Preserving Entangled States

Edward Poon

Department of Mathematics
Embry-Riddle University
Prescott, AZ, USA
CMS Summer Meeting
Winnipeg
June 2014

Outline

■ Linear Preservers

- Entangled States

■ Linear Preservers of Maximally Entangled States

- Theorem
- Outline of Proof

Notation

$M_{n}=$ space of (complex) $n \times n$ matrices
$H_{n}=\left\{A \in M_{n}: A^{*}=A\right\} \quad$ (real space of Hermitian matrices)
$U_{n}=\left\{A \in M_{n}: A^{*}=A^{-1}\right\} \quad$ (group of unitary matrices)
$\mathcal{P}_{n}=\left\{A \in M_{n}: A^{*}=A=A^{2}\right\} \quad$ (set of projections)

Rank 1 nonincreasing operators

Theorem (Baruch-Loewy, 1993)

Let $\psi: H_{n} \rightarrow H_{n}$ be linear. Suppose rank $\psi(A) \leq 1$ whenever rank $A=1$. Then ψ has one of the following forms:
$1 \psi(A)=\epsilon S A S^{*}$ for some $S \in M_{n}, \epsilon= \pm 1$;
$2 \psi(A)=\epsilon S A^{t} S^{*}$ for some $S \in M_{n}, \epsilon= \pm 1$; or
$3 \quad \psi(A)=L(A) B$ for some linear functional $L: H_{n} \rightarrow \mathbb{R}$ and $B \in H_{n}$ of rank 1 .

Preservers of rank 1 projections

Corollary

Let $\psi: H_{n} \rightarrow H_{n}$ be linear. Suppose $\psi(A)$ is a rank one projection whenever A is. Then ψ has one of the following forms:
$1 \psi(A)=U A U^{*}$ for some unitary $U \in M_{n}$;
$2 \psi(A)=U A^{t} U^{*}$ for some unitary $U \in M_{n}$; or
3 $\psi(A)=(\operatorname{Tr} A) P$ for some projection P.

State

- A state ρ is a positive linear functional acting on $\mathcal{B}(\mathcal{H})$ whose value at the identity l is one.
- In our finite-dimensional setting:
complex Hilbert space $\mathcal{H}=\mathbb{C}^{k}, \quad \mathcal{B}(\mathcal{H})=M_{k}$,
ρ is a positive semidefinite $k \times k$ matrix with trace one

■ A state is pure if it has rank one; otherwise, it is mixed.

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

- Product state:

$$
\rho=\rho_{A} \otimes \rho_{B}
$$

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

- Product state:

$$
\rho=\rho_{A} \otimes \rho_{B}
$$

- Separable state:

$$
\rho=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}, \quad \text { where } p_{i}>0, \sum_{i} p_{i}=1
$$

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

- Product state:

$$
\rho=\rho_{A} \otimes \rho_{B}
$$

- Separable state:

$$
\rho=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}, \quad \text { where } p_{i}>0, \sum_{i} p_{i}=1
$$

- Entangled state: Not separable.

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

- Product state:

$$
\rho=\rho_{A} \otimes \rho_{B}
$$

- Separable state:

$$
\rho=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}, \quad \text { where } p_{i}>0, \sum_{i} p_{i}=1
$$

- Entangled state: Not separable.
- Can generalize to multipartite states:

$$
\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{k}
$$

Entangled State

■ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} ; \operatorname{dim} \mathcal{H}_{A}=\operatorname{dim} \mathcal{H}_{B}=n$.

- Product state:

$$
\rho=\rho_{A} \otimes \rho_{B}
$$

- Separable state:

$$
\rho=\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}, \quad \text { where } p_{i}>0, \sum_{i} p_{i}=1
$$

- Entangled state: Not separable.
- Can generalize to multipartite states:

$$
\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{k}
$$

■ Entanglement is what makes quantum computing work!

Maximally Entangled State

■ Many different measures of entanglement:

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,
- and more ...

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,
- and more ...
- General multipartite case: maximally entangled states depend on measure used (or may not exist).

Maximally Entangled State

■ Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,
- and more ...
- General multipartite case: maximally entangled states depend on measure used (or may not exist).
- Bipartite case: most measures have the same maximally entangled states.

Bipartite case

■ Von Neumann entropy: $S(\rho)=-\operatorname{Tr}[\rho \log \rho]$

- Partial trace over subsystem B : linear map defined by

$$
\operatorname{Tr}_{B}\left(\rho_{A} \otimes \rho_{B}\right)=\rho_{A} \operatorname{Tr} \rho_{B}
$$

■ Entropy of Entanglement (for bipartite pure state ρ):

$$
S\left(\operatorname{Tr}_{B} \rho\right)=S\left(\operatorname{Tr}_{A} \rho\right)
$$

■ Maximized when $\operatorname{Tr}_{A} \rho=\operatorname{Tr}_{B} \rho=\frac{1}{n} l$.

Schmidt decomposition

- Every vector $\psi \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$ has a Schmidt decomposition

$$
\psi=\sum_{i=1}^{n} c_{i} u_{i} \otimes v_{i}
$$

for some orthonormal bases $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ of \mathbb{C}^{n}, and nonnegative numbers c_{i} (Schmidt coefficients).

■ If $\rho=\psi \psi^{*}$ is a pure state then the entropy of entanglement

$$
S\left(\operatorname{Tr}_{B} \rho\right)=-\sum_{i=1}^{n} c_{i}^{2} \log c_{i}^{2}
$$

is maximized when $c_{i}=1 / \sqrt{n}$ for all i.

MES

■ A pure state ρ is a maximally entangled state (MES) if $\rho=\psi \psi^{*}$, where $\psi=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_{i} \otimes v_{i}$ for some orthonormal bases $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ of \mathbb{C}^{n}.

■ Let e_{1}, \ldots, e_{n} be the standard basis vectors, and $E_{i j}=e_{i} e_{j}^{*}$. For unitaries $U, V \in M_{n}$, define

$$
\begin{gathered}
\psi_{U, V}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} U e_{i} \otimes V e_{i} \\
\rho_{U, V}=\psi_{U, V} \psi_{U, V}^{*}=\frac{1}{n} \sum_{i, j=1}^{n} U E_{i j} U^{*} \otimes V E_{i j} V^{*}
\end{gathered}
$$

Simple Properties of MES

The set of Maximally Entangled States is:

- the orbit of the group action of $U_{n} \otimes U_{n}$ on

$$
\rho_{0}=\frac{1}{n} \sum_{i, j=1}^{n} E_{i j} \otimes E_{i j}
$$

since

$$
\rho_{U, V}=(U \otimes V) \rho_{0}(U \otimes V)^{*}
$$

- compact

■ path-connected

Linear Preservers of MES

What linear maps Φ satisfy $\Phi(M E S) \subseteq M E S$?
$1 \rho \mapsto(U \otimes V) \rho(U \otimes V)^{*}$ for some unitary U, V
$2 \rho \mapsto \rho^{t}$
$3 A \otimes B \mapsto B \otimes A$
Since a generic MES is

$$
\rho_{U, V}=\psi_{U, V} \psi_{U, V}^{*}=\frac{1}{n} \sum_{i, j=1}^{n} U E_{i j} U^{*} \otimes V E_{i j} V^{*}
$$

clearly any composition of these three maps will preserve MES.
Q) Are there any others?

Linear Preservers of MES

What linear maps Φ satisfy $\Phi(M E S) \subseteq M E S$?
$1 \rho \mapsto(U \otimes V) \rho(U \otimes V)^{*}$ for some unitary U, V
$2 \rho \mapsto \rho^{t}$
$3 A \otimes B \mapsto B \otimes A$
Since a generic MES is

$$
\rho_{U, V}=\psi_{U, V} \psi_{U, V}^{*}=\frac{1}{n} \sum_{i, j=1}^{n} U E_{i j} U^{*} \otimes V E_{i j} V^{*}
$$

clearly any composition of these three maps will preserve MES.
Q) Are there any others? A) Yes.

Real linear span

ρ is a MES if and only if $\operatorname{Tr}_{A} \rho=\operatorname{Tr}_{B} \rho=\frac{1}{n} l$. Let

$$
\mathcal{S}_{n}=\left\{X \in H_{n} \otimes H_{n}: \operatorname{Tr}_{A} X=\operatorname{Tr}_{B} X=0\right\} .
$$

This is a real vector space of dimension $\left(n^{2}-1\right)^{2}$.

Proposition

The real linear span of MES, denoted by $\operatorname{Span}(M E S)$, is $\mathbb{R} I+\mathcal{S}_{n}$.
If $\rho \in \operatorname{Span}(\mathrm{MES})$ is a pure state, then $\rho \in \mathrm{MES}$

Since Span (MES) is a proper subspace, one could define a linear preserver $\tilde{\Phi}$ as follows.

Let Φ be one (or a composition) of the three linear preservers just presented. Set $\tilde{\Phi}(X)=\Phi(X)$ for all $X \in$ Span (MES), and define $\tilde{\Phi}$ however we like on the orthogonal complement of Span(MES).

Thus we restrict to maps $\Phi: \operatorname{Span}(M E S) \rightarrow \operatorname{Span}(M E S)$ when searching for preservers of MES.

Main Theorem

Theorem

A linear map $\Phi: \operatorname{Span}(M E S) \rightarrow \operatorname{Span}($ MES $)$ preserves MES if and only if Φ has one of the following forms:
$1 \Phi(A \otimes B)=(U \otimes V)(A \otimes B)^{\sigma}(U \otimes V)^{*}$ for some unitaries U, V.
2. $\Phi(A \otimes B)=(U \otimes V)(B \otimes A)^{\sigma}(U \otimes V)^{*}$ for some unitaries U, V.
$3 \Phi(X)=(\operatorname{Tr} X) \rho$ for some $\rho \in M E S$.
Here the map $A \mapsto A^{\sigma}$ is either the identity or transpose map.

Outline of proof

Suppose Φ is a linear map preserving MES.

- We may assume that $\Phi\left(\rho_{0}\right)=\rho_{0}$.
- Reduce redundancy.
- Discern basic linear structure of MES.

Reduce redundancy

Lemma

Let $U, V, W \in M_{n}$ be unitaries. Then $\rho_{U, V}=\rho_{I, W}$ if and only if $W=e^{i \phi} V U^{t}$ for some $\phi \in \mathbb{R}$.

Reduce redundancy

Lemma

Let $U, V, W \in M_{n}$ be unitaries. Then $\rho_{U, V}=\rho_{I, W}$ if and only if $W=e^{i \phi} V U^{t}$ for some $\phi \in \mathbb{R}$.

■ Every MES can be expressed as $\rho_{I, W}$ for an appropriate unitary W.

■ Since $\rho_{I, V}=\rho_{I, W}$ if and only if $W=e^{i \phi} V$ for some $\phi \in \mathbb{R}$, we have a bijection between U_{n} / U_{1} and $M E S$.

Linear structure

Proposition

Fix $\lambda, \mu \in(0,1)$ and $V_{1} \in U_{n}$ such that $\rho_{I, V_{1}} \neq \rho_{0}$. Then there exist $V_{2}, V_{3} \in U_{n}$ satisfying

$$
\lambda \rho_{0}+(1-\lambda) \rho_{1}=\mu \rho_{2}+(1-\mu) \rho_{3}
$$

(here $\rho_{i}=\rho_{I, V_{i}}$) if and only if one of the following hold:
$1 \lambda=\mu, \rho_{0}=\rho_{2}$, and $\rho_{1}=\rho_{3}$.
2 $\lambda=1-\mu, \rho_{0}=\rho_{3}$, and $\rho_{1}=\rho_{2}$.
3 There are $\theta, \alpha, \beta, w_{1} \in \mathbb{R}$ and a Hermitian unitary $H \neq \pm$ l such that

$$
\begin{aligned}
& V_{1}=e^{i \omega_{1}}((\cos \theta) I+i(\sin \theta) H) \quad \text { and } \\
& \mu e^{i 2 \alpha}+(1-\mu) e^{i 2 \beta}=\lambda+(1-\lambda) e^{i 2 \theta}
\end{aligned}
$$

■ In Case 3, there are $w_{2}, w_{3} \in \mathbb{R}$ such that

$$
\begin{aligned}
& V_{2}=e^{i w_{2}}((\cos \alpha) I+i(\sin \alpha) H) \quad \text { and } \\
& V_{3}=e^{i w_{3}}((\cos \beta) I+i(\sin \beta) H)
\end{aligned}
$$

- The equation

$$
\lambda \rho_{0}+(1-\lambda) \rho_{I, V_{1}}=\mu \rho_{I, V_{2}}+(1-\mu) \rho_{I, V_{3}}
$$

has infinitely many solutions (for $\rho_{I, V_{2}}$ and $\rho_{I, V_{3}}$) if and only if $\lambda=\mu=1 / 2$ and $V_{1}=\xi H$ for some complex unit ξ and some Hermitian unitary H.

Special sets

The structural proposition singles out

$$
\mathcal{T}_{0}=\left\{\rho_{I, i H}: H \in U_{n} \cap H_{n}\right\}
$$

and

$$
\begin{aligned}
\mathcal{T} & =\left\{\rho_{I, x I+i y H}: H \in H_{n} \cap U_{n} ; x, y \in \mathbb{R}, x^{2}+y^{2}=1\right\} \\
& =\left\{\rho_{I, U}: U \in U_{n} \text { has at most } 2 \text { distinct eigenvalues }\right\}
\end{aligned}
$$

as special sets which must be preserved by Φ.

Outline of proof

Suppose Φ is a linear map preserving MES.

- We may assume that $\Phi\left(\rho_{0}\right)=\rho_{0}$.
- Reduce redundancy.
- Discern basic linear structure of MES.

■ $\Phi\left(\mathcal{T}_{0}\right) \subseteq \mathcal{T}_{0}$ and $\Phi(\mathcal{T}) \subseteq \mathcal{T}$. Use structural proposition to show

$$
\Phi\left(\rho_{I, x I+i y H}\right)=\rho_{I, x l+i y g}(H)
$$

for some map $g: H_{n} \cap U_{n} \rightarrow H_{n} \cap U_{n}$.

- Extend g to a linear map on H_{n} preserving rank one projections.
Φ is now determined on $\operatorname{Span}(\mathcal{T})$, where

$$
\begin{aligned}
\mathcal{T} & =\left\{\rho_{l, x l+i y H}: H \in H_{n} \cap U_{n}, x^{2}+y^{2}=1\right\} \\
& =\left\{\rho_{l, U}: U \in U_{n} \text { has at most } 2 \text { distinct eigenvalues }\right\}
\end{aligned}
$$

$\Phi\left(\rho_{I, x l+i y H}\right)=\rho_{I, x I+i y g(H)}$ for all Hermitian H, where
$1 g \equiv 0$, or
$2 g(H)=\epsilon U H U^{*}$ for $\epsilon \in\{-1,1\}$ and $U \in U_{n}$, or
$3 g(H)=\epsilon U H^{t} U^{*}$ for $\epsilon \in\{-1,1\}$ and $U \in U_{n}$.

Comparison

Writing $\Phi\left(\rho_{I, X}\right)=\rho_{I, f(X)}$, we have the following correspondences:

Mapping
$f: U_{n} / U_{1} \rightarrow U_{n} / U_{1}$
$1 f(X)=U X$
$2 f(X)=X V$
$3 f(X)=\bar{X}$
$4 f(X)=X^{t}$

Linear Preserver $\Phi: \operatorname{Span}(\mathcal{T}) \rightarrow \operatorname{Span}(\mathcal{T})$

$1 \rho \mapsto(I \otimes U) \rho(I \otimes U)^{*}$
$2 \rho \mapsto\left(V^{t} \otimes I\right) \rho\left(V^{t} \otimes I\right)^{*}$
3 $A \otimes B \mapsto A^{t} \otimes B^{t}$
$4 A \otimes B \mapsto B \otimes A$

Extending beyond $\operatorname{Span}(\mathcal{T})$

■ May assume $\Phi(\rho)=\rho_{0}$ for all $\rho \in \mathcal{T}$ (degenerate case), or $\Phi(\rho)=\rho$ for all $\rho \in \mathcal{T}$.

Extending beyond $\operatorname{Span}(\mathcal{T})$

■ May assume $\Phi(\rho)=\rho_{0}$ for all $\rho \in \mathcal{T}$ (degenerate case), or $\Phi(\rho)=\rho$ for all $\rho \in \mathcal{T}$.
$■ \operatorname{Span}(\mathcal{T})=\operatorname{Span}(M E S) \Longleftrightarrow n=2$

Extending beyond $\operatorname{Span}(\mathcal{T})$

■ May assume $\Phi(\rho)=\rho_{0}$ for all $\rho \in \mathcal{T}$ (degenerate case), or $\Phi(\rho)=\rho$ for all $\rho \in \mathcal{T}$.
■ $\operatorname{Span}(\mathcal{T})=\operatorname{Span}(M E S) \Longleftrightarrow n=2$

- For $n>2$, let

$$
\mathcal{T}_{+}=\left\{\rho_{I, U}: U \in U_{n} \text { has at most } 2\right. \text { distinct eigenvalues }
$$

$$
\text { or is unitarily similar to } \left.\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \oplus I_{n-2}\right\} \text {. }
$$

Extending beyond $\operatorname{Span}(\mathcal{T})$

■ May assume $\Phi(\rho)=\rho_{0}$ for all $\rho \in \mathcal{T}$ (degenerate case), or $\Phi(\rho)=\rho$ for all $\rho \in \mathcal{T}$.

- $\operatorname{Span}(\mathcal{T})=\operatorname{Span}(M E S) \Longleftrightarrow n=2$
- For $n>2$, let

$$
\mathcal{T}_{+}=\left\{\rho_{I, U}: U \in U_{n} \text { has at most } 2\right. \text { distinct eigenvalues }
$$

$$
\text { or is unitarily similar to } \left.\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \oplus I_{n-2}\right\} \text {. }
$$

- $\operatorname{Span}\left(\mathcal{T}_{+}\right)=\operatorname{Span}(\mathrm{MES})$

Extending beyond $\operatorname{Span}(\mathcal{T})$

■ May assume $\Phi(\rho)=\rho_{0}$ for all $\rho \in \mathcal{T}$ (degenerate case), or $\Phi(\rho)=\rho$ for all $\rho \in \mathcal{T}$.
■ $\operatorname{Span}(\mathcal{T})=\operatorname{Span}(M E S) \Longleftrightarrow n=2$

- For $n>2$, let

$$
\begin{aligned}
\mathcal{T}_{+}=\left\{\rho_{I, U}: U\right. & \in U_{n} \text { has at most } 2 \text { distinct eigenvalues } \\
& \text { or is unitarily similar to } \left.\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \oplus I_{n-2}\right\} .
\end{aligned}
$$

- $\operatorname{Span}\left(\mathcal{T}_{+}\right)=\operatorname{Span}($ MES $)$
- Transfer structural proposition to analyze solutions of

$$
\lambda \rho_{I, U_{0}}+(1-\lambda) \rho_{I, U_{1}}=\mu \rho_{I, U_{2}}+(1-\mu) \rho_{I, U_{3}}
$$

The End

The End

- Thank you for your attention!

