · 4k

(6 j)3 � c
k

j3 , thus S5 gives

S5 � c
N−4∑
k=2

N−4∑
j=2

(x j
k)

2
(

k

j3
+ j

k3

)
� c

N2

N−4∑
k=2

N−4∑
j=2

(x j
k)

2, (A.4)

as it is easily proved by using calculus that for 2 � k, j � N − 4, 
k

j3
+ j

k3
� c

N2
, for details see [18, p. 49]. Moving forward 

to the term S6, which gives

S6 �
N−2∑

k=N−3

N−4∑
j=2

(x j
k)

2 4 j + 6

2k + 1
�

N−2∑
k=N−3

N−4∑
j=2

(x j
k)

2 4(2) + 6

2k + 1

�
N−2∑

k=N−3

N−4∑
j=2

(x j
k)

2 14

2(N − 2) + 1
� c

N2

N−2∑
k=N−3

N−4∑
j=2

(x j
k)

2. (A.5)

Note that the terms S4, S7, and S8 are similar to the term S2, S3, and S6, respectively, hence (A.2), (A.3), and (A.5) yield

S4 �
c

N2

1∑
k=0

N−4∑
j=2

(x j
k)

2,S7 �
c

N2

1∑
k=0

N−2∑
j=N−3

(x j
k)

2,S8 �
c

N2

N−4∑
k=2

N−2∑
j=N−3

(x j
k)

2. (A.6)

Finally, since for any k, j ∈N , 4k+6
2 j+1 � 4(k+1)

2( j+1)
� k

j , thus using it in S9 gives

S9 �
N−2∑

k=N−3

N−2∑
j=N−3

(x j
k)

2
(

k

j
+ j

k

)
� c

N2

N−2∑
k=N−3

N−2∑
j=N−3

(x j
k)

2. (A.7)

Appendix B. Schur complement for the steady Stokes problem

In this section, we prove some results that are required for proving estimates for the Schur complement for the Stokes 
problem in steady state. The Uzawa pressure operator, denoted by ϒ : L2

0(�) → L2
0(�), is defined as ϒ := ∇ · �−1∇ . It is 

a self-adjoint, bounded, coercive and hence a bijective operator with λmax(ϒ) = 1. Also, �−1 : (H−1(�))2 → V denotes the 
inverse Laplacian. Let u ∈ (H−1(�))2, we say �−1u = v ∈ V if
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�v = u in �,

v = 0 on ∂�.

Note that � is the vector Laplacian as v ∈ V is a vector having two components. From [3, p. 422], the following inf-sup 
condition holds for the P N − P N−2 scheme

inf
qN∈PN−2,N−2∩L2

0(�)

sup
v N ∈P0

N,N

(((∇ · v N ,qN)))

‖v N‖1‖qN‖0
� c√

N
,

which, as stated in [10, p. 173], is equivalent to

min
q∈R℘\0

√
qT BT A−1 Bq

qTMq
� c√

N
, or min

q∈R℘\0

qT ϒhq

qTMq
� c

N
, (B.1)

which is also observed numerically in Fig. 12a. Here q is the vector of coefficients of qN =
N−2∑
i=0

N−2∑
j=0

i+ j>0

qij Li(x)L j(y), and M is 

the mass matrix, so that

qTMq = ‖qN‖2
0 =

N−2∑
i=0

N−2∑
j=0

i+ j>0

q2
i jγiγ j = qT [[[� ⊗ �]]]q,

where � := diag (γ0, γ1, . . . , γN−2) ∈ R(N−1)×(N−1) with γ j = 2
2 j+1 for 0 � j � N − 2. Recall that [[[ · ]]] signifies that its first 

row and first column are deleted, thus M := [[[� ⊗ �]]] ∈R℘×℘ is a diagonal matrix, and

λmin(M) = γ 2
N−2 �

c

N2
. (B.2)

Lastly, the following result is consequential for proving an upper bound for λmin(ϒh) given by Lemma 5.

Lemma 7. For given N � 4, the matrix B ∈R2ϑ×℘ defined by (11), then σmin(B) � c

N2 .

Proof. As seen in proof of Lemma 4, BT B = [[[Q T Q ⊗ RT R + RT R ⊗ Q T Q ]]], where R, Q ∈ R(N−1)×(N−1) are defined by 
Proposition 1. First, we claim that σmin(Q ) � c

N2 . To this end, recall that Q kk = γk , for all 0 � k � N −2, and Q k,k+2 = −γk+2, 
for all 0 � k � N − 4.

σmin(Q ) = min
x∈RN−1

|x|=1

|Q x|

= min
x∈RN−1

|x|=1

∣∣∣∣[(γ0x0 − γ2x2); (γ1x1 − γ3x3); . . . ; (γkxk − γk+2xk+2); . . . ;

. . . ;γN−3xN−3;γN−2xN−2
]∣∣∣∣

Define m =
⌊

N−2
2 − 1

2

⌊
N−2

2

⌋⌋
+ 1, n =

⌊
N−2

2

⌋
, and y ∈ RN−1 so that yn+2k =

√
2(m−k)−1

m , for 0 � k � m − 1 and is zero 
otherwise, thus |y| = 1. Note that cN � n � n + 2k � N − 2, for all 0 � k � m − 1, and there exist some positive constants 
c1, c2 such that c1 N � m � c2N , therefore the following estimate is obtained.

σ 2
min(Q ) �

m−2∑
k=0

(γn+2k yn+2k − γn+2k+2 yn+2k+2)
2 + γ 2

n+2(m−1) y2
n+2(m−1)

=
m−2∑
k=0

(
2

2(n + 2k + 2) + 1
y(n+2k)+2 − 2

2(n + 2k) + 1
yn+2k

)2

+ 4
2

· 1
2
(2(n + 2(m − 1)) + 1) m
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Fig. 12. Numerical results for Appendix B.

�
m−2∑
k=0

(
2

2n + 4k + 5
− 2

2n + 4k + 1

)2

y2
n+2k + c

N4
(since yn+2i � yn+2 j , for all 0 � i � j � m − 1)

� 64
m−2∑
k=0

(
1

(2n + 4k + 1)(2n + 4k + 5)

)2 2(m − k) + 1

m2
+ c

N4

� c

N4
.

Hence, the claim is proved, thus the result is obtained by following the proof of Lemma 4 from (18). �
Define Q̃ := Q (n : N − 1, :), that is, the sub-matrix of Q obtained by removing the first n − 1 rows of Q , then Fig. 12b 

verifies the upper bound on σmin(Q ), obtained by considering the vector y in the above proof.

Appendix C. Proof of Theorem 4

Let us estimate |Gt E|∞ , which is given by (44). To this end, (37) implies |ε|∞ � cN2e−cN , it remains to estimate the 
infinity-norm of Ri for 1 � i � 2. Note that 0 � m, n � N − 2 and 1 � k � N throughout this section, unless otherwise stated.

For R1, the non-zero entries of Ru
1 are of the form

(((TN f k
1 + ((TN u)t − �(TN u))(x, y, tk),φm(x)φn(y))))

=: sk
f + s1(tk) + s2(tk).

Firstly, |sk
f | � ‖TN f k

1 ‖0‖φm(x)φn(y)‖0 � c‖TN f k
1 ‖0, by Theorem 5.12 in [23, p. 248] for the Legendre truncation error esti-

mate,

|sk
f |� ce−C N .

Assume that s1(tk) = z′(tk), where z(t) = ((((TN u)(x, y, t), φm(x)φn(y)))), for some 0 � m, n � N − 2. The interpolant of z(t) is 

given as IN z(t) =
N∑

i=1

z(ti)
i(t) + z(−1)
0(t), then

s1(tk) = z′(tk) = (IN z)′ (tk) + εk = ([[[D]]] (IN(z)(th)))k + z(−1)
′
0(tk) + εk

= ([[[D]]] · z(th))k + z(−1)
′
0(tk) + εk

=
N∑

i=1

dki z(ti) + z(−1)
′
0(tk) + εk, (C.1)

where the error |εk| � cN2e−C N as derived in [30]. To estimate s1(tk), note that for 1 � i � N ,
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z(ti) = ((((TN u)(x, y, ti),φm(x)φn(y)))) � c‖(TN u)(x, y, ti)‖0 � ce−C N ,

where we have used Theorem 5.12 in [23, p. 248] for the Legendre truncation error estimate, i.e., (TN u)(x, y, ti). Also, 
z(−1) = ((((TN u)(x, y, −1), φm(x)φn(y)))) � c‖(TN u0)(x, y)‖0 � ce−C N . Recall from the proof of Lemma 6 that ‖[[[D]]]‖∞ � cN2, 
implying |dki | � cN2 and |dk0| � cN2 for all 1 � i, k � N . Hence, these results along with (C.1) give |s1(tk)| � cN3e−C N .

Since s2(tk) = ((((TN u)(x, y, tk), −�(φm(x)φn(y))))), thus

|s2(tk)| � c‖(TN u)(x, y, tk)‖0 � ce−C N .

Therefore, |Ru
1 |∞ � cN3e−C N + 2ce−C N � cN3e−C N . Similar estimate holds for R v

1 , hence the following estimate is ob-
tained

|R1|∞ � cN3e−C N . (C.2)

For R2, its components consist of as ru
2 , rv

2 , and r p
2 . We estimate the entries of ru

2 by using the same Legendre truncation 
error result, which gives

|ru
2 (tk)| = |((((TN−2 p)(x, y, tk),φ

′
m(x)φn(y))))|� c‖(TN−2 p)(x, y, tk)‖0 � ce−C N ,

similar result holds for rv
2 , and finally for 0 � m, n � N − 2 with m + n > 0 and 1 � k � N ,

|r p
2 (tk)| = |(((Lm(x)Ln(y),

(
(TN u)x + (TN v)y

)
(x, y, tk))))|

� |(((L′
m(x)Ln(y), (TN u)(x, y, tk))))| + |(((Lm(x)L′

n(y), (TN v) (x, y, tk))))|
� c‖ (TN u) (x, y, tk)‖0 � ce−C N ,

hence, |R2|∞ � ce−C N . This estimate, (C.2), and (44) yield the following result

|Gt E|∞ � |ε|∞ +
2∑

i=1

|Ri|∞ � cN3e−C N . (C.3)
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