Preserving Entangled States

Edward Poon

Department of Mathematics Embry-Riddle University Prescott, AZ, USA

CMS Summer Meeting Winnipeg June 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Outline

- Linear Preservers
- Entangled States
- Linear Preservers of Maximally Entangled States

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Theorem
- Outline of Proof

$$\begin{split} M_n &= \text{space of (complex) } n \times n \text{ matrices} \\ H_n &= \{A \in M_n : A^* = A\} \quad \text{(real space of Hermitian matrices)} \\ U_n &= \{A \in M_n : A^* = A^{-1}\} \quad \text{(group of unitary matrices)} \\ \mathcal{P}_n &= \{A \in M_n : A^* = A = A^2\} \quad \text{(set of projections)} \end{split}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Theorem (Baruch-Loewy, 1993)

Let $\psi : H_n \to H_n$ be linear. Suppose rank $\psi(A) \le 1$ whenever rank A = 1. Then ψ has one of the following forms:

1
$$\psi(A) = \epsilon SAS^*$$
 for some $S \in M_n$, $\epsilon = \pm 1$;

2
$$\psi(A) = \epsilon S A^t S^*$$
 for some $S \in M_n$, $\epsilon = \pm 1$; or

3 $\psi(A) = L(A)B$ for some linear functional $L : H_n \to \mathbb{R}$ and $B \in H_n$ of rank 1.

Preservers of rank 1 projections

Corollary

Let $\psi : H_n \to H_n$ be linear. Suppose $\psi(A)$ is a rank one projection whenever A is. Then ψ has one of the following forms:

1
$$\psi(A) = UAU^*$$
 for some unitary $U \in M_n$;

2
$$\psi(\mathsf{A}) = \mathsf{U}\mathsf{A}^t\mathsf{U}^*$$
 for some unitary $\mathsf{U}\in\mathsf{M}_n$; or

3 $\psi(A) = (TrA) P$ for some projection P.

A state ρ is a positive linear functional acting on B(H) whose value at the identity I is one.

In our finite-dimensional setting:
 complex Hilbert space \$\mathcal{H} = \mathbb{C}^k\$, \$\mathcal{B}(\mathcal{H}) = M_k\$,

 ρ is a positive semidefinite $k \times k$ matrix with trace one

A state is *pure* if it has rank one; otherwise, it is *mixed*.

Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \dim \mathcal{H}_B = n$.

<□ > < @ > < E > < E > E のQ @

Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \text{dim } \mathcal{H}_B = n$.

Product state:

$$\rho = \rho_A \otimes \rho_B$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \dim \mathcal{H}_B = n$.

Product state:

$$\rho = \rho_{\mathsf{A}} \otimes \rho_{\mathsf{B}}$$

Separable state:

$$\rho = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i},$$

where $p_i > 0, \sum_i p_i = 1$

- Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \dim \mathcal{H}_B = n$.
- Product state:

$$\rho = \rho_{\mathsf{A}} \otimes \rho_{\mathsf{B}}$$

Separable state:

$$ho = \sum_i p_i
ho_A^i \otimes
ho_B^i, \qquad ext{where } p_i > 0, \sum_i p_i = 1$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Entangled state: Not separable.

- Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \dim \mathcal{H}_B = n$.
- Product state:

$$\rho = \rho_{\mathsf{A}} \otimes \rho_{\mathsf{B}}$$

Separable state:

$$ho = \sum_i p_i
ho_A^i \otimes
ho_B^i, \qquad ext{where } p_i > 0, \sum_i p_i = 1$$

- Entangled state: Not separable.
- Can generalize to multipartite states:

$$\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$; dim $\mathcal{H}_A = \dim \mathcal{H}_B = n$.
- Product state:

$$\rho = \rho_{\mathsf{A}} \otimes \rho_{\mathsf{B}}$$

Separable state:

$$ho = \sum_i p_i
ho_A^i \otimes
ho_B^i, \qquad ext{where } p_i > 0, \sum_i p_i = 1$$

- Entangled state: Not separable.
- Can generalize to multipartite states:

$$\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_k$$

・ロト・日本・モート モー うへぐ

Entanglement is what makes quantum computing work!

Many different measures of entanglement:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Many different measures of entanglement:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

entanglement of formation,

Many different measures of entanglement:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- entanglement of formation,
- concurrence,

Many different measures of entanglement:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- entanglement of formation,
- concurrence,
- distillable entanglement,

Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and more ...

Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,
- and more ...

 General multipartite case: maximally entangled states depend on measure used (or may not exist).

Many different measures of entanglement:

- entanglement of formation,
- concurrence,
- distillable entanglement,
- relative entropy of entanglement,
- and more ...
- General multipartite case: maximally entangled states depend on measure used (or may not exist).

 Bipartite case: most measures have the same maximally entangled states.

Bipartite case

• Von Neumann entropy: $S(\rho) = -\text{Tr}[\rho \log \rho]$

Partial trace over subsystem B: linear map defined by

$$\mathsf{Tr}_{B}(\rho_{A}\otimes\rho_{B})=\rho_{A}\mathsf{Tr}\,\rho_{B}$$

Entropy of Entanglement (for bipartite pure state ρ):

$$S(\operatorname{Tr}_B \rho) = S(\operatorname{Tr}_A \rho)$$

• Maximized when $\operatorname{Tr}_A \rho = \operatorname{Tr}_B \rho = \frac{1}{n}I$.

Schmidt decomposition

• Every vector $\psi \in \mathbb{C}^n \otimes \mathbb{C}^n$ has a Schmidt decomposition

$$\psi = \sum_{i=1}^n c_i u_i \otimes v_i$$

for some orthonormal bases $\{u_i\}$ and $\{v_i\}$ of \mathbb{C}^n , and nonnegative numbers c_i (Schmidt coefficients).

 \blacksquare If $\rho=\psi\psi^*$ is a pure state then the entropy of entanglement

$$S(\mathrm{Tr}_B \rho) = -\sum_{i=1}^n c_i^2 \log c_i^2$$

is maximized when $c_i = 1/\sqrt{n}$ for all *i*.

- A pure state ρ is a maximally entangled state (MES) if $\rho = \psi \psi^*$, where $\psi = \frac{1}{\sqrt{n}} \sum_{i=1}^n u_i \otimes v_i$ for some orthonormal bases $\{u_i\}$ and $\{v_i\}$ of \mathbb{C}^n .
- Let e_1, \ldots, e_n be the standard basis vectors, and $E_{ij} = e_i e_j^*$. For unitaries $U, V \in M_n$, define

$$\psi_{U,V} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} U e_i \otimes V e_i,$$

$$\rho_{U,V} = \psi_{U,V}\psi_{U,V}^* = \frac{1}{n}\sum_{i,j=1}^n UE_{ij}U^* \otimes VE_{ij}V^*.$$

The set of Maximally Entangled States is:

• the orbit of the group action of $U_n \otimes U_n$ on

$$\rho_0 = \frac{1}{n} \sum_{i,j=1}^n E_{ij} \otimes E_{ij}$$

since

$$\rho_{U,V} = (U \otimes V)\rho_0 (U \otimes V)^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

compact

path-connected

What linear maps Φ satisfy $\Phi(MES) \subseteq MES$?

1
$$\rho \mapsto (U \otimes V)\rho(U \otimes V)^*$$
 for some unitary U, V
2 $\rho \mapsto \rho^t$

$$A \otimes B \mapsto B \otimes A$$

Since a generic MES is

$$\rho_{U,V} = \psi_{U,V}\psi^*_{U,V} = \frac{1}{n}\sum_{i,j=1}^n UE_{ij}U^* \otimes VE_{ij}V^*,$$

clearly any composition of these three maps will preserve MES. Q) Are there any others?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What linear maps Φ satisfy $\Phi(MES) \subseteq MES$?

1
$$\rho \mapsto (U \otimes V)\rho(U \otimes V)^*$$
 for some unitary U, V
2 $\rho \mapsto \rho^t$

Since a generic MES is

$$\rho_{U,V} = \psi_{U,V}\psi^*_{U,V} = \frac{1}{n}\sum_{i,j=1}^n UE_{ij}U^* \otimes VE_{ij}V^*,$$

clearly any composition of these three maps will preserve MES. Q) Are there any others? A) Yes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 ρ is a MES if and only if $\operatorname{Tr}_A \rho = \operatorname{Tr}_B \rho = \frac{1}{n}I$. Let

$$\mathcal{S}_n = \{ X \in H_n \otimes H_n : \operatorname{Tr}_A X = \operatorname{Tr}_B X = 0 \}.$$

This is a real vector space of dimension $(n^2 - 1)^2$.

Proposition

The real linear span of MES, denoted by Span(MES), is $\mathbb{R}I + S_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\rho \in \text{Span}(\text{MES})$ is a pure state, then $\rho \in \text{MES}$

Since Span(MES) is a proper subspace, one could define a linear preserver $\tilde{\Phi}$ as follows.

Let Φ be one (or a composition) of the three linear preservers just presented. Set $\tilde{\Phi}(X) = \Phi(X)$ for all $X \in$ Span (MES), and define $\tilde{\Phi}$ however we like on the orthogonal complement of Span(MES).

Thus we restrict to maps Φ :Span(MES) \rightarrow Span(MES) when searching for preservers of MES.

Main Theorem

Theorem

A linear map Φ : Span(MES) \rightarrow Span(MES) preserves MES if and only if Φ has one of the following forms:

- $\Phi(A \otimes B) = (U \otimes V)(A \otimes B)^{\sigma}(U \otimes V)^* \text{ for some unitaries} U, V.$
- 2 $\Phi(A \otimes B) = (U \otimes V)(B \otimes A)^{\sigma}(U \otimes V)^*$ for some unitaries U, V.
- 3 $\Phi(X) = (TrX) \rho$ for some $\rho \in MES$.

Here the map $A \mapsto A^{\sigma}$ is either the identity or transpose map.

Suppose Φ is a linear map preserving MES.

- We may assume that $\Phi(\rho_0) = \rho_0$.
- Reduce redundancy.
- Discern basic linear structure of MES.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

...

Reduce redundancy

Lemma

Let $U, V, W \in M_n$ be unitaries. Then $\rho_{U,V} = \rho_{I,W}$ if and only if $W = e^{i\phi}VU^t$ for some $\phi \in \mathbb{R}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Reduce redundancy

Lemma

Let $U, V, W \in M_n$ be unitaries. Then $\rho_{U,V} = \rho_{I,W}$ if and only if $W = e^{i\phi}VU^t$ for some $\phi \in \mathbb{R}$.

- Every MES can be expressed as ρ_{I,W} for an appropriate unitary W.
- Since $\rho_{I,V} = \rho_{I,W}$ if and only if $W = e^{i\phi}V$ for some $\phi \in \mathbb{R}$, we have a bijection between U_n/U_1 and *MES*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linear structure

Proposition

Fix $\lambda, \mu \in (0, 1)$ and $V_1 \in U_n$ such that $\rho_{I,V_1} \neq \rho_0$. Then there exist $V_2, V_3 \in U_n$ satisfying

$$\lambda
ho_0+(1-\lambda)
ho_1=\mu
ho_2+(1-\mu)
ho_3$$

(here $\rho_i = \rho_{I,V_i}$) if and only if one of the following hold: **1** $\lambda = \mu$, $\rho_0 = \rho_2$, and $\rho_1 = \rho_3$. **2** $\lambda = 1 - \mu$, $\rho_0 = \rho_3$, and $\rho_1 = \rho_2$.

3 There are $\theta, \alpha, \beta, w_1 \in \mathbb{R}$ and a Hermitian unitary $H \neq \pm I$ such that

$$V_1 = e^{iw_1}((\cos \theta)I + i(\sin \theta)H)$$
 and
 $\mu e^{i2lpha} + (1-\mu)e^{i2eta} = \lambda + (1-\lambda)e^{i2 heta}.$

In Case 3, there are w_2 , $w_3 \in \mathbb{R}$ such that

$$V_2 = e^{iw_2}((\cos \alpha)I + i(\sin \alpha)H) \text{ and}$$
$$V_3 = e^{iw_3}((\cos \beta)I + i(\sin \beta)H).$$

The equation

$$\lambda
ho_0 + (1-\lambda)
ho_{I,V_1} = \mu
ho_{I,V_2} + (1-\mu)
ho_{I,V_3}$$

has infinitely many solutions (for ρ_{I,V_2} and ρ_{I,V_3}) if and only if $\lambda = \mu = 1/2$ and $V_1 = \xi H$ for some complex unit ξ and some Hermitian unitary H.

Special sets

The structural proposition singles out

$$\mathcal{T}_0 = \{\rho_{I,iH} : H \in U_n \cap H_n\}$$

 and

$$\mathcal{T} = \{\rho_{I,xI+iyH} : H \in H_n \cap U_n; x, y \in \mathbb{R}, x^2 + y^2 = 1\}$$
$$= \{\rho_{I,U} : U \in U_n \text{ has at most } 2 \text{ distinct eigenvalues} \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

as special sets which must be preserved by Φ .

Outline of proof

Suppose Φ is a linear map preserving MES.

- We may assume that Φ(ρ₀) = ρ₀.
- Reduce redundancy.
- Discern basic linear structure of MES.
- $\Phi(\mathcal{T}_0) \subseteq \mathcal{T}_0$ and $\Phi(\mathcal{T}) \subseteq \mathcal{T}$. Use structural proposition to show

$$\Phi(\rho_{I,xI+iyH}) = \rho_{I,xI+iyg(H)}$$

for some map $g: H_n \cap U_n \to H_n \cap U_n$.

Extend g to a linear map on H_n preserving rank one projections.

 Φ is now determined on Span(\mathcal{T}), where

$$\mathcal{T} = \{ \rho_{I,xI+iyH} : H \in H_n \cap U_n, \ x^2 + y^2 = 1 \}$$

= $\{ \rho_{I,U} : U \in U_n \text{ has at most 2 distinct eigenvalues} \}.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\Phi(\rho_{I,xI+iyH}) = \rho_{I,xI+iyg(H)} \text{ for all Hermitian } H, \text{ where}$$

$$g \equiv 0, \text{ or}$$

$$g(H) = \epsilon UHU^* \text{ for } \epsilon \in \{-1,1\} \text{ and } U \in U_n, \text{ or}$$

$$g(H) = \epsilon UH^t U^* \text{ for } \epsilon \in \{-1,1\} \text{ and } U \in U_n.$$

Comparison

Writing $\Phi(\rho_{I,X}) = \rho_{I,f(X)}$, we have the following correspondences:

Mapping $f: U_n/U_1 \rightarrow U_n/U_1$

- f(X) = UX
- f(X) = XV
- $f(X) = \overline{X}$
- 4 $f(X) = X^t$

Linear Preserver

- $\Phi: \mathsf{Span}(\mathcal{T}) \to \mathsf{Span}(\mathcal{T})$
 - 1 $\rho \mapsto (I \otimes U)\rho(I \otimes U)^*$
 - $\ 2 \ \rho \mapsto (V^t \otimes I) \rho (V^t \otimes I)^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

May assume Φ(ρ) = ρ₀ for all ρ ∈ T (degenerate case), or Φ(ρ) = ρ for all ρ ∈ T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

May assume Φ(ρ) = ρ₀ for all ρ ∈ T (degenerate case), or Φ(ρ) = ρ for all ρ ∈ T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Span(\mathcal{T}) = Span(MES) $\iff n = 2$

May assume Φ(ρ) = ρ₀ for all ρ ∈ T (degenerate case), or Φ(ρ) = ρ for all ρ ∈ T.

• Span(\mathcal{T}) = Span(MES) $\iff n = 2$

For n > 2, let

 $\mathcal{T}_{+} = \{ \rho_{I,U} : U \in U_n \text{ has at most 2 distinct eigenvalues} \\ \text{or is unitarily similar to } \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \oplus I_{n-2} \}.$

May assume Φ(ρ) = ρ₀ for all ρ ∈ T (degenerate case), or Φ(ρ) = ρ for all ρ ∈ T.

• Span(\mathcal{T}) = Span(MES) $\iff n = 2$

For n > 2, let

 $\mathcal{T}_{+} = \{ \rho_{I,U} : U \in U_n \text{ has at most 2 distinct eigenvalues} \\ \text{or is unitarily similar to } \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \oplus I_{n-2} \}.$

• Span(\mathcal{T}_+) = Span(MES)

- May assume Φ(ρ) = ρ₀ for all ρ ∈ T (degenerate case), or Φ(ρ) = ρ for all ρ ∈ T.
- Span(\mathcal{T}) = Span(MES) $\iff n = 2$
- For n > 2, let

 $\mathcal{T}_{+} = \{ \rho_{I,U} : U \in U_n \text{ has at most 2 distinct eigenvalues} \\ \text{or is unitarily similar to } \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \oplus I_{n-2} \}.$

• Span $(\mathcal{T}_+) =$ Span(MES)

Transfer structural proposition to analyze solutions of

$$\lambda \rho_{I,U_0} + (1-\lambda)\rho_{I,U_1} = \mu \rho_{I,U_2} + (1-\mu)\rho_{I,U_3}$$

The End

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

The End

Thank you for your attention!