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Notation

Mn = space of (complex) n × n matrices

Hn = {A ∈ Mn : A∗ = A} (real space of Hermitian matrices)

Un = {A ∈ Mn : A∗ = A−1} (group of unitary matrices)

Pn = {A ∈ Mn : A∗ = A = A2} (set of projections)



Rank 1 nonincreasing operators

Theorem (Baruch-Loewy, 1993)

Let ψ : Hn → Hn be linear. Suppose rank ψ(A) ≤ 1 whenever
rank A = 1. Then ψ has one of the following forms:

1 ψ(A) = εSAS∗ for some S ∈ Mn, ε = ±1;

2 ψ(A) = εSAtS∗ for some S ∈ Mn, ε = ±1; or

3 ψ(A) = L(A)B for some linear functional L : Hn → R and
B ∈ Hn of rank 1.



Preservers of rank 1 projections

Corollary

Let ψ : Hn → Hn be linear. Suppose ψ(A) is a rank one projection
whenever A is. Then ψ has one of the following forms:

1 ψ(A) = UAU∗ for some unitary U ∈ Mn;

2 ψ(A) = UAtU∗ for some unitary U ∈ Mn; or

3 ψ(A) = (TrA)P for some projection P.



State

A state ρ is a positive linear functional acting on B(H) whose
value at the identity I is one.

In our finite-dimensional setting:

complex Hilbert space H = Ck , B(H) = Mk ,

ρ is a positive semidefinite k × k matrix with trace one

A state is pure if it has rank one; otherwise, it is mixed.



Entangled State

Bipartite system H = HA ⊗HB ; dim HA = dim HB = n.

Product state:
ρ = ρA ⊗ ρB

Separable state:

ρ =
∑
i

piρ
i
A ⊗ ρiB , where pi > 0,

∑
i

pi = 1

Entangled state: Not separable.

Can generalize to multipartite states:

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk

Entanglement is what makes quantum computing work!
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Maximally Entangled State

Many different measures of entanglement:

entanglement of formation,
concurrence,
distillable entanglement,
relative entropy of entanglement,
and more ...

General multipartite case: maximally entangled states depend
on measure used (or may not exist).

Bipartite case: most measures have the same maximally
entangled states.
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Bipartite case

Von Neumann entropy: S(ρ) = −Tr[ρ log ρ]

Partial trace over subsystem B: linear map defined by

TrB(ρA ⊗ ρB) = ρATr ρB

Entropy of Entanglement (for bipartite pure state ρ):

S(TrB ρ) = S(TrA ρ)

Maximized when TrA ρ = TrB ρ = 1
n I .



Schmidt decomposition

Every vector ψ ∈ Cn ⊗ Cn has a Schmidt decomposition

ψ =
n∑

i=1

ciui ⊗ vi

for some orthonormal bases {ui} and {vi} of Cn, and
nonnegative numbers ci (Schmidt coefficients).

If ρ = ψψ∗ is a pure state then the entropy of entanglement

S(TrBρ) = −
n∑

i=1

c2
i log c2

i

is maximized when ci = 1/
√
n for all i .



MES

A pure state ρ is a maximally entangled state (MES) if
ρ = ψψ∗, where ψ = 1√

n

∑n
i=1 ui ⊗ vi for some orthonormal

bases {ui} and {vi} of Cn.

Let e1, . . . , en be the standard basis vectors, and Eij = eie
∗
j .

For unitaries U,V ∈ Mn, define

ψU,V =
1√
n

n∑
i=1

Uei ⊗ Vei ,

ρU,V = ψU,Vψ
∗
U,V =

1

n

n∑
i ,j=1

UEijU
∗ ⊗ VEijV

∗.



Simple Properties of MES

The set of Maximally Entangled States is:

the orbit of the group action of Un ⊗ Un on

ρ0 =
1

n

n∑
i ,j=1

Eij ⊗ Eij

since
ρU,V = (U ⊗ V )ρ0(U ⊗ V )∗

compact

path-connected



Linear Preservers of MES

What linear maps Φ satisfy Φ(MES) ⊆ MES?

1 ρ 7→ (U ⊗ V )ρ(U ⊗ V )∗ for some unitary U,V

2 ρ 7→ ρt

3 A⊗ B 7→ B ⊗ A

Since a generic MES is

ρU,V = ψU,Vψ
∗
U,V =

1

n

n∑
i ,j=1

UEijU
∗ ⊗ VEijV

∗,

clearly any composition of these three maps will preserve MES.

Q) Are there any others?

A) Yes.
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Real linear span

ρ is a MES if and only if TrA ρ = TrB ρ = 1
n I . Let

Sn = {X ∈ Hn ⊗ Hn : TrA X = TrB X = 0}.

This is a real vector space of dimension (n2 − 1)2.

Proposition

The real linear span of MES, denoted by Span(MES), is RI + Sn.

If ρ ∈ Span(MES) is a pure state, then ρ ∈ MES



Since Span(MES) is a proper subspace, one could define a linear
preserver Φ̃ as follows.

Let Φ be one (or a composition) of the three linear preservers just
presented. Set Φ̃(X ) = Φ(X ) for all X ∈Span (MES), and define
Φ̃ however we like on the orthogonal complement of Span(MES).

Thus we restrict to maps Φ :Span(MES) → Span(MES) when
searching for preservers of MES.



Main Theorem

Theorem

A linear map Φ : Span(MES)→ Span(MES) preserves MES if and
only if Φ has one of the following forms:

1 Φ(A⊗ B) = (U ⊗ V )(A⊗ B)σ(U ⊗ V )∗ for some unitaries
U,V .

2 Φ(A⊗ B) = (U ⊗ V )(B ⊗ A)σ(U ⊗ V )∗ for some unitaries
U,V .

3 Φ(X ) = (TrX ) ρ for some ρ ∈ MES.

Here the map A 7→ Aσ is either the identity or transpose map.



Outline of proof

Suppose Φ is a linear map preserving MES.

We may assume that Φ(ρ0) = ρ0.

Reduce redundancy.

Discern basic linear structure of MES.

...



Reduce redundancy

Lemma

Let U,V ,W ∈ Mn be unitaries. Then ρU,V = ρI ,W if and only if
W = e iφVUt for some φ ∈ R.

Every MES can be expressed as ρI ,W for an appropriate
unitary W .

Since ρI ,V = ρI ,W if and only if W = e iφV for some φ ∈ R,
we have a bijection between Un/U1 and MES .



Reduce redundancy

Lemma

Let U,V ,W ∈ Mn be unitaries. Then ρU,V = ρI ,W if and only if
W = e iφVUt for some φ ∈ R.

Every MES can be expressed as ρI ,W for an appropriate
unitary W .

Since ρI ,V = ρI ,W if and only if W = e iφV for some φ ∈ R,
we have a bijection between Un/U1 and MES .



Linear structure

Proposition

Fix λ, µ ∈ (0, 1) and V1 ∈ Un such that ρI ,V1 6= ρ0. Then there
exist V2,V3 ∈ Un satisfying

λρ0 + (1− λ)ρ1 = µρ2 + (1− µ)ρ3

(here ρi = ρI ,Vi
) if and only if one of the following hold:

1 λ = µ, ρ0 = ρ2, and ρ1 = ρ3.

2 λ = 1− µ, ρ0 = ρ3, and ρ1 = ρ2.

3 There are θ, α, β,w1 ∈ R and a Hermitian unitary H 6= ±I
such that

V1 = e iw1((cos θ)I + i(sin θ)H) and

µe i2α + (1− µ)e i2β = λ+ (1− λ)e i2θ.



In Case 3, there are w2, w3 ∈ R such that

V2 = e iw2((cosα)I + i(sinα)H) and

V3 = e iw3((cosβ)I + i(sinβ)H).

The equation

λρ0 + (1− λ)ρI ,V1 = µρI ,V2 + (1− µ)ρI ,V3

has infinitely many solutions (for ρI ,V2 and ρI ,V3) if and only if
λ = µ = 1/2 and V1 = ξH for some complex unit ξ and some
Hermitian unitary H.



Special sets

The structural proposition singles out

T0 = {ρI ,iH : H ∈ Un ∩ Hn}

and

T = {ρI ,xI+iyH : H ∈ Hn ∩ Un; x , y ∈ R, x2 + y2 = 1}
= {ρI ,U : U ∈ Un has at most 2 distinct eigenvalues}

as special sets which must be preserved by Φ.



Outline of proof

Suppose Φ is a linear map preserving MES.
We may assume that Φ(ρ0) = ρ0.

Reduce redundancy.

Discern basic linear structure of MES.

Φ(T0) ⊆ T0 and Φ(T ) ⊆ T . Use structural proposition to
show

Φ(ρI ,xI+iyH) = ρI ,xI+iyg(H)

for some map g : Hn ∩ Un → Hn ∩ Un.

Extend g to a linear map on Hn preserving rank one
projections.



Φ is now determined on Span(T ), where

T = {ρI ,xI+iyH : H ∈ Hn ∩ Un, x
2 + y2 = 1}

= {ρI ,U : U ∈ Un has at most 2 distinct eigenvalues}.

Φ(ρI ,xI+iyH) = ρI ,xI+iyg(H) for all Hermitian H, where

1 g ≡ 0, or

2 g(H) = εUHU∗ for ε ∈ {−1, 1} and U ∈ Un, or

3 g(H) = εUHtU∗ for ε ∈ {−1, 1} and U ∈ Un.



Comparison

Writing Φ(ρI ,X ) = ρI ,f (X ), we have the following correspondences:

Mapping
f : Un/U1 → Un/U1

1 f (X ) = UX

2 f (X ) = XV

3 f (X ) = X

4 f (X ) = X t

Linear Preserver
Φ : Span(T ) → Span(T )

1 ρ 7→ (I ⊗ U)ρ(I ⊗ U)∗

2 ρ 7→ (V t ⊗ I )ρ(V t ⊗ I )∗

3 A⊗ B 7→ At ⊗ Bt

4 A⊗ B 7→ B ⊗ A



Extending beyond Span(T )

May assume Φ(ρ) = ρ0 for all ρ ∈ T (degenerate case),
or Φ(ρ) = ρ for all ρ ∈ T .

Span(T ) = Span(MES) ⇐⇒ n = 2

For n > 2, let

T+ = {ρI ,U : U ∈ Un has at most 2 distinct eigenvalues

or is unitarily similar to

[
i 0
0 −i

]
⊕ In−2}.

Span(T+) = Span(MES)

Transfer structural proposition to analyze solutions of

λρI ,U0 + (1− λ)ρI ,U1 = µρI ,U2 + (1− µ)ρI ,U3
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The End
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The End

Thank you for your attention!


