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Preservers of a binary relation

R ⊆ A× A a binary relation on A (a1Ra2 ⇔ a2Ra1, aR̄a)

ϕ : A → A preserves R in both directions, if

a1Ra2 ϕ(a1)Rϕ(b1)
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Preservers of a binary relation

Γ = (V ,E ), V = A, E =
{

{a1, a2} ∈ A× A : a1Ra2
}

(i) ϕ preserves R ⇐⇒ ϕ is an endomorphisms of Γ
(ii) ϕ bijective and preserves R in both directions

⇐⇒
ϕ is an automorphisms of Γ

(iii) ϕ bijective and preserves R
⇐⇒

ϕ is bijective endomorphism of Γ

(ii) and (iii) are equivalent if |A| < ∞
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Cores

Γ = a finite undirected graph with no loops/multiple edges

A graph is a core if any its endomorphism is an automorphism.

Examples: complete graphs Kn, odd cycles C2n+1

A subgraph Γ′ in Γ is a core of Γ if:

Γ′ is a core

There exists a homomorphism ϕ : Γ → Γ′

Example: core(C4) = K2

Proposition

Every graph Γ has a core, which is an induced subgraph and is
unique up to isomorphism.
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Adjacency preservers

A = set of matrices

X ,Y ∈ A are adjacent if rk(X − Y ) is minimal and nonzero

A ∈ {Mm×n(F),Sn(F),Hn(F)} =⇒ rk(A− B) = 1

A = An(F) =⇒ rk(A− B) = 2

XRY ⇐⇒ X and Y are adjacent

Bijective maps that preserves adjacency in both directions on

A ∈ {Mm×n(F),Sn(F),Hn(F),An(F)}

are characterized by fundamental theorem of geometry of matrices
of appropriate type. (cf. Wan 1996)

A = Hn(F): Φ(A) = λPAσP∗ + B
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Adjacency preservers (no bijectivity, one direction)

Characterizations of adjacency preservers:

Hn(C) (Šemrl, Huang 2008, Canad. J. Math.)

H2(D) (Huang 2008, Aequationes Math.)

Sn(R) (Legǐsa 2011, Math. Commun.)

Hn(Fq2) (Orel 2009, Finite Fields Appl.)

Sn(Fq), n ≥ 3 (Orel 2012, J. Algebraic Combin.)

Mm×n(D)
(Šemrl 2014, Mem. Amer. Math. Soc.)
(Šemrl & de Seguins Pazzis, preprint)

Mm×n(Fq)
(Li, Sze, Huang, Huang, 2014, Linear Algebra Appl.)

HGLn(Fq2), q ≥ 4 (Orel, submitted; preprint on arXiv)

Φ(A) = PAσP∗ Φ(A) = P(A−1)σP∗
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Some tools

Cameron, Kazanidis 2008, J. Aust. Math. Soc.

If Aut(Γ) acts transitively on pairs of non-adjacent vertices, then Γ
is a core or its core is a complete graph.

Godsil, Royle 2011, Ann. Comb.

If Γ connected regular, Aut(Γ) acts transitively on pairs of vertices
at distance 2, then Γ is a core or its core is a complete graph.

Cores

Hn(Fq2) Sn(Fq), n ≥ 3
HGLn(Fq2), q ≥ 4 HGLn(F22), SGLm(F2), m ≥ 3

Complete cores

Mm×n(Fq) (Li, Sze, Huang, Huang)
S2(Fq)
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Problem on hamiltonicity related to Lovász problem

A cycle in a graph is Hamiltonian if it goes true every vertex.

There are only 5 known connected vertex-transitive graphs
without a Hamiltonian cycle: K2, Petersen graph, Coxeter graph,
two graphs derived from Petersen/Coxeter graph
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Graph HGL2(F4) is the Petersen graph.
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Graph SGL3(F2) is the Coxeter graph.
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1 1 1

]

[

1 0 0
0 1 1
0 1 0

]

[

1 0 0
0 0 1
0 1 0

]

[

1 0 0
0 0 1
0 1 1

]

[

0 1 0
1 1 1
0 1 1

]

[

1 1 0
1 1 1
0 1 1

]

[

1 1 0
1 1 1
0 1 0

]

[

1 1 0
1 0 0
0 0 1

]

[

1 0 0
0 1 0
0 0 1

]

[

1 0 1
0 0 1
1 1 1

]

[

0 0 1
0 1 1
1 1 0

]

[

1 1 0
1 0 1
0 1 0

]
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Problem on hamiltonicity related to Lovász problem

HGLn(F4) vertex transitive
SGLn(F2) vertex transitive for odd n

Problem

Do graphs HGLn(F4) and SGLm(F2) contain a Hamiltonian cycle
for n ≥ 3 and m ≥ 4?
How to construct a hamiltonian cycle if it exists?

Concorde TSP Solver: yes, if n = 3 and m ∈ {4, 5}
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Thank you for your attention!


