# Preserver Problems and Graph Theory

### Marko Orel

#### University of Primorska, Koper, Slovenia

- Faculty of Mathematics, Natural Sciences and Information Technologies (**FAMNIT**)
- IAM
- IMFM, Ljubljana, Slovenia

CMS Summer Meeting, Winnipeg, June 7, 2014

◆□> ◆舂> ◆注> ◆注> 注:

- Preservers of a binary relation/Endomorphisms of a graph
- O Adjacency preservers
- 3 Hamiltonicity, Lovász problem

イロン イヨン イヨン イヨン

## Preservers of a binary relation/Endomorphisms of a graph

- O Adjacency preservers
- Iamiltonicity, Lovász problem

イロト イヨト イヨト イヨト

Preservers of a binary relation/Endomorphisms of a graphAdjacency preservers

Iamiltonicity, Lovász problem

イロン イヨン イヨン イヨン

- Preservers of a binary relation/Endomorphisms of a graph
- Adjacency preservers
- Hamiltonicity, Lovász problem

||◆同 || ◆ 三 > || ◆ 三 >

æ

## $R \subseteq A \times A$ a binary relation on A $(a_1Ra_2 \Leftrightarrow a_2Ra_1, a\overline{Ra})$

### $\varphi: A \rightarrow A$ preserves R in both directions, if

 $a_1 R a_2 \qquad \varphi(a_1) R \varphi(b_1)$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ○

## $R \subseteq A \times A$ a binary relation on A $(a_1Ra_2 \Leftrightarrow a_2Ra_1, a\overline{Ra})$

 $\varphi: A 
ightarrow A$  preserves R in both directions, if

 $a_1 R a_2 \qquad \qquad \varphi(a_1) R \varphi(b_1)$ 

 $R \subseteq A \times A \text{ a binary relation on } A \qquad (a_1 R a_2 \Leftrightarrow a_2 R a_1, \quad a \overline{R} a)$   $\varphi : A \to A \text{ preserves } R \text{ in both directions, if}$   $a_1 R a_2 \implies \varphi(a_1) R \varphi(b_1)$ 

個 と く ヨ と く ヨ と …

 $R \subseteq A \times A \text{ a binary relation on } A \qquad (a_1Ra_2 \Leftrightarrow a_2Ra_1, \quad a\overline{R}a)$  $\varphi : A \to A \text{ preserves } R \text{ in both directions, if}$  $a_1Ra_2 \qquad \Longleftrightarrow \qquad \varphi(a_1)R\varphi(b_1)$ 

個 と く ヨ と く ヨ と …

$$\Gamma = (V, E), V = A, E = \{\{a_1, a_2\} \in A \times A : a_1Ra_2\}$$

$$\Gamma = (V, E), V = A, E = \{\{a_1, a_2\} \in A \times A : a_1Ra_2\}$$

$$\Gamma = (V, E), V = A, E = \left\{ \{a_1, a_2\} \in A imes A : a_1Ra_2 
ight\}$$

$$\Gamma = (V, E), V = A, E = \left\{ \{a_1, a_2\} \in A \times A : a_1Ra_2 \right\}$$

(ii) and (iii) are equivalent if  $|A|<\infty$ 

$$\Gamma = (V, E), V = A, E = \left\{ \{a_1, a_2\} \in A \times A : a_1Ra_2 \right\}$$

(ii) and (iii) are equivalent if  $|A| < \infty$ 

伺 ト イヨト イヨト

$$\Gamma = (V, E), V = A, E = \left\{ \{a_1, a_2\} \in A imes A : a_1Ra_2 
ight\}$$

$$\Gamma=(V,E), V=A, E=ig\{a_1,a_2\}\in A imes A:a_1Ra_2ig\}$$

### $\Gamma=a$ finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

A subgraph  $\Gamma'$  in  $\Gamma$  is a *core of*  $\Gamma$  if:

•  $\Gamma'$  is a core

• There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$ 

Example:  $\operatorname{core}(C_4) = K_2$ 

#### Proposition

Every graph  $\Gamma$  has a core, which is an induced subgraph and is unique up to isomorphism.

<ロ> (日) (日) (日) (日) (日)

### $\Gamma=a$ finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

```
A subgraph \Gamma' in \Gamma is a core of \Gamma if:
```

- $\Gamma'$  is a core
- There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$

```
Example: core(C_4) = K_2
```

#### Proposition

Every graph  $\Gamma$  has a core, which is an induced subgraph and is unique up to isomorphism.

イロン イヨン イヨン イヨン

 $\Gamma=a$  finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 



A subgraph  $\Gamma'$  in  $\Gamma$  is a *core of*  $\Gamma$  if:

- $\Gamma'$  is a core
- There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$

Example:  $\operatorname{core}(C_4) = K_2$ 

#### Proposition

Every graph  $\Gamma$  has a core, which is an induced subgraph and is unique up to isomorphism.

 $\Gamma=a$  finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

```
A subgraph \Gamma' in \Gamma is a core of \Gamma if:
```

•  $\Gamma'$  is a core

• There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$ 

```
Example: \operatorname{core}(C_4) = K_2
```

#### Proposition

Every graph  $\Gamma$  has a core, which is an induced subgraph and is unique up to isomorphism.

イロン イヨン イヨン イヨン

 $\Gamma=a$  finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

```
A subgraph \Gamma' in \Gamma is a core of \Gamma if:
```

- Γ' is a core
- There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$

```
Example: \operatorname{core}(C_4) = K_2
```

#### Proposition

Every graph Γ has a core, which is an induced subgraph and is unique up to isomorphism.

・ロト ・回ト ・ヨト ・ヨト

 $\Gamma=a$  finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

```
A subgraph \Gamma' in \Gamma is a core of \Gamma if:
```

- Γ' is a core
- There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$

## Example: $\operatorname{core}(C_4) = K_2$

#### Proposition

Every graph Γ has a core, which is an induced subgraph and is unique up to isomorphism.

 $\Gamma=a$  finite undirected graph with no loops/multiple edges

A graph is a *core* if any its endomorphism is an automorphism.

Examples: complete graphs  $K_n$ , odd cycles  $C_{2n+1}$ 

```
A subgraph \Gamma' in \Gamma is a core of \Gamma if:
```

- Γ' is a core
- There exists a homomorphism  $\varphi: \Gamma \to \Gamma'$

Example:  $\operatorname{core}(C_4) = K_2$ 

#### Proposition

Every graph  $\Gamma$  has a core, which is an induced subgraph and is unique up to isomorphism.

### A = set of matrices

 $X, Y \in A$  are *adjacent* if  $\operatorname{rk}(X - Y)$  is minimal and nonzero  $A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F})\} \Longrightarrow \operatorname{rk}(A - B) = 1$   $A = A_n(\mathbb{F}) \Longrightarrow \operatorname{rk}(A - B) = 2$  $XRY \iff X$  and Y are adjacent

Bijective maps that preserves adjacency in both directions on

$$A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

 $A = H_n(\mathbb{F}): \qquad \Phi(A) = \lambda P A^{\sigma} P^* + B$ 

イロト イヨト イヨト イヨト

Bijective maps that preserves adjacency in both directions on

 $A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$ 

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

 $A = H_n(\mathbb{F}): \qquad \Phi(A) = \lambda P A^{\sigma} P^* + B$ 

イロト イヨト イヨト イヨト

Bijective maps that preserves adjacency in both directions on

 $A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$ 

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

 $A = H_n(\mathbb{F}): \qquad \Phi(A) = \lambda P A^{\sigma} P^* + B$ 

Bijective maps that preserves adjacency in both directions on

$$A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

 $A = H_n(\mathbb{F}): \qquad \Phi(A) = \lambda P A^{\sigma} P^* + B$ 

イロン イヨン イヨン イヨン

Bijective maps that preserves adjacency in both directions on

 $A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$ 

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

 $A = H_n(\mathbb{F}): \qquad \Phi(A) = \lambda P A^{\sigma} P^* + B$ 

・ロン ・回と ・ヨン・

Bijective maps that preserves adjacency in both directions on

$$A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)



Bijective maps that preserves adjacency in both directions on

$$A \in \{M_{m \times n}(\mathbb{F}), S_n(\mathbb{F}), H_n(\mathbb{F}), A_n(\mathbb{F})\}$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

$$A = H_n(\mathbb{F})$$
:  $\Phi(A) = \lambda P A^{\sigma} P^* + B$ 

- 4 同 ト 4 臣 ト 4 臣 ト

## Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \ge 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

・日・ ・ ヨ ・ ・ ヨ ・

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \ge 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

・日・ ・ ヨ ・ ・ ヨ ・

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \ge 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

・日・ ・ ヨ ・ ・ ヨ ・

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \ge 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

・ 回 と ・ ヨ と ・ ヨ と …

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- $H_2(\mathbb{D})$  (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \ge 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

<回と < 回と < 回と

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \geq 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

(日) (日) (日)

# Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- S<sub>n</sub>(ℝ) (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \geq 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

<回と < 回と < 回と

# Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- *H*<sub>2</sub>(D) (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \geq 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D) (Šemrl 2014, Mem. Amer. Math. Soc.) (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

 $\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P$ 

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

# Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_n(\mathbb{C})$  (Šemrl, Huang 2008, Canad. J. Math.)
- $H_2(\mathbb{D})$  (Huang 2008, Aequationes Math.)
- $S_n(\mathbb{R})$  (Legiša 2011, Math. Commun.)
- $H_n(\mathbb{F}_{q^2})$  (Orel 2009, Finite Fields Appl.)
- $S_n(\mathbb{F}_q)$ ,  $n \geq 3$  (Orel 2012, J. Algebraic Combin.)
- M<sub>m×n</sub>(D)
   (Šemrl 2014, Mem. Amer. Math. Soc.)
   (Šemrl & de Seguins Pazzis, preprint)
- *M<sub>m×n</sub>*(𝔽<sub>q</sub>) (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $HGL_n(\mathbb{F}_{q^2})$ ,  $q \ge 4$  (Orel, submitted; preprint on arXiv)

$$\Phi(A) = PA^{\sigma}P^* \qquad \Phi(A) = P(A^{-1})^{\sigma}P^*$$

▲圖▶ ▲理▶ ▲理▶

## Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If  ${\rm Aut}(\Gamma)$  acts transitively on pairs of non-adjacent vertices, then  $\Gamma$  is a core or its core is a complete graph.

## Godsil, Royle 2011, Ann. Comb.

If  $\Gamma$  connected regular,  $Aut(\Gamma)$  acts transitively on pairs of vertices at distance 2, then  $\Gamma$  is a core or its core is a complete graph.

#### Cores

 $H_n(\mathbb{F}_{q^2})$  $HGL_n(\mathbb{F}_{q^2}), q \ge 4$   $S_n(\mathbb{F}_q), \ n \geq 3$  $HGL_n(\mathbb{F}_{2^2}), \ SGL_m(\mathbb{F}_2), \ m \geq 3$ 

#### Complete cores

 $M_{m \times n}(\mathbb{F}_q)$  (Li, Sze, Huang, Huang)  $S_2(\mathbb{F}_q)$ 

## Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If  ${\rm Aut}(\Gamma)$  acts transitively on pairs of non-adjacent vertices, then  $\Gamma$  is a core or its core is a complete graph.

## Godsil, Royle 2011, Ann. Comb.

If  $\Gamma$  connected regular,  $\operatorname{Aut}(\Gamma)$  acts transitively on pairs of vertices at distance 2, then  $\Gamma$  is a core or its core is a complete graph.

#### Cores

 $H_n(\mathbb{F}_{q^2})$  $HGL_n(\mathbb{F}_{q^2}), q \ge 4$ 

 $S_n(\mathbb{F}_q), \ n \geq 3$  $\mathsf{HGL}_n(\mathbb{F}_{2^2}), \ SGL_m(\mathbb{F}_2), \ m \geq 3$ 

#### Complete cores

 $M_{m imes n}(\mathbb{F}_q)$  (Li, Sze, Huang, Huang)  $S_2(\mathbb{F}_q)$ 

## Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If  ${\rm Aut}(\Gamma)$  acts transitively on pairs of non-adjacent vertices, then  $\Gamma$  is a core or its core is a complete graph.

## Godsil, Royle 2011, Ann. Comb.

If  $\Gamma$  connected regular,  $\operatorname{Aut}(\Gamma)$  acts transitively on pairs of vertices at distance 2, then  $\Gamma$  is a core or its core is a complete graph.

# Cores $H_n(\mathbb{F}_{q^2})$ $S_n(\mathbb{F}_q), n \ge 3$ $HGL_n(\mathbb{F}_{q^2}), q \ge 4$ $HGL_n(\mathbb{F}_{2^2}), SGL_m(\mathbb{F}_2), m \ge 3$

#### Complete cores

$$M_{m \times n}(\mathbb{F}_q)$$
 (Li, Sze, Huang, Huang)  
 $S_2(\mathbb{F}_q)$ 

## Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If  ${\rm Aut}(\Gamma)$  acts transitively on pairs of non-adjacent vertices, then  $\Gamma$  is a core or its core is a complete graph.

## Godsil, Royle 2011, Ann. Comb.

If  $\Gamma$  connected regular,  $\operatorname{Aut}(\Gamma)$  acts transitively on pairs of vertices at distance 2, then  $\Gamma$  is a core or its core is a complete graph.

#### Cores

$$egin{aligned} &H_n(\mathbb{F}_{q^2})\ &HGL_n(\mathbb{F}_{q^2}),\ q\geq 4 \end{aligned}$$

$$egin{array}{lll} S_n(\mathbb{F}_q), \ n\geq 3\ HGL_n(\mathbb{F}_{2^2}), \ SGL_m(\mathbb{F}_2), \ m\geq 3 \end{array}$$

## Complete cores

$$M_{m imes n}(\mathbb{F}_q)$$
 (Li, Sze, Huang, Huang)  
 $S_2(\mathbb{F}_q)$ 

# Problem on hamiltonicity related to Lovász problem

A cycle in a graph is Hamiltonian if it goes true every vertex.



There are only 5 known connected vertex-transitive graphs without a Hamiltonian cycle:  $K_2$ , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph  $A_{\text{COX}} + A_{\text{COX}} +$ 

# Problem on hamiltonicity related to Lovász problem

A cycle in a graph is Hamiltonian if it goes true every vertex.



There are only 5 known connected vertex-transitive graphs without a Hamiltonian cycle:  $K_2$ , Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

# Graph $HGL_2(\mathbb{F}_4)$ is the Petersen graph.



< ∃⇒

**₽ > <** €

æ

## Graph $SGL_3(\mathbb{F}_2)$ is the Coxeter graph.



<ロ> (日) (日) (日) (日) (日)

æ

## $HGL_n(\mathbb{F}_4)$ vertex transitive $SGL_n(\mathbb{F}_2)$ vertex transitive for odd n

#### Problem

Do graphs  $HGL_n(\mathbb{F}_4)$  and  $SGL_m(\mathbb{F}_2)$  contain a Hamiltonian cycle for  $n \ge 3$  and  $m \ge 4$ ? How to construct a hamiltonian cycle if it exists?

Concorde TSP Solver: yes, if n = 3 and  $m \in \{4, 5\}$ 

 $HGL_n(\mathbb{F}_4)$  vertex transitive  $SGL_n(\mathbb{F}_2)$  vertex transitive for odd n

#### Problem

Do graphs  $HGL_n(\mathbb{F}_4)$  and  $SGL_m(\mathbb{F}_2)$  contain a Hamiltonian cycle for  $n \ge 3$  and  $m \ge 4$ ? How to construct a hamiltonian cycle if it exists?

Concorde TSP Solver: yes, if n = 3 and  $m \in \{4, 5\}$ 

 $HGL_n(\mathbb{F}_4)$  vertex transitive  $SGL_n(\mathbb{F}_2)$  vertex transitive for odd n

#### Problem

Do graphs  $HGL_n(\mathbb{F}_4)$  and  $SGL_m(\mathbb{F}_2)$  contain a Hamiltonian cycle for  $n \ge 3$  and  $m \ge 4$ ? How to construct a hamiltonian cycle if it exists?

Concorde TSP Solver: yes, if n = 3 and  $m \in \{4, 5\}$ 

回 と く ヨ と く ヨ と

# Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで