Preservers on tensor product of matrices and vectors

Chi-Kwong Li Department of Mathematics The College of William and Mary • Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.

化压压 化压压

A ■

Basic problem

- Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.
- In quantum information science, image processing, study of large data sets, etc. one uses the tensor products of matrices and vectors of the form

 $A \otimes B = (a_{ij}B) \in M_m \otimes M_n, \quad x \otimes y = (x_iy) \in \mathbb{C}^m \otimes \mathbb{C}^n, \text{ etc.}$

- Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.
- In quantum information science, image processing, study of large data sets, etc. one uses the tensor products of matrices and vectors of the form

• Of course, such matrices and vectors are (relatively) easy to handle but have measure 0 if m, n > 1.

- Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.
- In quantum information science, image processing, study of large data sets, etc. one uses the tensor products of matrices and vectors of the form

- Of course, such matrices and vectors are (relatively) easy to handle but have measure 0 if m, n > 1.
- In mathematics, ones hope to use the mildest assumption and get the strongest conclusion.

イロト 人間 トイヨト イヨト

- Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.
- In quantum information science, image processing, study of large data sets, etc. one uses the tensor products of matrices and vectors of the form

- Of course, such matrices and vectors are (relatively) easy to handle but have measure 0 if m, n > 1.
- In mathematics, ones hope to use the mildest assumption and get the strongest conclusion.
- Actually, the same is true for other study (and professions).

イロト 人間 トイヨト イヨト

- Preserver problems concern the characterization of maps on matrices, operators, or other algebraic objects with special properties.
- In quantum information science, image processing, study of large data sets, etc. one uses the tensor products of matrices and vectors of the form

- Of course, such matrices and vectors are (relatively) easy to handle but have measure 0 if m, n > 1.
- In mathematics, ones hope to use the mildest assumption and get the strongest conclusion.
- Actually, the same is true for other study (and professions).
- One would test a limited number of cases or measurements (of special types), and deduce useful information.

Let H_N be the set of $N \times N$ Hermitian matrices, and let P_N be the set of rank one orthogonal projections in H_N .

★ 문 ► ★ 문 ►

Let H_N be the set of $N \times N$ Hermitian matrices, and let P_N be the set of rank one orthogonal projections in H_N .

Lemma [Helton and Rodman, 1985]

A linear map $L:M_N\to M_N$ satisfies $L(P_N)=P_N$ if and only if it has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

Let ${\mathcal S}$ be the set

 $\{A \otimes B : A \in P_m, B \in P_n\},\$

or its convex hull, i.e., the set of separable states in M_{mn} .

Let ${\mathcal S}$ be the set

 $\{A \otimes B : A \in P_m, B \in P_n\},\$

or its convex hull, i.e., the set of separable states in M_{mn} .

A linear map $L: H_{mn} \to H_{mn}$ satisfies L(S) = S if and only if there are unitary $U \in M_m$ and $V \in M_n$ such that

Let ${\mathcal S}$ be the set

$$\{A \otimes B : A \in P_m, B \in P_n\},\$$

or its convex hull, i.e., the set of separable states in M_{mn} .

A linear map $L: H_{mn} \to H_{mn}$ satisfies L(S) = S if and only if there are unitary $U \in M_m$ and $V \in M_n$ such that

• $L(A \otimes B) = L_1(A) \otimes L_2(B)$ for $A \otimes B \in H_{mn}$, or

同下 くほと くほど

Let ${\mathcal S}$ be the set

$$\{A \otimes B : A \in P_m, B \in P_n\},\$$

or its convex hull, i.e., the set of separable states in M_{mn} .

A linear map $L: H_{mn} \to H_{mn}$ satisfies L(S) = S if and only if there are unitary $U \in M_m$ and $V \in M_n$ such that

- $L(A \otimes B) = L_1(A) \otimes L_2(B)$ for $A \otimes B \in H_{mn}$, or
- m = n and $L(A \otimes B) = L_2(B) \otimes L_1(A)$ for $A \otimes B \in H_{mn}$,

同下 くほと くほど

Let ${\mathcal S}$ be the set

$$\{A \otimes B : A \in P_m, B \in P_n\},\$$

or its convex hull, i.e., the set of separable states in M_{mn} .

A linear map $L: H_{mn} \to H_{mn}$ satisfies L(S) = S if and only if there are unitary $U \in M_m$ and $V \in M_n$ such that

- $L(A \otimes B) = L_1(A) \otimes L_2(B)$ for $A \otimes B \in H_{mn}$, or
- m = n and $L(A \otimes B) = L_2(B) \otimes L_1(A)$ for $A \otimes B \in H_{mn}$,

where L_1 has the form $A \mapsto UAU^*$ or $A \mapsto UA^tU^*$, and L_2 has the form $B \mapsto VBV^*$ or $B \mapsto VB^tV^*$.

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$.

イロト イヨト イヨト イヨト

臣

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$. The following are equivalent for a linear map $L: H_N \to H_N$.

ヘロト 人間 ト 人 ヨト 人 ヨト

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$. The following are equivalent for a linear map $L: H_N \to H_N$.

(a)
$$L\left(\otimes_{i=1}^{k} P_{n_i}\right) = \otimes_{i=1}^{k} P_{n_i}.$$

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$. The following are equivalent for a linear map $L: H_N \to H_N$.

(a)
$$L\left(\bigotimes_{i=1}^{k} P_{n_{i}}\right) = \bigotimes_{i=1}^{k} P_{n_{i}}.$$

(b) $L\left(\operatorname{conv}\left(\bigotimes_{i=1}^{k} P_{n_{i}}\right)\right) = \operatorname{conv}\left(\bigotimes_{i=1}^{k} P_{n_{i}}\right).$

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$. The following are equivalent for a linear map $L: H_N \to H_N$.

(a)
$$L\left(\otimes_{i=1}^{k}P_{n_{i}}\right) = \bigotimes_{i=1}^{k}P_{n_{i}}.$$

(b)
$$L\left(\operatorname{conv}\left(\otimes_{i=1}^{k}P_{n_{i}}\right)\right) = \operatorname{conv}\left(\otimes_{i=1}^{k}P_{n_{i}}\right).$$

(c) There is a permutation π on $\{1, \ldots, k\}$ and linear maps L_i on H_{n_i} for $i = 1, \ldots k$ such that

$$L\left(\otimes_{i=1}^{k}A_{i}\right) = \otimes_{i=1}^{k}L_{i}\left(A_{\pi\left(i\right)}\right) \quad \text{ for } \quad \otimes_{i=1}^{k}A_{k} \in \otimes_{i=1}^{k}P_{n_{i}},$$

Suppose $n_1 \ge \cdots \ge n_k \ge 2$ are positive integers with k > 1 and $N = \prod_{i=1}^k n_i$. The following are equivalent for a linear map $L: H_N \to H_N$.

(a)
$$L\left(\otimes_{i=1}^{k}P_{n_{i}}\right) = \otimes_{i=1}^{k}P_{n_{i}}.$$

(b)
$$L\left(\operatorname{conv}\left(\otimes_{i=1}^{k}P_{n_{i}}\right)\right) = \operatorname{conv}\left(\otimes_{i=1}^{k}P_{n_{i}}\right).$$

(c) There is a permutation π on $\{1, \ldots, k\}$ and linear maps L_i on H_{n_i} for $i = 1, \ldots k$ such that

$$L\left(\otimes_{i=1}^{k}A_{i}\right) = \otimes_{i=1}^{k}L_{i}\left(A_{\pi\left(i\right)}\right) \quad \text{ for } \quad \otimes_{i=1}^{k}A_{k} \in \otimes_{i=1}^{k}P_{n_{i}},$$

where L_i has the form

$$X \mapsto U_i X U_i^*$$
 or $X \mapsto U_i X^t U_i^*$,

for some unitary $U_i \in M_{n_i}$ and $n_{\pi(i)} = n_i$ for $i = 1, \ldots, k$.

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L:M_r\to M_s$ satisfies $L(P_r)\subseteq P_s$ if and only if one of the following holds.

(a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$.

(b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A \mapsto UAU^*$ or $A \mapsto UA^tU^*$.

回ト・モト・モト

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$. (b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

• We needed this because we considered induced maps $L_A: H_n \to H_{m \cdot n}$ defined by $L_A(B) = L(A \otimes B)$.

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$. (b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

• We needed this because we considered induced maps $L_A : H_n \to H_{m \cdot n}$ defined by $L_A(B) = L(A \otimes B)$. (A locality technique?)

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$. (b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

- We needed this because we considered induced maps L_A : H_n → H_{m·n} defined by L_A(B) = L(A ⊗ B). (A locality technique?)
- Thus, we have to study maps $L: M_r \to M_s$ with $r \neq s$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$.

(b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

- We needed this because we considered induced maps $L_A : H_n \to H_{m \cdot n}$ defined by $L_A(B) = L(A \otimes B)$. (A locality technique?)
- Thus, we have to study maps $L: M_r \to M_s$ with $r \neq s$.
- There are extensions of the results to the infinite dimensional setting in [Hou et al., 2011].

イロン 不同 とうほどう ほどう

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$.

(b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

- We needed this because we considered induced maps L_A : H_n → H_{m·n} defined by L_A(B) = L(A ⊗ B). (A locality technique?)
- Thus, we have to study maps $L: M_r \to M_s$ with $r \neq s$.
- There are extensions of the results to the infinite dimensional setting in [Hou et al., 2011].
- There are results by [Lim, 2011] on additive/linear maps sending

$$P_{m_1} \otimes \cdots \otimes P_{m_k}$$
 to $P_{n_1} \otimes \cdots \otimes P_{n_k}$.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

In our proof, we extended a result in [Baruch and Loewy, 1993] to the following.

[Friedland, Li, Poon, Sze, 2010]

A linear map $L: M_r \to M_s$ satisfies $L(P_r) \subseteq P_s$ if and only if one of the following holds. (a) There is $S \in P_s$ such that L has the form $A \mapsto (tr A)S$.

(b) There is an $s \times r$ matrix U such that $UU^* = I_s$ and L has the form

 $A\mapsto UAU^* \quad \text{ or } \quad A\mapsto UA^tU^*.$

- We needed this because we considered induced maps L_A : H_n → H_{m·n} defined by L_A(B) = L(A ⊗ B). (A locality technique?)
- Thus, we have to study maps $L: M_r \to M_s$ with $r \neq s$.
- There are extensions of the results to the infinite dimensional setting in [Hou et al., 2011].
- There are results by [Lim, 2011] on additive/linear maps sending

 $P_{m_1} \otimes \cdots \otimes P_{m_k}$ to $P_{n_1} \otimes \cdots \otimes P_{n_k}$.

• One may send $A_1 \otimes \cdots \otimes A_k$ into $H_{n_1} \otimes \{B_2\} \otimes \cdots \otimes \{B_k\}$.

Recently, Kuo considered linear maps $L: H_{mn} \to H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

イロト イヨト イヨト イヨト

臣

Recently, Kuo considered linear maps $L: H_{mn} \rightarrow H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

Theorem [Kuo et. al., 2014]

A linear map $L: H_{mn} \to H_{mn}$ satisfies $\|L(I)\| \leq 1$, and

 $L(A \otimes B)$ is a projection whenever $A \in P_m, B \in P_n$

回ト・モト・モー

Recently, Kuo considered linear maps $L: H_{mn} \rightarrow H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

Theorem [Kuo et. al., 2014]

A linear map $L: H_{mn} \to H_{mn}$ satisfies $\|L(I)\| \leq 1$, and

 $L(A \otimes B)$ is a projection whenever $A \in P_m, B \in P_n$

if and only if \boldsymbol{L} has the standard form

 $A \otimes B \mapsto U(L_1(A) \otimes L_2(B))U^*$

for some unitary U, where $L_i(X) = X$ or $L_i(X) = X^t$.

Recently, Kuo considered linear maps $L: H_{mn} \rightarrow H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

Theorem [Kuo et. al., 2014]

A linear map $L: H_{mn} \to H_{mn}$ satisfies $\|L(I)\| \leq 1$, and

 $L(A \otimes B)$ is a projection whenever $A \in P_m, B \in P_n$

if and only if \boldsymbol{L} has the standard form

 $A \otimes B \mapsto U(L_1(A) \otimes L_2(B))U^*$

for some unitary U, where $L_i(X) = X$ or $L_i(X) = X^t$.

There are other preservers if one does not impose the condition $||L(I)|| \leq 1$.

イロト 人間 トイヨト イヨト

Recently, Kuo considered linear maps $L: H_{mn} \rightarrow H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

Theorem [Kuo et. al., 2014]

A linear map $L: H_{mn} \to H_{mn}$ satisfies $\|L(I)\| \leq 1$, and

 $L(A \otimes B)$ is a projection whenever $A \in P_m, B \in P_n$

if and only if \boldsymbol{L} has the standard form

 $A \otimes B \mapsto U(L_1(A) \otimes L_2(B))U^*$

for some unitary U, where $L_i(X) = X$ or $L_i(X) = X^t$.

There are other preservers if one does not impose the condition $||L(I)|| \le 1$.

(a) $X \mapsto (\operatorname{tr} X)R$ for a fixed orthogonal projection.

Recently, Kuo considered linear maps $L: H_{mn} \rightarrow H_{mn}$ such that

 $L(A \otimes B)$ is a projection whenever $(A, B) \in (P_m, P_n)$.

Theorem [Kuo et. al., 2014]

A linear map $L: H_{mn} \to H_{mn}$ satisfies $||L(I)|| \leq 1$, and

 $L(A \otimes B)$ is a projection whenever $A \in P_m, B \in P_n$

if and only if \boldsymbol{L} has the standard form

 $A \otimes B \mapsto U(L_1(A) \otimes L_2(B))U^*$

for some unitary U, where $L_i(X) = X$ or $L_i(X) = X^t$.

There are other preservers if one does not impose the condition $||L(I)|| \leq 1$.

(a) $X \mapsto (\operatorname{tr} X)R$ for a fixed orthogonal projection.

(b) $A \otimes B \mapsto U((\operatorname{tr} A)R \otimes L(B))U^*$, etc.

Some recent progress

By Kuo, Li, Sze, Tsai, Wong, etc.

イロト イヨト イヨト イヨト

臣

Some recent progress

By Kuo, Li, Sze, Tsai, Wong, etc.

• For each $A \in P_m$, we consider induced map $L_A : H_n \to H_{mn}$ defined by

$$L_A(B) = L(A \otimes B)$$

sending rank 1 orthogonal projections to (rank k) orthogonal projections.

▲ 문 ▶ | ▲ 문 ▶

Some recent progress

By Kuo, Li, Sze, Tsai, Wong, etc.

• For each $A \in P_m$, we consider induced map $L_A : H_n \to H_{mn}$ defined by

$$L_A(B) = L(A \otimes B)$$

sending rank 1 orthogonal projections to (rank k) orthogonal projections.

• Then $L_A(B)$ is unitarily similar to $U_A(\tau(B))U_A^*$ such that $\tau(B)$ is a direct sum of

 $I_r \otimes B, \quad I_s \otimes B^t, \quad (\operatorname{tr} B)P,$

where P is a fixed orthogonal projection of rank p,

同下 イヨト イヨト

Some recent progress

By Kuo, Li, Sze, Tsai, Wong, etc.

• For each $A \in P_m$, we consider induced map $L_A : H_n \to H_{mn}$ defined by

$$L_A(B) = L(A \otimes B)$$

sending rank 1 orthogonal projections to (rank k) orthogonal projections.

• Then $L_A(B)$ is unitarily similar to $U_A(\tau(B))U_A^*$ such that $\tau(B)$ is a direct sum of

$$I_r \otimes B$$
, $I_s \otimes B^t$, $(tr B)P$,

where \boldsymbol{P} is a fixed orthogonal projection of rank $\boldsymbol{p},$ and \boldsymbol{q} matrices of the form

$$S(B \oplus B^t)S^*$$
 with $SS^* = \begin{pmatrix} I_n & C \\ C & I_n \end{pmatrix}$ such that $C = C^* = -C^t$

such that k = r + s + p + q.

イロト 人間 トイヨト イヨト

Some recent progress

By Kuo, Li, Sze, Tsai, Wong, etc.

• For each $A \in P_m$, we consider induced map $L_A : H_n \to H_{mn}$ defined by

$$L_A(B) = L(A \otimes B)$$

sending rank 1 orthogonal projections to (rank k) orthogonal projections.

• Then $L_A(B)$ is unitarily similar to $U_A(\tau(B))U_A^*$ such that $\tau(B)$ is a direct sum of

$$I_r \otimes B$$
, $I_s \otimes B^t$, $(tr B)P$,

where \boldsymbol{P} is a fixed orthogonal projection of rank $\boldsymbol{p},$ and \boldsymbol{q} matrices of the form

$$S(B \oplus B^t)S^*$$
 with $SS^* = \begin{pmatrix} I_n & C \\ C & I_n \end{pmatrix}$ such that $C = C^* = -C^t$

such that k = r + s + p + q.

• Then we will use these local maps to determine the structure of L such that $L(A \otimes B)$ for all $(A, B) \in P_m \otimes P_n$.

イロン 不同 とうほどう ほどう

Theorem [Marcus and Moyls, 1959]

A linear map $L: M_n \to M_n$ preserves the spectrum $\sigma(A)$, i.e.,

 $\sigma(L(A)) = \sigma(A)$ for all Hermitian $A \in M_n$

Theorem [Marcus and Moyls, 1959]

A linear map $L: M_n \to M_n$ preserves the spectrum $\sigma(A)$, i.e.,

 $\sigma(L(A)) = \sigma(A)$ for all Hermitian $A \in M_n$

if and only if there is an invertible $S \in M_n$ such that L has the form

$$A \mapsto SAS^{-1}$$
 or $A \mapsto SA^tS^{-1}$.

Theorem [Marcus and Moyls, 1959]

A linear map $L: M_n \to M_n$ preserves the spectrum $\sigma(A)$, i.e.,

 $\sigma(L(A)) = \sigma(A)$ for all Hermitian $A \in M_n$

if and only if there is an invertible $S \in M_n$ such that L has the form

$$A \mapsto SAS^{-1}$$
 or $A \mapsto SA^t S^{-1}$.

If L maps Hermitian matrices to Hermitian matrices, then S is unitary.

A linear map $L: M_{mn} \to M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

A linear map $L: M_{mn} \rightarrow M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

if and only if there is a unitary $U \in M_n$ such that L has the form

 $L(A \otimes B) = U(\tau_1(A) \otimes \tau_2(B))U^*$ for all Hermitian $A \in M_m, B \in M_n$,

(4回) (4回) (4回)

A linear map $L: M_{mn} \rightarrow M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

if and only if there is a unitary $U \in M_n$ such that L has the form

 $L(A \otimes B) = U(\tau_1(A) \otimes \tau_2(B))U^*$ for all Hermitian $A \in M_m, B \in M_n$,

where τ_i is the identity map $X \mapsto X$ or the transposition map $X \mapsto X^t$.

A linear map $L: M_{mn} \rightarrow M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

if and only if there is a unitary $U \in M_n$ such that L has the form

 $L(A \otimes B) = U(\tau_1(A) \otimes \tau_2(B))U^*$ for all Hermitian $A \in M_m, B \in M_n$,

where τ_i is the identity map $X \mapsto X$ or the transposition map $X \mapsto X^t$.

We get essentially the same conclusion if we replace $\sigma(X)$ by the spectral radius r(X); the preservers are \pm of spectrum preservers.

A linear map $L: M_{mn} \rightarrow M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

if and only if there is a unitary $U \in M_n$ such that L has the form

 $L(A \otimes B) = U(\tau_1(A) \otimes \tau_2(B))U^*$ for all Hermitian $A \in M_m, B \in M_n$,

where τ_i is the identity map $X \mapsto X$ or the transposition map $X \mapsto X^t$.

We get essentially the same conclusion if we replace $\sigma(X)$ by the spectral radius r(X); the preservers are \pm of spectrum preservers.

Open problem

What if we do not assume that $L(H_{mn}) \subseteq H_{mn}$?

A linear map $L: M_{mn} \rightarrow M_{mn}$ sending the set of Hermitian matrices to itself and satisfies

 $\sigma(L(A \otimes B)) = \sigma(A \otimes B)$ for all Hermitian $A \in M_m, B \in M_n$

if and only if there is a unitary $U \in M_n$ such that L has the form

 $L(A \otimes B) = U(\tau_1(A) \otimes \tau_2(B))U^*$ for all Hermitian $A \in M_m, B \in M_n$,

where τ_i is the identity map $X \mapsto X$ or the transposition map $X \mapsto X^t$.

We get essentially the same conclusion if we replace $\sigma(X)$ by the spectral radius r(X); the preservers are \pm of spectrum preservers.

Open problem

What if we do not assume that $L(H_{mn}) \subseteq H_{mn}$? Conjecture

$$A \otimes B \mapsto S(\tau_1(A) \otimes \tau_2(B))S^{-1}.$$

Theorem [Frobenius, 1897], [Marcus and Moyls, 1959]

A linear map $L: M_n \to M_n$ satisfies

det(L(A)) = det(A) for all (Hermitian) $A \in M_n$

if and only if there are $M,N\in M_n$ with $\det(MN)=1$ such that L has the form

 $A \mapsto MAN$ or $A \mapsto MA^t N$.

Theorem [Frobenius, 1897], [Marcus and Moyls, 1959]

A linear map $L: M_n \to M_n$ satisfies

det(L(A)) = det(A) for all (Hermitian) $A \in M_n$

if and only if there are $M,N\in M_n$ with $\det(MN)=1$ such that L has the form

 $A \mapsto MAN$ or $A \mapsto MA^t N$.

It follows that a linear determinant preserver on $L: H_n \to H_n$ has the form

$$A \mapsto \mu SAS^*$$
 or $A \mapsto \mu SAS^*$

with $\mu \in \{-1, 1\}$ and $S \in M_n$ such that $det(\mu SS^*) = 1$.

Suppose $L: H_{mn} \to H_{mn}$ is linear and unital. Then

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in H_m \times H_n$

if and only if L has the form

同下 イヨト イヨト

Suppose $L: H_{mn} \to H_{mn}$ is linear and unital. Then

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in H_m \times H_n$

if and only if L has the form

 $A \otimes B \mapsto U(\tau(A \otimes B))U^*$

for some unitary $U \in M_{mn}$ and τ is one of the maps:

→ E → < E →</p>

Suppose $L: H_{mn} \to H_{mn}$ is linear and unital. Then

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in H_m \times H_n$

if and only if L has the form

 $A \otimes B \mapsto U(\tau(A \otimes B))U^*$

for some unitary $U \in M_{mn}$ and τ is one of the maps:

 $A \otimes B \mapsto A \otimes B, \ A^t \otimes B, \ A \otimes B^t, \ \text{ or } \ A^t \otimes B^t.$

< 注 → < 注 → </td>

Suppose $L: H_{mn} \to H_{mn}$ is linear and unital. Then

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in H_m \times H_n$

if and only if L has the form

 $A \otimes B \mapsto U(\tau(A \otimes B))U^*$

for some unitary $U \in M_{mn}$ and τ is one of the maps:

 $A \otimes B \mapsto A \otimes B, \ A^t \otimes B, \ A \otimes B^t, \ \text{ or } \ A^t \otimes B^t.$

Example [Sze et al.] The unital assumption is necessary. Otherwise, there are some other maps, say, when m = n is even,

$$A \otimes B \mapsto I_{n/2} \otimes \begin{bmatrix} 0 & AB \\ BA & 0 \end{bmatrix}$$
.

Chi-Kwong Li Preservers on tensor products

・ロト・日本・山田・山田・山市・

• Can we characterize the preservers without the unital assumption anyway?

イロト 人間 トイヨト イヨト

Э

- Can we characterize the preservers without the unital assumption anyway?
- Can we obtain results for $M_m \otimes M_n$?

イロト 人間 トイヨト イヨト

3

- Can we characterize the preservers without the unital assumption anyway?
- Can we obtain results for $M_m \otimes M_n$? With unital assumption, can we prove that a linear map $L: M_{m \cdot n} \to M_{m \cdot n}$ such that

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in M_m \otimes M_n$

have the form

 $A \otimes B \mapsto S(\tau(A \otimes B))S^{-1}.$

イロト 人間 トイヨト イヨト

臣

- Can we characterize the preservers without the unital assumption anyway?
- Can we obtain results for $M_m \otimes M_n$? With unital assumption, can we prove that a linear map $L: M_{m \cdot n} \to M_{m \cdot n}$ such that

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in M_m \otimes M_n$

have the form

$$A \otimes B \mapsto S(\tau(A \otimes B))S^{-1}.$$

How about m = n = 2? How about removing the unital assumption?

- Can we characterize the preservers without the unital assumption anyway?
- Can we obtain results for $M_m \otimes M_n$? With unital assumption, can we prove that a linear map $L: M_{m \cdot n} \to M_{m \cdot n}$ such that

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in M_m \otimes M_n$

have the form

$$A \otimes B \mapsto S(\tau(A \otimes B))S^{-1}.$$

How about m = n = 2? How about removing the unital assumption?

• There are other questions related to numerical ranges, norms, etc. (on matrices or vectors).

イロト 人間 トイヨト イヨト

- Can we characterize the preservers without the unital assumption anyway?
- Can we obtain results for $M_m \otimes M_n$? With unital assumption, can we prove that a linear map $L: M_{m \cdot n} \to M_{m \cdot n}$ such that

 $\det(L(A \otimes B)) = \det(A \otimes B) \quad \text{ for all } (A, B) \in M_m \otimes M_n$

have the form

$$A \otimes B \mapsto S(\tau(A \otimes B))S^{-1}.$$

How about m = n = 2? How about removing the unital assumption?

- There are other questions related to numerical ranges, norms, etc. (on matrices or vectors).
- Hope to get your help, and I can tell you more next time.

イロン スロン スロン スロン

Thank you for your attention!

イロト イヨト イヨト イヨト

臣