Preserver Problems and Graph Theory

Marko Orel

- University of Primorska, Koper, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)
- IAM
- IMFM, Ljubljana, Slovenia

CMS Summer Meeting, Winnipeg, June 7, 2014

Outline

(1) Preservers of a binary relation/Endomorphisms of a graph
(2) Adjacency preservers
(3) Hamiltonicity, Lovász problem

Outline

(1) Preservers of a binary relation/Endomorphisms of a graph (2) Adjacency preservers
(3) Hamiltonicity, Lovász problem

Outline

(1) Preservers of a binary relation/Endomorphisms of a graph
(2) Adjacency preservers
(3) Hamiltonicity, Lovász problem

Outline

(1) Preservers of a binary relation/Endomorphisms of a graph
(2) Adjacency preservers
(3) Hamiltonicity, Lovász problem

Preservers of a binary relation

$R \subseteq A \times A$ a binary relation on $A \quad\left(a_{1} R a_{2} \Leftrightarrow a_{2} R a_{1}, \quad a \bar{R} a\right)$

Preservers of a binary relation

$R \subseteq A \times A$ a binary relation on $A \quad\left(a_{1} R a_{2} \Leftrightarrow a_{2} R a_{1}, \quad a \bar{R} a\right)$

Preservers of a binary relation

$R \subseteq A \times A$ a binary relation on $A \quad\left(a_{1} R a_{2} \Leftrightarrow a_{2} R a_{1}, \quad a \bar{R} a\right)$
$\varphi: A \rightarrow A$ preserves R in both directions, if

$$
a_{1} R a_{2} \quad \Longrightarrow \quad \varphi\left(a_{1}\right) R \varphi\left(b_{1}\right)
$$

Preservers of a binary relation

$R \subseteq A \times A$ a binary relation on $A \quad\left(a_{1} R a_{2} \Leftrightarrow a_{2} R a_{1}, \quad a \bar{R} a\right)$
$\varphi: A \rightarrow A$ preserves R in both directions, if

$$
a_{1} R a_{2} \quad \Longleftrightarrow \quad \varphi\left(a_{1}\right) R \varphi\left(b_{1}\right)
$$

Preservers of a binary relation

$\Gamma=(V, E), \quad V=A, E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}$
(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions
φ is an automorphisms of Γ
(iii) φ bijective and preserves R
φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|A|<\infty$

Preservers of a binary relation

$\Gamma=(V, E), \quad V=A, \quad E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}$
(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions
φ is an automorphisms of Γ
(iii) φ bijective and preserves R
φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|A|<\infty$

Preservers of a binary relation

$\Gamma=(V, E), \quad V=A, E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}$
(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions
φ is an automorphisms of Γ
(iii) φ bijective and preserves R
φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|A|<\infty$

Preservers of a binary relation

$$
\Gamma=(V, E), \quad V=A, \quad E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}
$$

(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ

(ii) φ bijective and preserves R in
 (iii) φ bijective and preserves R φ is bitective endomorphism of Γ

(ii) and (iii) are equivalent if $|A|<\infty$

Preservers of a binary relation

$$
\Gamma=(V, E), \quad V=A, \quad E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}
$$

(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions

$$
\Longleftrightarrow
$$

φ is an automorphisms of Γ
(iii) φ bijective and preserves R
φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|\mathrm{A}|<\infty$

Preservers of a binary relation

$\Gamma=(V, E), \quad V=A, E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}$
(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions

$$
\Longleftrightarrow
$$

φ is an automorphisms of Γ
(iii) φ bijective and preserves R

φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|A|<\infty$

Preservers of a binary relation

$\Gamma=(V, E), \quad V=A, E=\left\{\left\{a_{1}, a_{2}\right\} \in A \times A: a_{1} R a_{2}\right\}$
(i) φ preserves $R \Longleftrightarrow \varphi$ is an endomorphisms of Γ
(ii) φ bijective and preserves R in both directions

$$
\Longleftrightarrow
$$

φ is an automorphisms of Γ
(iii) φ bijective and preserves R

φ is bijective endomorphism of Γ
(ii) and (iii) are equivalent if $|A|<\infty$

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph $\Gamma^{-\prime}$ in $\Gamma^{\text {T }}$ is a core of Γ if:

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition

Every graph「 has a core, which is an induced subgraph and is
unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph Γ^{\prime} in Γ is a core of Γ if:

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition

Every graph「 has a core, which is an induced subgraph and is unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$

A subgraph Γ^{\prime} in Γ is a core of Γ if

- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$
Proposition
Every graph 「 has a core, which is an induced subgraph and is
unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph Γ^{\prime} in Γ is a core of Γ if;

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition

Every graph 「 has a core, which is an induced subgraph and is
unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph Γ^{\prime} in Γ is a core of Γ if:

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition

Every graph 「 has a core, which is an induced subgraph and is unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph Γ^{\prime} in Γ is a core of Γ if:

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition
Every graph Γ has a core, which is an induced subgraph and is
unique up to isomorphism

Cores

$\Gamma=$ a finite undirected graph with no loops/multiple edges
A graph is a core if any its endomorphism is an automorphism.
Examples: complete graphs K_{n}, odd cycles $C_{2 n+1}$
A subgraph Γ^{\prime} in Γ is a core of Γ if:

- Γ^{\prime} is a core
- There exists a homomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$

Example: $\operatorname{core}\left(C_{4}\right)=K_{2}$

Proposition

Every graph 「 has a core, which is an induced subgraph and is unique up to isomorphism.

Adjacency preservers

$A=$ set of matrices

$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent
Bijective maps that preserves adjacency in both directions on

$$
A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)
$A=H_{n}(\mathbb{F}):$
$\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent
Bijective maps that preserves adjacency in both directions on
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}$
are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)
$A=H_{n}(\mathbb{F}):$
$\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent

> Bijective maps that preserves adjacency in both directions on $A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}$
> are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)
> $A=H_{n}(\mathbb{F}):$
> $\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent

> Bijective maps that preserves adjacency in both directions on $A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}$
> are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)
> $A=H_{n}(\mathbb{F}):$
> $\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent

> Bijective maps that preserves adjacency in both directions on $A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}$
> are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)
> $A=H_{n}(\mathbb{F}):$ $\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent
Bijective maps that preserves adjacency in both directions on

$$
A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

$\Phi(A)=\lambda P A^{\sigma} P^{*}+B$

Adjacency preservers

$A=$ set of matrices
$X, Y \in A$ are adjacent if $\operatorname{rk}(X-Y)$ is minimal and nonzero
$A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F})\right\} \Longrightarrow \operatorname{rk}(A-B)=1$
$A=A_{n}(\mathbb{F}) \Longrightarrow \operatorname{rk}(A-B)=2$
$X R Y \Longleftrightarrow X$ and Y are adjacent
Bijective maps that preserves adjacency in both directions on

$$
A \in\left\{M_{m \times n}(\mathbb{F}), S_{n}(\mathbb{F}), H_{n}(\mathbb{F}), A_{n}(\mathbb{F})\right\}
$$

are characterized by fundamental theorem of geometry of matrices of appropriate type. (cf. Wan 1996)

$$
A=H_{n}(\mathbb{F}): \quad \Phi(A)=\lambda P A^{\sigma} P^{*}+B
$$

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})$ (Semrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.) (Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$ (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.) (Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$ (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.) (Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$ (Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{a}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)
$\Phi(A)=P A^{\sigma} P^{*}$

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)($ Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), a \geq 4$ (Orel, submitted; preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
$-M_{m \times n}\left(\mathbb{F}_{q}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.) - $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted: preprint on arXiv)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)

Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

- $H_{n}(\mathbb{C})($ Šemrl, Huang 2008, Canad. J. Math.)
- $H_{2}(\mathbb{D})$ (Huang 2008, Aequationes Math.)
- $S_{n}(\mathbb{R})$ (Legiša 2011, Math. Commun.)
- $H_{n}\left(\mathbb{F}_{q^{2}}\right)$ (Orel 2009, Finite Fields Appl.)
- $S_{n}\left(\mathbb{F}_{q}\right), n \geq 3$ (Orel 2012, J. Algebraic Combin.)
- $M_{m \times n}(\mathbb{D})$
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl \& de Seguins Pazzis, preprint)
- $M_{m \times n}\left(\mathbb{F}_{q}\right)$
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)
- $H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4$ (Orel, submitted; preprint on arXiv)

$$
\Phi(A)=P A^{\sigma} P^{*} \quad \Phi(A)=P\left(A^{-1}\right)^{\sigma} P^{*}
$$

Some tools

Cameron，Kazanidis 2008，J．Aust．Math．Soc．

If Aut（ Γ ）acts transitively on pairs of non－adjacent vertices，then Γ is a core or its core is a complete graph．

Godsil，Royle 2011，Ann．Comb．
If Γ connected regular，$A u t(\Gamma)$ acts transitively on pairs of vertices

Cores

$H G L_{n}\left(\mathbb{F}_{2^{2}}\right), S G L_{m}\left(\mathbb{F}_{2}\right), m \geq 3$

Complete cores

$M m \times\left(\mathbb{F}_{q}\right)\left(\mathrm{Ii}, \mathrm{S}_{\text {ze }}\right.$, Huang，Huang $)$
$S_{2}\left(\mathbb{F}_{q}\right)$

Some tools

Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If Aut(Γ) acts transitively on pairs of non-adjacent vertices, then Γ is a core or its core is a complete graph.

Godsil, Royle 2011, Ann. Comb.

If Γ connected regular, Aut (Γ) acts transitively on pairs of vertices at distance 2, then Γ is a core or its core is a complete graph.

Complete cores
$M_{m \times n}\left(\mathbb{F}_{q}\right)\left(\mathrm{Ii}, \mathrm{S}_{\mathbf{z}}\right.$, Huang, Huang $)$
$S_{2}\left(\mathbb{F}_{q}\right)$

Some tools

Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If Aut(Γ) acts transitively on pairs of non-adjacent vertices, then Γ is a core or its core is a complete graph.

Godsil, Royle 2011, Ann. Comb.

If Γ connected regular, Aut (Γ) acts transitively on pairs of vertices at distance 2, then Γ is a core or its core is a complete graph.

Cores

$$
\begin{array}{ll}
H_{n}\left(\mathbb{F}_{q^{2}}\right) & S_{n}\left(\mathbb{F}_{q}\right), n \geq 3 \\
H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4 & H G L_{n}\left(\mathbb{F}_{2^{2}}\right), S G L_{m}\left(\mathbb{F}_{2}\right), m \geq 3
\end{array}
$$

Complete cores
$M_{m \times n}\left(\mathbb{F}_{q}\right)(\mathrm{Li}$, Sze, Huang, Huang)
$S_{2}\left(\mathbb{F}_{q}\right)$

Some tools

Cameron, Kazanidis 2008, J. Aust. Math. Soc.
If Aut (Γ) acts transitively on pairs of non-adjacent vertices, then Γ is a core or its core is a complete graph.

Godsil, Royle 2011, Ann. Comb.

If Γ connected regular, Aut (Γ) acts transitively on pairs of vertices at distance 2, then Γ is a core or its core is a complete graph.

Cores

$$
\begin{array}{ll}
H_{n}\left(\mathbb{F}_{q^{2}}\right) & S_{n}\left(\mathbb{F}_{q}\right), n \geq 3 \\
H G L_{n}\left(\mathbb{F}_{q^{2}}\right), q \geq 4 & H G L_{n}\left(\mathbb{F}_{2^{2}}\right), S G L_{m}\left(\mathbb{F}_{2}\right), m \geq 3
\end{array}
$$

Complete cores
$M_{m \times n}\left(\mathbb{F}_{q}\right)$ (Li, Sze, Huang, Huang)
$S_{2}\left(\mathbb{F}_{q}\right)$

Problem on hamiltonicity related to Lovász problem

A cycle in a graph is Hamiltonian if it goes true every vertex.

There are only 5 known connected vertex-transitive graphs
without a Hamiltonian cycle: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph \&

A cycle in a graph is Hamiltonian if it goes true every vertex.

There are only 5 known connected vertex-transitive graphs without a Hamiltonian cycle: K_{2}, Petersen graph, Coxeter graph, two graphs derived from Petersen/Coxeter graph

Graph $H G L_{2}\left(\mathbb{F}_{4}\right)$ is the Petersen graph.

Graph $S G L_{3}\left(\mathbb{F}_{2}\right)$ is the Coxeter graph.

Problem on hamiltonicity related to Lovász problem

$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Do graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ contain a Hamiltonian cycle
for $n \geq 3$ and $m \geq 4$?
How to construct a hamiltonian cycle if it exists?
Concorde TSP Solver: yes, if $n=3$ and $m \in\{4,5\}$

Problem on hamiltonicity related to Lovász problem

$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Do graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ contain a Hamiltonian cycle for $n \geq 3$ and $m \geq 4$?
How to construct a hamiltonian cycle if it exists?

Problem on hamiltonicity related to Lovász problem

$H G L_{n}\left(\mathbb{F}_{4}\right)$ vertex transitive
$S G L_{n}\left(\mathbb{F}_{2}\right)$ vertex transitive for odd n

Problem

Do graphs $H G L_{n}\left(\mathbb{F}_{4}\right)$ and $S G L_{m}\left(\mathbb{F}_{2}\right)$ contain a Hamiltonian cycle for $n \geq 3$ and $m \geq 4$?
How to construct a hamiltonian cycle if it exists?
Concorde TSP Solver: yes, if $n=3$ and $m \in\{4,5\}$

Thank you for your attention!

