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M, = space of (complex) n X n matrices

H,={A € M, : A* = A} (real space of Hermitian matrices)
Upy={A€EM,: A*= A1} (group of unitary matrices)

Pp={AEM,: A*=A=A?} (set of projections)
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Rank 1 nonincreasing operators

Theorem (Baruch-Loewy, 1993)

Let v : H, — H, be linear. Suppose rank {)(A) < 1 whenever
rank A= 1. Then 1 has one of the following forms:

P(A) = eSAS* for some S € M, e = +1;
P(A) = eSA'S* for some S € M, e = £1; or

P(A) = L(A)B for some linear functional L : H, — R and
B € H, of rank 1.



Preservers of rank 1 projections

Corollary

Let 1) : Hy, — Hy, be linear. Suppose 1(A) is a rank one projection
whenever A is. Then v has one of the following forms:

P(A) = UAU* for some unitary U € M,;
P(A) = UALU* for some unitary U € M,,; or

Y(A) = (TrA) P for some projection P.



m A state p is a positive linear functional acting on B(7{) whose
value at the identity / is one.

m In our finite-dimensional setting:

complex Hilbert space H = CK,  B(H) = My,
p is a positive semidefinite k x k matrix with trace one

m A state is pure if it has rank one; otherwise, it is mixed.



m Bipartite system H = Ha ® Hpg; dim Ha = dim Hg = n.
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m Product state:
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P =pPA®pB
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m Product state:

m Bipartite system H = Ha @ Hp; dim Ha = dim Hg = n.

pP=papB
m Separable state:

p=> piPa® ph,
i

where p; > 0, Zp,- =
i
m Entangled state: Not separable.

m Can generalize to multipartite states:

PLO P2 Q- & Pk

m Entanglement is what makes quantum computing work!

[m]
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m Many different measures of entanglement:
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m Many different measures of entanglement:
m entanglement of formation,

concurrence,

distillable entanglement,

relative entropy of entanglement,
and more ...

m General multipartite case: maximally entangled states depend
on measure used (or may not exist).

m Bipartite case: most measures have the same maximally
entangled states.
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m Von Neumann entropy: S(p) = —Tr[plog p]

m Partial trace over subsystem B: linear map defined by

Tre(pa ® pg) = paTrps

m Entropy of Entanglement (for bipartite pure state p):
S(Trgp) = S(Trap)

m Maximized when Trap = Trgp = %I.
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m Every vector ¢ € C" ® C" has a Schmidt decomposition

n
P = Z Ciui ® v;
i—1

for some orthonormal bases {u;} and {v;} of C", and
nonnegative numbers ¢; (Schmidt coefficients).

m If p =)* is a pure state then the entropy of entanglement

S(Trgp) = — Z c? log c?
i=1

is maximized when ¢; = 1//n for all i.
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m A pure state p is a maximally entangled state (MES) if

p = YP*, where 1) = ﬁ > i Ui ® v; for some orthonormal
bases {u;} and {v;} of C".

m Let e1,..., e, be the standard basis vectors, and Ej; = e,-ej‘.
For unitaries U, V € M,, define

1 n
duy =—= Ue® Ve,
U=

1 n
- bv == UE;U" @ VE;V*.
puv =Yuviyy niJ:lu iU" ® VEj
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N)
yel
Q



The set of Maximally Entangled States is:

m the orbit of the group action of U, ® U, on

1 n
po=— Z Ej ® Ej
ij=1
since

m compact

puy = (U® V)po(U® V)*
m path-connected
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What linear maps & satisfy ®(MES) C MES?

p— (U V)p(U® V)* for some unitary U, V
ppt

HAXB—B®A

Since a generic MES is

* 1 4 * *
puv =Yu vy = - Z UE;U" ® VE; V™,
=1

clearly any composition of these three maps will preserve MES
Q) Are there any others?
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What linear maps & satisfy ®(MES) C MES?

p— (U V)p(U® V)* for some unitary U, V
ppt

HAXB—B®A

Since a generic MES is

* 1 4 * *
puv =Yu vy = - Z UE;U" ® VE; V™,
=1

clearly any composition of these three maps will preserve MES
Q) Are there any others?

A) Yes.
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Real linear span

pisa MES if and only if Trap=Trgp = 1/. Let
Sh={XeH, @H,: TraX =Trg X =0}.
This is a real vector space of dimension (n? — 1)2.

Proposition

The real linear span of MES, denoted by Span(MES), is Rl + S,,.

If p € Span(MES) is a pure state, then p € MES



preserver ® as follows.

Since SparJ(MES) is a proper subspace, one could define a linear

Let ® be one (or a composition) of the three linear preservers just
presented. Set ®(X) = ®(X) for all X €Span (MES), and define

® however we like on the orthogonal complement of Span(MES).

Thus we restrict to maps ® :Span(MES) — Span(MES) when
searching for preservers of MES.
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Main Theorem

A linear map ® : Span(MES) — Span(MES) preserves MES if and
only if ® has one of the following forms:

P(A® B)=(U® V)(A® B)?(U® V)* for some unitaries
u,Vv.

P(A® B)=(U® V)(B® A)?(U® V)* for some unitaries
U V.

®(X) = (TrX) p for some p € MES.

Here the map A — A7 is either the identity or transpose map.
2 Y



Suppose @ is a linear map preserving MES

m We may assume that ®(pg) = po.
m Reduce redundancy.

m Discern basic linear structure of MES.
E ...
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Let U,V,W € M, be unitaries. Then py = p;w if and only if
W = e'®VU! for some ¢ € R.
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Reduce redundancy

Lemma

Let U,V,W € M, be unitaries. Then py = p;w if and only if
W = e'®VU! for some ¢ € R.

m Every MES can be expressed as p; w for an appropriate
unitary W.

m Since p;v = p;w if and only if W = e/®V for some ¢ € R,
we have a bijection between U,/U; and MES.



Linear structure

Proposition

Fix X\, € (0,1) and V4 € U, such that p;\, # po. Then there
exist Vi, V3 € U, satisfying

Apo+ (1= X)p1 = pp2 + (1 — p)p3

(here pi = py,v;) if and only if one of the following hold:
A=, po = p2, and p1 = p3.
A=1—p, po=ps, and p1 = p2.

There are 0, , B, wy € R and a Hermitian unitary H # +1
such that

Vi = e™i((cosh)I + i(sin A)H) and

pe® (1 —p)e® = x4 (1 - N)e'?.



m In Case 3, there are ws, wz € R such that

Vo = e™2((cosa)l + i(sina)H) and
Vs = e™3((cos B)1 + i(sin B)H).

m The equation

Apo + (1= N)prvy = pprv, + (1 — w)prvy

has infinitely many solutions (for p; v, and pj v,) if and only if

A=p=1/2and Vi = {H for some complex unit £ and some
Hermitian unitary H.
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The structural proposition singles out

To = {p/,,'H cHe U,N Hn}
and

T = {pl,xl+in cHe H,NUy; X,y € R, X2 —|—y2 = 1}

= {p1u : U € Uy has at most 2 distinct eigenvalues}
as special sets which must be preserved by .
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Suppose ® is a linear map preserving MES.
m We may assume that ®(pg) = po.

m  Reduce redundancy.

m  Discern basic linear structure of MES.

m ®(Tg) € To and (7)) C T. Use structural proposition to

show

S(p1x1+iyH) = Pl xi+ivg(H)
for some map g : H,NU, — H, N U,.

m Extend g to a linear map on H, preserving rank one
projections.



® is now determined on Span(7T), where

T = {p1xasipn : HE HoN Uy, x>+ y? =1}

= {p1u : U € U, has at most 2 distinct eigenvalues}

S(p1xi+iyH) = Pixi+iyg(H) for all Hermitian H, where
g=0,or

g(H) = eUHU* for e € {—1,1} and U € U,, or
g(H) = eUH'U* for e € {—1,1} and U € U,,.
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Writing ®(p; x) = pj,¢(x), we have the following correspondences:

Mapping Linear Preserver
f:Uy/Up— Uy/Us ® : Span(7) — Span(T)
| f(X)=UX Hp— (I U)p(l ®U)*
f(X) =XV p—= (VE@ Np(VEx 1)*
Bf(X)=X B A®B— A'® Bt
A f(X)=X" AARB—B®A
o < z = = 9ace



m May assume ®(p) = pg for all p € T (degenerate case),
or®(p)=pforall peT.
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m May assume ®(p) = pg for all p € T (degenerate case),
or®(p)=pforall peT.

m Span(7) = Span(MES) <= n=2
m For n> 2, let

T+ ={p1u : U € U, has at most 2 distinct eigenvalues
or is unitarily similar to [(l) _OI} @ lh_2}.
m Span(7;) = Span(MES)
m Transfer structural proposition to analyze solutions of

Aoy + (L= N)pru = ppru, + (1= w)prus
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m Thank you for your attention!

DA



