Preserver problems on convex combinations of positive elements*

Ming-Cheng Tsai

Dept. of Applied Mathematics
National Sun Yat-sen Univ.
kaohsiung, Taiwan
June 8, 2014
Winnipeg, CMS summer meeting
*In collaboration with Patrícia Szokol and Jun Zhang

Outline

(1) Introduction
(2) Preservers on positive semi-definite operators in Schatten- p class
(3) Preservers on positive definite matrices in M_{n}

Linear isometries on M_{n}

Notation: Let M_{n} be the set of $n \times n$ complex matrices and A^{T} : transpose of $A \in M_{n}$.

Linear isometries on M_{n}

Notation: Let M_{n} be the set of $n \times n$ complex matrices and A^{T} : transpose of $A \in M_{n}$.

Definition: Let X, Y be normed linear spaces w.r.t. $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, resp.. A map $\phi: X \rightarrow Y$ is an isometry (or distance preserving) if for any $a, b \in X$,

$$
\|\Phi(a)-\Phi(b)\|_{Y}=\|a-b\|_{X}
$$

Linear isometries on M_{n}

Notation: Let M_{n} be the set of $n \times n$ complex matrices and A^{T} : transpose of $A \in M_{n}$.

Definition: Let X, Y be normed linear spaces w.r.t. $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, resp.. A map $\phi: X \rightarrow Y$ is an isometry (or distance preserving) if for any $a, b \in X$,

$$
\|\Phi(a)-\Phi(b)\|_{Y}=\|a-b\|_{X}
$$

Theorem (Schur, 1925)

Let $\Phi: M_{n} \rightarrow M_{n}$ be a linear isometry w.r.t. operator norm.

Linear isometries on M_{n}

Notation: Let M_{n} be the set of $n \times n$ complex matrices and A^{T} : transpose of $A \in M_{n}$.

Definition: Let X, Y be normed linear spaces w.r.t. $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, resp.. A map $\phi: X \rightarrow Y$ is an isometry (or distance preserving) if for any $a, b \in X$,

$$
\|\Phi(a)-\Phi(b)\|_{Y}=\|a-b\|_{X} .
$$

Theorem (Schur, 1925)

Let $\Phi: M_{n} \rightarrow M_{n}$ be a linear isometry w.r.t. operator norm.
Then \exists unitary matrices U and V s.t. Φ has the following standard form:

$$
\Phi(A)=U A V \quad\left(\forall A \in M_{n}\right) \text { or } \quad \Phi(A)=U A^{T} V \quad \forall A \in M_{n}
$$

Surjective isometries on normed linear space

Theorem (Mazur-Ulam, 1932)
Let X_{1}, X_{2} be normed linear spaces and $\Phi: X_{1} \rightarrow X_{2}$ be a surjective isometry. Then Φ is affine, i.e.,

$$
\Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X_{1}, 0 \leq t \leq 1 .
$$

Surjective isometries on normed linear space

Theorem (Mazur-Ulam, 1932)
Let X_{1}, X_{2} be normed linear spaces and $\Phi: X_{1} \rightarrow X_{2}$ be a surjective isometry. Then Φ is affine, i.e.,

$$
\Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X_{1}, 0 \leq t \leq 1
$$

Note: After translation, we can assume $\Phi(0)=0$ and Φ is indeed a surjective real linear isometry.

Surjective isometries on normed linear space

Theorem (Mazur-Ulam, 1932)

Let X_{1}, X_{2} be normed linear spaces and $\Phi: X_{1} \rightarrow X_{2}$ be a surjective isometry. Then Φ is affine, i.e.,

$$
\Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X_{1}, 0 \leq t \leq 1
$$

Note: After translation, we can assume $\Phi(0)=0$ and Φ is indeed a surjective real linear isometry.

Question:

Let $\left(X,\|\cdot\|_{X}\right.$) and ($Y,\|\cdot\|_{Y}$) be normed spaces. Supp. $\Phi: X \rightarrow Y$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(x)+(1-t) \Phi(y)\|=\|t x+(1-t) y\|, \quad \forall x, y \in X, 0 \leq t \leq 1
$$

Then what can we say ?

Surjective isometries on normed linear space

Theorem (Mazur-Ulam, 1932)

Let X_{1}, X_{2} be normed linear spaces and $\Phi: X_{1} \rightarrow X_{2}$ be a surjective isometry. Then Φ is affine, i.e.,

$$
\Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X_{1}, 0 \leq t \leq 1
$$

Note: After translation, we can assume $\Phi(0)=0$ and Φ is indeed a surjective real linear isometry.

Question:

Let $\left(X,\|\cdot\|_{X}\right.$) and ($Y,\|\cdot\|_{Y}$) be normed spaces. Supp. $\Phi: X \rightarrow Y$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(x)+(1-t) \Phi(y)\|=\|t x+(1-t) y\|, \quad \forall x, y \in X, 0 \leq t \leq 1
$$

Then what can we say ?
Note: Supp. X, Y : linear space. Then it implies that Φ : isometric.

Notation: $\mathcal{K}(H), \mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Notation: $B(H)$: bdd. linear operators on a complex Hilbert space H.
$\mathcal{F}(H)$: finite rank operators on H.
$\mathcal{K}(H)=\overline{\mathcal{F}}(H)^{\|\cdot\|}$: all compact operators on H.
$\mathcal{S}_{p}(H)=\left\{A \in \mathcal{K}(H): \operatorname{tr}|A|^{p}<+\infty\right\}$: Schatten- p class operators with $\|A\|_{p}=\left(\operatorname{tr}|A|^{p}\right)^{1 / p}$, where $|A|=\sqrt{A^{*} A}$ for $1 \leq p<+\infty$.

Notation: $\mathcal{K}(H), \mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Notation: $B(H)$: bdd. linear operators on a complex Hilbert space H.
$\mathcal{F}(H)$: finite rank operators on H.
$\mathcal{K}(H)=\overline{\mathcal{F}(H)}{ }^{\|\cdot\|}$: all compact operators on H.
$\mathcal{S}_{p}(H)=\left\{A \in \mathcal{K}(H): \operatorname{tr}|A|^{p}<+\infty\right\}$: Schatten- p class operators with $\|A\|_{p}=\left(\operatorname{tr}|A|^{p}\right)^{1 / p}$, where $|A|=\sqrt{A^{*} A}$ for $1 \leq p<+\infty$.
(1) $p=1, \mathcal{T}(H)=\mathcal{S}_{1}(H)$: trace class operators with trace class norm $\|\cdot\|_{1}$.
(2) $p=2, \mathcal{S}_{2}(H)$: Hilbert-Schmidt class operators with Hilbert-Schmidt norm $\|\cdot\|_{2}$ (or Frobenius norm).
(3) $p=+\infty, \mathcal{K}(H)=\mathcal{S}_{\infty}(H)$ with operator norm.

Notation: $\mathcal{K}(H), \mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Notation: $B(H)$: bdd. linear operators on a complex Hilbert space H.
$\mathcal{F}(H)$: finite rank operators on H.
$\mathcal{K}(H)=\overline{\mathcal{F}(H)}{ }^{\|\cdot\|}$: all compact operators on H.
$\mathcal{S}_{p}(H)=\left\{A \in \mathcal{K}(H): \operatorname{tr}|A|^{p}<+\infty\right\}$: Schatten- p class operators with $\|A\|_{p}=\left(\operatorname{tr}|A|^{p}\right)^{1 / p}$, where $|A|=\sqrt{A^{*} A}$ for $1 \leq p<+\infty$.
(1) $p=1, \mathcal{T}(H)=\mathcal{S}_{1}(H)$: trace class operators with trace class norm $\|\cdot\|_{1}$.
(2) $p=2, \mathcal{S}_{2}(H)$: Hilbert-Schmidt class operators with Hilbert-Schmidt norm $\|\cdot\|_{2}$ (or Frobenius norm).
(3) $p=+\infty, \mathcal{K}(H)=\mathcal{S}_{\infty}(H)$ with operator norm.
$\mathcal{S}_{p}^{+}(H)=\left\{\rho \geq 0: \rho \in \mathcal{S}_{p}(H)\right\}:$ positive operators in $\mathcal{S}_{p}(H) \quad(\langle\rho h, h\rangle \geq 0)$
$\mathcal{S}_{p}^{+}(H)_{1}=\left\{\|\rho\|_{p}=1: \rho \in \mathcal{S}_{p}^{+}(H)\right\}:$ unit p-norm in $\mathcal{S}_{p}^{+}(H)$
$P_{1}(H)$: the set of rank one projections in $\mathcal{S}_{p}^{+}(H)$

Linear isometries on $\mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Russo, 1969)

Let $\Phi: \mathcal{T}(H) \rightarrow \mathcal{T}(H)$ be linear surjective isometry.
Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V \text {. }
$$

Linear isometries on $\mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Russo, 1969)

Let $\Phi: \mathcal{T}(H) \rightarrow \mathcal{T}(H)$ be linear surjective isometry. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V .
$$

Theorem (Arazy, 1975)

Let $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ be linear surjective isometry, $1 \leq p \leq+\infty$, $p \neq 2$. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V .
$$

Linear isometries on $\mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Russo, 1969)

Let $\Phi: \mathcal{T}(H) \rightarrow \mathcal{T}(H)$ be linear surjective isometry. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V \text {. }
$$

Theorem (Arazy, 1975)

Let $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ be linear surjective isometry, $1 \leq p \leq+\infty$, $p \neq 2$. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V .
$$

Theorem (Molnár 2007, Nagy 2013)
For $1 \leq p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}$: isometry w.r.t. $\|\cdot\|_{p}$, which will be assume to be surjective when $\operatorname{dim} H=+\infty$.

Linear isometries on $\mathcal{T}(H), \mathcal{S}_{p}(H), \mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Russo, 1969)

Let $\Phi: \mathcal{T}(H) \rightarrow \mathcal{T}(H)$ be linear surjective isometry. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V \text {. }
$$

Theorem (Arazy, 1975)

Let $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ be linear surjective isometry, $1 \leq p \leq+\infty$, $p \neq 2$. Then $\exists U, V$: unitaries on H, s.t. Φ has the following form

$$
\Phi(A)=U A V \quad \text { or } \quad \Phi(A)=U A^{T} V .
$$

Theorem (Molnár 2007, Nagy 2013)

For $1 \leq p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}$: isometry w.r.t. $\|\cdot\|_{p}$, which will be assume to be surjective when $\operatorname{dim} H=+\infty$.
Then $\exists U$: unitary on H, s.t. Φ has the following form

$$
\Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*} \quad \forall A \in \mathcal{S}_{p}^{+}(H)_{1} .
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} \quad \rho, \sigma \in \mathcal{S}_{p}^{+}(H), 0 \leq t \leq 1
$$

\Leftrightarrow
$\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)$
$\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} \quad \rho, \sigma \in \mathcal{S}_{p}^{+}(H), 0 \leq t \leq 1
$$

\Leftrightarrow
$\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)$
$\Phi(\rho)=U \rho U^{*} \quad$ or $\quad \Phi(\rho)=U \rho^{T} U^{*}$.
Main ideal:

1. $\|\cdot\|_{p}$ is Frechet differentiable.
2. Wigner Theorem on $P_{1}(H)$.

Generalization on $\mathcal{S}_{p}^{+}(H)$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and $\alpha, \beta \in \mathbb{R} \backslash\{0\}$. Supp. a map $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ with

$$
\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)
$$

Generalization on $\mathcal{S}_{p}^{+}(H)$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and $\alpha, \beta \in \mathbb{R} \backslash\{0\}$. Supp. a map $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ with

$$
\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)
$$

Then (1) $\operatorname{dim} H=+\infty, \Phi$ is surjective:
$\exists U$: unitary on H, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$;
(2) $\operatorname{dim} H<+\infty$:
(a) $\alpha+\beta \neq 0, \exists U$: unitary on H, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$;
(b) $\alpha+\beta=0, \exists U$: unitary on H, and $X \in \mathcal{S}_{p}^{+}(H)$,

$$
\text { s.t. } \Phi(\rho)=U \rho U^{*}+X \text { or } \Phi(\rho)=U \rho^{T} U^{*}+X \text {. }
$$

Generalization on $\mathcal{S}_{p}^{+}(H)$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and $\alpha, \beta \in \mathbb{R} \backslash\{0\}$. Supp. a map $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ with $\quad\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)$.
Then (1) $\operatorname{dim} H=+\infty, \Phi$ is surjective: $\exists U$: unitary on H, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$;
(2) $\operatorname{dim} H<+\infty$:
(a) $\alpha+\beta \neq 0, \exists U$: unitary on H, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$;
(b) $\alpha+\beta=0, \exists U$: unitary on H, and $X \in \mathcal{S}_{p}^{+}(H)$,

$$
\text { s.t. } \Phi(\rho)=U \rho U^{*}+X \text { or } \Phi(\rho)=U \rho^{T} U^{*}+X \text {. }
$$

Lemma: Fix $\alpha, \beta \in \mathbb{R}$. Supp. $\rho=\rho^{*}, \sigma=\sigma^{*} \in \mathcal{S}_{p}(H)$ with $\|\rho\|=\|\sigma\|$. Then $\rho=\sigma \Leftrightarrow\|\alpha \rho+\beta P\|_{p}=\|\alpha \sigma+\beta P\|_{p} \quad \forall P \in P_{1}(H)$.

Generalization on $\mathcal{S}_{p}^{+}(H)$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and $\alpha, \beta \in \mathbb{R} \backslash\{0\}$. Supp. a map $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$
with $\quad\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)$.
Then (1) $\operatorname{dim} H=+\infty, \Phi$ is surjective:

$$
\exists U \text { : unitary on } H \text {, s.t. } \Phi(\rho)=U \rho U^{*} \text { or } \Phi(\rho)=U \rho^{T} U^{*}
$$

(2) $\operatorname{dim} H<+\infty$:
(a) $\alpha+\beta \neq 0, \exists U$: unitary on H, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}$;
(b) $\alpha+\beta=0, \exists U$: unitary on H, and $X \in \mathcal{S}_{p}^{+}(H)$,

$$
\text { s.t. } \Phi(\rho)=U \rho U^{*}+X \text { or } \Phi(\rho)=U \rho^{T} U^{*}+X .
$$

Lemma: Fix $\alpha, \beta \in \mathbb{R}$. Supp. $\rho=\rho^{*}, \sigma=\sigma^{*} \in \mathcal{S}_{p}(H)$ with $\|\rho\|=\|\sigma\|$. Then $\rho=\sigma \Leftrightarrow\|\alpha \rho+\beta P\|_{p}=\|\alpha \sigma+\beta P\|_{p} \quad \forall P \in P_{1}(H)$.
Remark: Fix arbitrary a $P \in P_{1}(H), S=S^{*}$ on H and $t \in \mathbb{R}$, consider $P(t)=e^{i t S} P e^{-i t S} \in P_{1}(H)$.

Riemannian structure

Recall:

$B(H)^{+}=\{A \geq 0: A \in B(H)\}, B(H)_{-1}^{+}=\left\{A \in B(H)^{+}: A\right.$ is inv. $\}$.
$B(H)=M_{n}, H_{n}=\left\{A=A^{*}: A \in M_{n}\right\}, P_{n}=\left\{A>0: A \in M_{n}\right\}$.

Riemannian structure

Recall:

$B(H)^{+}=\{A \geq 0: A \in B(H)\}, B(H)_{-1}^{+}=\left\{A \in B(H)^{+}: A\right.$ is inv. $\}$. $B(H)=M_{n}, H_{n}=\left\{A=A^{*}: A \in M_{n}\right\}, P_{n}=\left\{A>0: A \in M_{n}\right\}$.

Since P_{n} : an open subset of H_{n}, it can be equipped with a Riemannian structure s.t. the tangent space at $D \in P_{n}$ can be identified with H_{n}.

Riemannian structure

Recall:

$B(H)^{+}=\{A \geq 0: A \in B(H)\}, B(H)_{-1}^{+}=\left\{A \in B(H)^{+}: A\right.$ is inv. $\}$.
$B(H)=M_{n}, H_{n}=\left\{A=A^{*}: A \in M_{n}\right\}, P_{n}=\left\{A>0: A \in M_{n}\right\}$.
Since P_{n} : an open subset of H_{n}, it can be equipped with a Riemannian structure s.t. the tangent space at $D \in P_{n}$ can be identified with H_{n}.

Question:

Supp. $\Phi: P_{n} \rightarrow P_{n}$ preserves norm of convex combinations, i.e.,

$$
\|t \Phi(x)+(1-t) \Phi(y)\|=\|t x+(1-t) y\|, \quad \forall x, y \in P_{n}, 0 \leq t \leq 1
$$

Then what does this mean in Riemannian geometry and what can we say ?

Riemannian metric

(F. Hiai and D. Petz; 2009) For any $D \in P_{n}$: Riemannian manifold, the tangent space at D can be identified with H_{n}.

A Riemannian metric $K_{D}: H_{n} \times H_{n} \rightarrow[0, \infty)$ is a family of inner products on H_{n} depending smoothly on D.

Riemannian metric

(F. Hiai and D. Petz; 2009) For any $D \in P_{n}$: Riemannian manifold, the tangent space at D can be identified with H_{n}.
A Riemannian metric $K_{D}: H_{n} \times H_{n} \rightarrow[0, \infty)$ is a family of inner products on H_{n} depending smoothly on D.

If $\psi(x, y)$ is a positive kernel function on $(0, \infty) \times(0, \infty)$ and D has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i} P_{i}$, then a Riemannian metric K^{ψ} can be defined as

$$
K_{D}^{\psi}(H, K):=\sum_{i, j=1}^{n} \psi\left(\lambda_{i}, \lambda_{j}\right)^{-1} \operatorname{tr} P_{i} H P_{j} K, \quad \forall D \in P_{n}
$$

where H, K : tangent vectors in H_{n}.

geodesic

Supp. $\rho:[0,1] \rightarrow P_{n}$ is a differential curve (or a continuous and piecewise differential curve), the length of ρ w.r.t. the metric K^{ψ} is given by

$$
L(\rho):=\int_{0}^{1} \sqrt{K_{\rho(t)}^{\psi}\left(\rho^{\prime}(t), \rho^{\prime}(t)\right)} d t
$$

geodesic

Supp. $\rho:[0,1] \rightarrow P_{n}$ is a differential curve (or a continuous and piecewise differential curve), the length of ρ w.r.t. the metric K^{ψ} is given by

$$
L(\rho):=\int_{0}^{1} \sqrt{K_{\rho(t)}^{\psi}\left(\rho^{\prime}(t), \rho^{\prime}(t)\right)} d t
$$

The geodesic distance $\delta(A, B)$ between $A, B \in P_{n}$ is defined as

$$
\delta(A, B)=\inf \{L(\rho) \mid \rho \text { is a differentiable path from } \mathrm{A} \text { to } \mathrm{B}\} .
$$

geodesic

Supp. $\rho:[0,1] \rightarrow P_{n}$ is a differential curve (or a continuous and piecewise differential curve), the length of ρ w.r.t. the metric K^{ψ} is given by

$$
L(\rho):=\int_{0}^{1} \sqrt{K_{\rho(t)}^{\psi}\left(\rho^{\prime}(t), \rho^{\prime}(t)\right)} d t
$$

The geodesic distance $\delta(A, B)$ between $A, B \in P_{n}$ is defined as

$$
\delta(A, B)=\inf \{L(\rho) \mid \rho \text { is a differentiable path from } \mathrm{A} \text { to } \mathrm{B}\} .
$$

We know that this infimum is attained by a path uniquely determined by A and B. A geodesic joining two given points A and B, is a curve γ from A to B such that $L(\gamma)=\delta(A, B)$.

$$
\psi_{1}(x, y)=1, \psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}
$$

Ex: the kernel function $\psi_{1}(x, y)=1$. For any $D=\sum_{i=1}^{n} \lambda_{i} P_{i} \in P_{n}$, then the Riemannian metric $K^{\psi_{1}}$ is the Hilbert-Schmidt inner product $K_{D}^{\psi_{1}}(H, K)=\sum_{i, j=1}^{n} \operatorname{tr} P_{i} H P_{j} K=\operatorname{tr} H^{*} K=\langle H, K\rangle_{\mathrm{HS}} \quad \forall H, K \in H_{n}$.

Ex: the kernel function $\psi_{1}(x, y)=1$. For any $D=\sum_{i=1}^{n} \lambda_{i} P_{i} \in P_{n}$, then the Riemannian metric $K^{\psi_{1}}$ is the Hilbert-Schmidt inner product $K_{D}^{\psi_{1}}(H, K)=\sum_{i, j=1}^{n} \operatorname{tr} P_{i} H P_{j} K=\operatorname{tr} H^{*} K=\langle H, K\rangle_{\mathrm{HS}} \quad \forall H, K \in H_{n}$. In this case, the unique geodesic joining $A, B \in P_{n}$ is the segment

$$
\gamma_{1}(t)=(1-t) A+t B \quad 0 \leq t \leq 1
$$

Ex: the kernel function $\psi_{1}(x, y)=1$. For any $D=\sum_{i=1}^{n} \lambda_{i} P_{i} \in P_{n}$, then the Riemannian metric $K^{\psi_{1}}$ is the Hilbert-Schmidt inner product $K_{D}^{\psi_{1}}(H, K)=\sum_{i, j=1}^{n} \operatorname{tr} P_{i} H P_{j} K=\operatorname{tr} H^{*} K=\langle H, K\rangle_{\mathrm{HS}} \quad \forall H, K \in H_{n}$. In this case, the unique geodesic joining $A, B \in P_{n}$ is the segment

$$
\gamma_{1}(t)=(1-t) A+t B \quad 0 \leq t \leq 1
$$

Ex: the kernel function $\psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}$, which is related to the logarithmic mean of x, y.

Ex: the kernel function $\psi_{1}(x, y)=1$. For any $D=\sum_{i=1}^{n} \lambda_{i} P_{i} \in P_{n}$, then the Riemannian metric $K^{\psi_{1}}$ is the Hilbert-Schmidt inner product $K_{D}^{\psi_{1}}(H, K)=\sum_{i, j=1}^{n} \operatorname{tr} P_{i} H P_{j} K=\operatorname{tr} H^{*} K=\langle H, K\rangle_{\mathrm{HS}} \quad \forall H, K \in H_{n}$. In this case, the unique geodesic joining $A, B \in P_{n}$ is the segment

$$
\gamma_{1}(t)=(1-t) A+t B \quad 0 \leq t \leq 1
$$

Ex: the kernel function $\psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}$, which is related to the logarithmic mean of x, y. In this case, the unique geodesic joining $A, B \in P_{n}$ is given by

$$
\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1
$$

$\psi_{3}(x, y)=x y$

Ex. the kernel function $\psi_{3}(x, y)=x y$. It is related to the geometric mean of x, y.

$\psi_{3}(x, y)=x y$

Ex. the kernel function $\psi_{3}(x, y)=x y$. It is related to the geometric mean of x, y. In this case, the unique geodesic joining $A, B \in P_{n}$ is given by

$$
\gamma_{3}(t)=A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, \quad 0 \leq t \leq 1
$$

$\psi_{3}(x, y)=x y$

Ex. the kernel function $\psi_{3}(x, y)=x y$. It is related to the geometric mean of x, y. In this case, the unique geodesic joining $A, B \in P_{n}$ is given by

$$
\gamma_{3}(t)=A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, \quad 0 \leq t \leq 1 .
$$

The midpoint of the geodesic is the geometric mean of A, B,

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

geometric mean

Definition: For $A, B \in P_{n}$, geometric mean of A, B is defined by

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

geometric mean

Definition: For $A, B \in P_{n}$, geometric mean of A, B is defined by

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

Proposition:

(1) $A \# B=B \# A,(A \# B)^{T}=A^{T} \# B^{T},(A \# B)^{-1}=A^{-1} \# B^{-1}$.
(2) $\forall S$: inv. bdd. linear or conjugate-linear on H, we have $S(A \# B) S^{*}=\left(S A S^{*}\right) \#\left(S B S^{*}\right)$.
(3) $A \# B$ is the unique positive solution of $B=X^{*} A^{-1} X$.
(4) $A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}A & X \\ X & B\end{array}\right] \geq 0\right\}, \quad A, B \in P_{n}$.

geometric mean

Definition: For $A, B \in P_{n}$, geometric mean of A, B is defined by

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

Proposition:

(1) $A \# B=B \# A,(A \# B)^{T}=A^{T} \# B^{T},(A \# B)^{-1}=A^{-1} \# B^{-1}$.
(2) $\forall S$: inv. bdd. linear or conjugate-linear on H, we have $S(A \# B) S^{*}=\left(S A S^{*}\right) \#\left(S B S^{*}\right)$.
(3) $A \# B$ is the unique positive solution of $B=X^{*} A^{-1} X$.
(4) $A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}A & X \\ X & B\end{array}\right] \geq 0\right\}, \quad A, B \in P_{n}$.

Note: Let $A>0$. Then $\left[\begin{array}{cc}A & X \\ X & B\end{array}\right] \geq 0 \Leftrightarrow B \geq X A^{-1} X$

$$
\Rightarrow A^{-1 / 2} B A^{-1 / 2} \geq\left(A^{-1 / 2} X A^{-1 / 2}\right)^{2} \Rightarrow A \# B \geq X
$$

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1}}, K^{\psi_{2}}, K^{\psi_{3}}$. Then T.F.A.E.

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1}}, K^{\psi_{2}}, K^{\psi_{3}}$. Then T.F.A.E.
(1) For $p>1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{1}}\right)$, i.e.,

$$
\|((1-t) A+t B)\|_{p}=\|((1-t) \Phi(A)+t \Phi(B))\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n}
$$

(2) For $p \geq 1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{2}}\right)$, i.e., $\left\|e^{(1-t) \log A+t \log B}\right\|_{p}=\left\|e^{(1-t) \log \Phi(A)+t \log \Phi(B)}\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n}$.
(3) For $p \geq 1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{3}}\right)$, i.e.,

$$
\left\|\left(A \#_{t} B\right)\right\|_{p}=\left\|\left(\Phi(A) \#_{t} \Phi(B)\right)\right\|_{p}, \quad \forall 0 \leq t \leq 1, A, B \in P_{n}
$$

(4) There exists a unitary U on H s.t.

$$
\Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n}
$$

Main tools

Lemma

Supp. $X(t) \in P_{n}$ for each t and conti. diff. w.r.t. t, then

$$
\frac{d}{d t} \operatorname{tr}\left[X(t)^{p}\right]=p \operatorname{tr}\left[X(t)^{p-1} \frac{d}{d t} X(t)\right], \quad p \geq 1
$$

Main tools

Lemma

Supp. $X(t) \in P_{n}$ for each t and conti. diff. w.r.t. t, then

$$
\frac{d}{d t} \operatorname{tr}\left[X(t)^{p}\right]=p \operatorname{tr}\left[X(t)^{p-1} \frac{d}{d t} X(t)\right], \quad p \geq 1
$$

Theorem (Molnár, 2011)

Let $\Phi: B(H)_{-1}^{+} \rightarrow B(H)_{-1}^{+}$be a bijective map.

Main tools

Lemma

Supp. $X(t) \in P_{n}$ for each t and conti. diff. w.r.t. t, then

$$
\frac{d}{d t} \operatorname{tr}\left[X(t)^{p}\right]=p \operatorname{tr}\left[X(t)^{p-1} \frac{d}{d t} X(t)\right], \quad p \geq 1
$$

Theorem (Molnár, 2011)

Let $\Phi: B(H)_{-1}^{+} \rightarrow B(H)_{-1}^{+}$be a bijective map.
(1) Supp. $A \leq B \Leftrightarrow \Phi(A) \leq \Phi(B) \quad \forall A, B \in B(H)_{-1}^{+}$.

Then $\exists R$: inv. bdd. linear or conjugate-linear on H, s.t.

$$
\Phi(A)=R A R^{*}, \quad \forall A \in B(H)_{-1}^{+} .
$$

(2) Supp. $\log A \leq \log B \Leftrightarrow \log \Phi(A) \leq \log \Phi(B) \quad \forall A, B \in B(H)_{-1}^{+}$.

Then $\exists S$: inv. bdd. linear or conjugate-linear, $X=X^{*}$ on H, s.t.

$$
\Phi(A)=e^{S(\log A) S^{*}+X}, \quad \forall A \in B(H)_{-1}^{+} .
$$

Connection between geodesic and entropy

Recall: $M\left(\mathbb{C}^{n}\right)=\left\{A>0: A \in M_{n} \operatorname{tr} A=1\right\}, \gamma_{2}(t)=e^{(1-t) \log A+t \log B}$. $\gamma_{3}(t)=A \#{ }_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Remark

(1) The Umegaki relative entropy $S_{U}(A \| B)$ is defined by

$$
S_{U}(A \| B)=\operatorname{tr}[A(\log A-\log B)] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right)
$$

Connection between geodesic and entropy

Recall: $M\left(\mathbb{C}^{n}\right)=\left\{A>0: A \in M_{n} \operatorname{tr} A=1\right\}, \gamma_{2}(t)=e^{(1-t) \log A+t \log B}$. $\overline{\gamma_{3}(t)}=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Remark

(1) The Umegaki relative entropy $S_{U}(A \| B)$ is defined by

$$
\begin{aligned}
& S_{U}(A \| B)=\operatorname{tr}[A(\log A-\log B)] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right) \\
& \left.\because \frac{d}{d t} \operatorname{tr}\left[e^{(1-t) \log A+t \log B}\right]\right|_{t=0}=\operatorname{tr}[A(\log B-\log A)]=-S_{U}(A| | B)
\end{aligned}
$$

\therefore a map ϕ preserves the trace norm of $\gamma_{2}(t)$
$\Leftrightarrow \phi$ preserves the Umegaki relative entropy of A, B.

Connection between geodesic and entropy

Recall: $M\left(\mathbb{C}^{n}\right)=\left\{A>0: A \in M_{n} \operatorname{tr} A=1\right\}, \gamma_{2}(t)=e^{(1-t) \log A+t \log B}$. $\gamma_{3}(t)=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Remark

(1) The Umegaki relative entropy $S_{U}(A \| B)$ is defined by

$$
\begin{aligned}
& S_{U}(A \| B)=\operatorname{tr}[A(\log A-\log B)] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right) \\
& \left.\because \frac{d}{d t} \operatorname{tr}\left[e^{(1-t) \log A+t \log B}\right]\right|_{t=0}=\operatorname{tr}[A(\log B-\log A)]=-S_{U}(A| | B)
\end{aligned}
$$

\therefore a map ϕ preserves the trace norm of $\gamma_{2}(t)$
$\Leftrightarrow \phi$ preserves the Umegaki relative entropy of A, B.
(2) The Belavkin-Staszewski relative entropy $S_{B S}(A| | B)$ is defined by

$$
S_{B S}(A \| B)=\operatorname{tr}\left[A \log \left(A^{1 / 2} B^{-1} A^{1 / 2}\right)\right] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right)
$$

Connection between geodesic and entropy

Recall: $M\left(\mathbb{C}^{n}\right)=\left\{A>0: A \in M_{n} \operatorname{tr} A=1\right\}, \gamma_{2}(t)=e^{(1-t) \log A+t \log B}$.
$\gamma_{3}(t)=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Remark

(1) The Umegaki relative entropy $S_{U}(A \| B)$ is defined by

$$
\begin{aligned}
& S_{U}(A \| B)=\operatorname{tr}[A(\log A-\log B)] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right) \\
& \left.\because \frac{d}{d t} \operatorname{tr}\left[e^{(1-t) \log A+t \log B}\right]\right|_{t=0}=\operatorname{tr}[A(\log B-\log A)]=-S_{U}(A| | B)
\end{aligned}
$$

\therefore a map ϕ preserves the trace norm of $\gamma_{2}(t)$
$\Leftrightarrow \phi$ preserves the Umegaki relative entropy of A, B.
(2) The Belavkin-Staszewski relative entropy $S_{B S}(A \| B)$ is defined by

$$
\begin{aligned}
& S_{B S}(A \| B)=\operatorname{tr}\left[A \log \left(A^{1 / 2} B^{-1} A^{1 / 2}\right)\right] \quad \forall A, B \in M\left(\mathbb{C}^{n}\right) . \\
& \left.\because \frac{d}{d t} \operatorname{tr}\left(A \#{ }_{t} B\right)\right|_{t=0}=A^{1 / 2} \log \left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}=-S_{B S}(A \| B) .
\end{aligned}
$$

\therefore a map ϕ preserves the trace norm of $\gamma_{3}(t)$
$\Leftrightarrow \phi$ preserves the Belavkin-Staszewski relative entropy of A, B.

preserve geodesic $\gamma_{3}(t)$

Consider map Φ on P_{n} preserves geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$.

preserve geodesic $\gamma_{3}(t)$

Consider map Φ on P_{n} preserves geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$. Recall: $\quad \gamma_{3}(t)=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

preserve geodesic $\gamma_{3}(t)$

Consider map Φ on P_{n} preserves geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$. Recall: $\quad \gamma_{3}(t)=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Theorem (Szokol, Tsai, Zhang)

Supp. the Riemannian metric on $P_{n}(n \geq 3)$ is defined by the kernel function $\psi_{3}(x, y)=x y$. Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective continuous map. Then for any $A, B \in P_{n}$, T.F.A.E.

preserve geodesic $\gamma_{3}(t)$

Consider map Φ on P_{n} preserves geodesics $\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)$.
Recall: $\quad \gamma_{3}(t)=A \#_{t} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, 0 \leq t \leq 1$

Theorem (Szokol, Tsai, Zhang)

Supp. the Riemannian metric on $P_{n}(n \geq 3)$ is defined by the kernel function $\psi_{3}(x, y)=x y$. Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective continuous map. Then for any $A, B \in P_{n}$, T.F.A.E.
(1) Φ maps geodesic joining A, B onto geodesic joining $\Phi(A), \Phi(B)$, i.e. $\quad \Phi\left(A \#_{t} B\right)=\Phi(A) \#_{t} \Phi(B)$;
(2) Φ preserves the geometric mean of A and B,
i.e. $\quad \Phi(A \# B)=\Phi(A) \# \Phi(B)$;
(3) $\exists S$: inv. bdd. linear on \mathbb{C}^{n} s.t. Φ is of one of the forms

$$
\Phi(A)=(\operatorname{det} A)^{c} S A S^{*}, \Phi(A)=(\operatorname{det} A)^{c} S A^{T} S^{*}, c \in \mathbb{R}, c \neq-\frac{1}{n}
$$

or $\exists S$: inv. bdd. linear on \mathbb{C}^{n} s.t. Φ is of one of the forms

$$
\Phi(A)=(\operatorname{det} A)^{c} S A^{-1} S^{*}, \Phi(A)=(\operatorname{det} A)^{c} S\left(A^{-1}\right)^{T} S^{*}, c \in \mathbb{R}, c \neq \frac{1}{n}
$$

preserve geodesic $\gamma_{2}(t), \gamma_{1}(t)$

Recall:
$\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1$.

preserve geodesic $\gamma_{2}(t), \gamma_{1}(t)$

Recall:

$\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1$.

Theorem (Szokol, Tsai, Zhang)

Supp. $\left(P_{n}, K^{\psi_{2}}\right)$ is a Riemannian manifold with Riemannian metric defined by the kernel function $\psi_{2}=\left(\frac{x-y}{\log x-\log y}\right)^{2}$.

preserve geodesic $\gamma_{2}(t), \gamma_{1}(t)$

Recall:

$\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1$.

Theorem (Szokol, Tsai, Zhang)

Supp. $\left(P_{n}, K^{\psi_{2}}\right)$ is a Riemannian manifold with Riemannian metric defined by the kernel function $\psi_{2}=\left(\frac{x-y}{\log x-\log y}\right)^{2}$.
Then $\Phi: P_{n} \rightarrow P_{n}$ satisfying $\Phi\left(\gamma_{A, B}^{\psi_{2}}(t)\right)=\gamma_{\Phi(A), \Phi(B)}^{\psi_{2}}(t)$,
i.e. $\Phi\left(e^{((1-t) \log A+t \log B)}\right)=e^{((1-t) \log \Phi(A)+t \log \Phi(B))}$
$\Leftrightarrow \exists \delta_{i} \in \mathbb{R}, M_{i} \in B(H), i=1, \ldots, k \& N=N^{*}$ s.t.
$\Phi(A)=e^{\left(\sum_{i=1}^{k} \delta_{i} M_{i}(\log A) M_{i}^{*}+N\right)}, \quad \forall A \in P_{n}$.

preserve geodesic $\gamma_{2}(t), \gamma_{1}(t)$

Recall:

$\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1$.

Theorem (Szokol, Tsai, Zhang)

Supp. ($P_{n}, K^{\psi_{2}}$) is a Riemannian manifold with Riemannian metric defined by the kernel function $\psi_{2}=\left(\frac{x-y}{\log x-\log y}\right)^{2}$.
Then $\Phi: P_{n} \rightarrow P_{n}$ satisfying $\Phi\left(\gamma_{A, B}^{\psi_{2}}(t)\right)=\gamma_{\Phi(A), \Phi(B)}^{\psi_{2}}(t)$,
i.e. $\Phi\left(e^{((1-t) \log A+t \log B)}\right)=e^{((1-t) \log \Phi(A)+t \log \Phi(B))}$
$\Leftrightarrow \exists \delta_{i} \in \mathbb{R}, M_{i} \in B(H), i=1, \ldots, k \& N=N^{*}$ s.t.
$\Phi(A)=e^{\left(\sum_{i=1}^{k} \delta_{i} M_{i}(\log A) M_{i}^{*}+N\right)}, \quad \forall A \in P_{n}$.
Remark: Supp. Riemannian metric on P_{n} is defined by the kernel function $\psi(x, y)=1$. Then the map satisfying that

$$
\Phi\left(\gamma_{1}(t)\right)=\Phi((1-t) A+t B)=(1-t) \Phi(A)+t \Phi(B): \text { affine }
$$

Problem

Recall

Theorem: Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{i}}$. Then Φ preserves $\|\cdot\|_{P}$ of geodesics $\gamma_{A, B}$ under $\left(P_{n}, K^{\psi_{i}}\right)$, i.e.,

$$
\begin{aligned}
& \left\|\phi\left(\gamma_{A, B}^{\psi_{i}}\right)(t)\right\|_{p}=\left\|\gamma_{\phi(A), \phi(B)}^{\psi_{i}}(t)\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n .} . \text { for some } i \\
& \Leftrightarrow \Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n} .
\end{aligned}
$$

Problem

Recall

Theorem: Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{i}}$. Then Φ preserves $\|\cdot\|_{P}$ of geodesics $\gamma_{A, B}$ under $\left(P_{n}, K^{\psi_{i}}\right)$, i.e.,

$$
\begin{aligned}
& \left\|\phi\left(\gamma_{A, B}^{\psi_{i}}\right)(t)\right\|_{p}=\left\|\gamma_{\phi(A), \phi(B)}^{\psi_{i}}(t)\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n .} . \text { for some } i \\
& \Leftrightarrow \Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n} .
\end{aligned}
$$

Problem:

(1) P_{n} is replaced with $B(H)_{-1}^{+}$, where $\operatorname{dim} H=+\infty$?

Problem

Recall

Theorem: Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{i}}$. Then Φ preserves $\|\cdot\|_{P}$ of geodesics $\gamma_{A, B}$ under $\left(P_{n}, K^{\psi_{i}}\right)$, i.e.,

$$
\begin{aligned}
& \left\|\phi\left(\gamma_{A, B}^{\psi_{i}}\right)(t)\right\|_{p}=\left\|\gamma_{\phi(A), \phi(B)}^{\psi_{i}}(t)\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n .} . \text { for some } i \\
& \Leftrightarrow \Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n} .
\end{aligned}
$$

Problem:

(1) P_{n} is replaced with $B(H)_{-1}^{+}$, where $\operatorname{dim} H=+\infty$?
(2) " $\forall 0 \leq t \leq 1$ " is replaced with " for some $0<t<1$ "?

Problem

Recall

Theorem: Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{i}}$. Then Φ preserves $\|\cdot\|_{P}$ of geodesics $\gamma_{A, B}$ under $\left(P_{n}, K^{\psi_{i}}\right)$, i.e.,

$$
\begin{aligned}
& \left\|\phi\left(\gamma_{A, B}^{\psi_{i}}\right)(t)\right\|_{p}=\left\|\gamma_{\phi(A), \phi(B)}^{\psi_{i}}(t)\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n .} . \text { for some } i \\
& \Leftrightarrow \Phi(A)=U A U^{*} \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n} .
\end{aligned}
$$

Problem:

(1) P_{n} is replaced with $B(H)_{-1}^{+}$, where $\operatorname{dim} H=+\infty$?
(2) " $\forall 0 \leq t \leq 1$ " is replaced with " for some $0<t<1$ "?
(3) $\|\cdot\|_{p}$ is replaced with unitarily invariant norm on $\mathcal{S}_{p}^{+}(H)$ or P_{n} ?
(Note. $\|\cdot\|$: unitarily invariant norm if $\|U A V\|=\|A\|, \forall$ unitaries U, V)

Reference

1. T.J. Abatzoglou, Norm derivatives on spaces of operators, Mathematische Annalen, 1979
2. J. Arazy, The isometries of C_{p}, Israel J. Math, 1975
3. F. Hiai, D. Petz, Riemannian metrics on positive definite matrices related to means, Linear Algebra Appl., 2009
4. F. Hiai, D. Petz, Riemannian metrics on positive definite matrices related to means. II, Linear Algebra Appl., 2012
5. D.L.-W. Kuo, M.C. Tsai, N.C. Wong, J. Zhang, Maps preserving schatten p-norms of convex combinations, Abstract and Applied Analysis, 2014

Reference

6. S. Mazur, S. Ulam, Sur les transformation d'espaces vectoriels normé, C.R. Acad. Sci. Paris, 1932
7. L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Berlin: Springer, 2007
8. L. Molnár, Order automorphisms on positive definite operators and a few applications, Linear Algebra Appl., 2011
9. L. Molnár, Jordan triple endomorphisms and isometries of spaces of positive definite matrices, Linear and Multilinear Algebra, 2013

Reference

10. G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen, 2013
11. G. Nagy, Preservers for the p-norm of linear combinations of positive operators, Abstract and Applied Analysis, 2014
12. B. Russo, Isometries of the trace class, Proc. Amer. Math. Soc., 1969
13. I. Schur, Einige Bermerkungen zur Determinanten theorie, S.B. Preuss. Akad. Wiss. Berlin, 1925
14. P. Szokol, M.C. Tsai, J. Zhang, Maps preserving Riemannian geodesic via relative entropy and geometric mean, preprint

Thanks for your attention !

preserve length of differentiable path in $\left(P_{n}, K^{\psi_{3}}\right)$

Theorem (Szokol, Tsai, Zhang)

Supp. $\left(P_{n}, K^{\psi_{3}}\right)$ is a Riemannian manifold with Riemannian metric defined by the kernel function $\psi_{3}(x, y)=x y$. Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation. Then Φ preserves the length of all differentiable paths
\Leftrightarrow
(1) $n=2: \Phi$ is of one of the forms

$$
\Phi(A)=S A S^{*}, S A^{T} S^{*}, S A^{-1} S^{*}, S\left(A^{T}\right)^{-1} S^{*} .
$$

(2) $n \geq 3$: Φ is of one of above forms or of below forms
$\Phi(A)=(\operatorname{det} A)^{-\frac{2}{n}} S A S^{*},(\operatorname{det} A)^{-\frac{2}{n}} S A^{T} S^{*},(\operatorname{det} A)^{\frac{2}{n}} S A^{-1} S^{*},(\operatorname{det} A)^{\frac{2}{n}} S\left(A^{T}\right)^{-1} S^{*}$ for all $A \in P_{n}$. Here, S : inv. in M_{n}.

$$
\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}, \psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}
$$

Ex: the kernel function $\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}$ with $\alpha \neq 0$.

$$
\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}, \psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}
$$

Ex: the kernel function $\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}$ with $\alpha \neq 0$.
For every $A, B \in P_{n}$, a unique geodesic from A to B is given by

$$
\gamma_{1, \alpha}(t)=\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}, \quad 0 \leq t \leq 1 \quad \text { if } \alpha \neq 0
$$

$$
\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}, \psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}
$$

Ex: the kernel function $\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}$ with $\alpha \neq 0$.
For every $A, B \in P_{n}$, a unique geodesic from A to B is given by

$$
\gamma_{1, \alpha}(t)=\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}, \quad 0 \leq t \leq 1 \quad \text { if } \alpha \neq 0
$$

Ex: the kernel function $\psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}$, which is the limit function of $\psi_{1, \alpha}(x, y)$ as $\alpha \rightarrow 0$. It is related to the logarithmic mean of x, y.

$$
\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}, \psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}
$$

Ex: the kernel function $\psi_{1, \alpha}(x, y)=\left(\alpha \frac{x-y}{x^{\alpha}-y^{\alpha}}\right)^{2}$ with $\alpha \neq 0$.
For every $A, B \in P_{n}$, a unique geodesic from A to B is given by

$$
\gamma_{1, \alpha}(t)=\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}, \quad 0 \leq t \leq 1 \quad \text { if } \alpha \neq 0
$$

Ex: the kernel function $\psi_{2}(x, y)=\left(\frac{x-y}{\log x-\log y}\right)^{2}$, which is the limit function of $\psi_{1, \alpha}(x, y)$ as $\alpha \rightarrow 0$. It is related to the logarithmic mean of x, y. In this case, the unique geodesic joining $A, B \in P_{n}$ is given by

$$
\gamma_{2}(t)=e^{(1-t) \log A+t \log B}, \quad 0 \leq t \leq 1
$$

Ex. the kernel function $\psi_{3, \kappa}(x, y)=\left(\kappa(x y)^{\frac{\kappa}{2}} \frac{x-y}{x^{\kappa}-y^{\kappa}}\right)^{2}$ for $\kappa>0$.
For every $A, B \in P_{n}, \exists$ a unique geodesic from A to B given by
$\gamma_{3, \kappa}(t)=\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}:=\left(A^{\kappa / 2}\left(A^{-\kappa / 2} B^{\kappa} A^{-\kappa / 2}\right)^{t} A^{\kappa / 2}\right)^{1 / \kappa}, 0 \leq t \leq 1, \kappa>0$.

$$
\psi_{3, \kappa}(x, y)=\left(\kappa(x y)^{\frac{\kappa}{2}} \frac{x-y}{x^{\kappa}-y^{\kappa}}\right)^{2}
$$

Ex. the kernel function $\psi_{3, \kappa}(x, y)=\left(\kappa(x y)^{\frac{\kappa}{2}} \frac{x-y}{x^{\kappa}-y^{\kappa}}\right)^{2}$ for $\kappa>0$.
For every $A, B \in P_{n}, \exists$ a unique geodesic from A to B given by
$\gamma_{3, \kappa}(t)=\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}:=\left(A^{\kappa / 2}\left(A^{-\kappa / 2} B^{\kappa} A^{-\kappa / 2}\right)^{t} A^{\kappa / 2}\right)^{1 / \kappa}, 0 \leq t \leq 1, \kappa>0$.
Special case:
the kernel function $\psi_{3}(x, y)=x y$ for $\kappa=1$. It is related to the geometric mean of x, y. In this case, the unique geodesic joining $A, B \in P_{n}$ is given by

$$
\gamma_{3}(t)=A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}, \quad 0 \leq t \leq 1 .
$$

The midpoint of the geodesic is just the geometric mean of A, B,

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1, \alpha}(t), \gamma_{2}(t), \gamma_{3, k}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1, \alpha}}, K^{\psi_{2}}, K^{\psi_{3, \kappa}}$. Then T.F.A.E.

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1, \alpha}(t), \gamma_{2}(t), \gamma_{3, k}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1, \alpha}}, K^{\psi_{2}}, K^{\psi_{3, \kappa}}$. Then T.F.A.E.
(1) For $p \geq 1, \alpha>0, \alpha \neq p$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{1, \alpha}}\right)$, i.e., for all $0 \leq t \leq 1, A, B \in P_{n}$, $\left\|\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}=\left\|\left((1-t) \Phi(A)^{\alpha}+t \Phi(B)^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}$.

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1, \alpha}(t), \gamma_{2}(t), \gamma_{3, k}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1, \alpha}}, K^{\psi_{2}}, K^{\psi_{3, \kappa}}$. Then T.F.A.E.
(1) For $p \geq 1, \alpha>0, \alpha \neq p$. Φ preserves $\|\cdot\|_{P}$ of geodesics under

$$
\left(P_{n}, K^{\psi_{1, \alpha}}\right) \text {, i.e., for all } 0 \leq t \leq 1, A, B \in P_{n} \text {, }
$$

$$
\left\|\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}=\left\|\left((1-t) \Phi(A)^{\alpha}+t \Phi(B)^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}
$$

(2) For $p \geq 1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{2}}\right)$, i.e.,

$$
\left\|e^{(1-t) \log A+t \log B}\right\|_{p}=\left\|e^{(1-t) \log \Phi(A)+t \log \Phi(B)}\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n} .
$$

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1, \alpha}(t), \gamma_{2}(t), \gamma_{3, \kappa}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1, \alpha}}, K^{\psi_{2}}, K^{\psi_{3, \kappa}}$. Then T.F.A.E.
(1) For $p \geq 1, \alpha>0, \alpha \neq p$. Φ preserves $\|\cdot\|_{P}$ of geodesics under

$$
\begin{aligned}
& \left(P_{n}, K^{\psi_{1, \alpha}}\right) \text {, i.e., for all } 0 \leq t \leq 1, A, B \in P_{n} \\
& \left\|\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}=\left\|\left((1-t) \Phi(A)^{\alpha}+t \Phi(B)^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p} .
\end{aligned}
$$

(2) For $p \geq 1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{2}}\right)$, i.e., $\left\|e^{(1-t) \log A+t \log B}\right\|_{p}=\left\|e^{(1-t) \log \Phi(A)+t \log \Phi(B)}\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n}$.
(3) For $p \geq 1, \kappa>0$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{3, \kappa}}\right)$, i.e., for all $0 \leq t \leq 1, A, B \in P_{n}$,

$$
\left\|\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}\right\|_{p}=\left\|\left(\Phi(A)^{\kappa} \#_{t} \Phi(B)^{\kappa}\right)^{1 / \kappa}\right\|_{p} .
$$

preserve $\|\cdot\|_{P}$ of geodesics $\gamma_{1, \alpha}(t), \gamma_{2}(t), \gamma_{3, \kappa}(t)$

Theorem (Szokol, Tsai, Zhang)

Let $\Phi: P_{n} \rightarrow P_{n}$ be a bijective transformation defined on the different Riemannian metrics $K^{\psi_{1, \alpha}}, K^{\psi_{2}}, K^{\psi_{3, \kappa}}$. Then T.F.A.E.
(1) For $p \geq 1, \alpha>0, \alpha \neq p$. Φ preserves $\|\cdot\|_{P}$ of geodesics under

$$
\begin{aligned}
& \left(P_{n}, K^{\psi_{1, \alpha}}\right) \text {, i.e., for all } 0 \leq t \leq 1, A, B \in P_{n} \\
& \left\|\left((1-t) A^{\alpha}+t B^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p}=\left\|\left((1-t) \Phi(A)^{\alpha}+t \Phi(B)^{\alpha}\right)^{\frac{1}{\alpha}}\right\|_{p} .
\end{aligned}
$$

(2) For $p \geq 1$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{2}}\right)$, i.e.,

$$
\left\|e^{(1-t) \log A+t \log B}\right\|_{p}=\left\|e^{(1-t) \log \Phi(A)+t \log \Phi(B)}\right\|_{p}, \forall 0 \leq t \leq 1, A, B \in P_{n}
$$

(3) For $p \geq 1, \kappa>0$. Φ preserves $\|\cdot\|_{P}$ of geodesics under $\left(P_{n}, K^{\psi_{3, \kappa}}\right)$, i.e., for all $0 \leq t \leq 1, A, B \in P_{n}$,

$$
\left\|\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}\right\|_{p}=\left\|\left(\Phi(A)^{\kappa} \#_{t} \Phi(B)^{\kappa}\right)^{1 / \kappa}\right\|_{p}
$$

(4) There exists a unitary U on H s.t.

$$
\Phi(A)=U A U^{*}, \quad \text { or } \quad \Phi(A)=U A^{T} U^{*}, \quad \forall A \in P_{n}
$$

length of differentiable path in $\left(P_{n}, K^{\psi_{3}}\right)$

Recall:

$\left(P_{n}, K^{\psi_{3}}\right)$: a Riemannian manifold with Riemannian metric $K_{D}^{\psi}(H, K):=\operatorname{tr} D^{-1} H D^{-1} K$, where the kernel function $\psi_{3}(x, y)=x y$. Supp. $\rho:[0,1] \rightarrow P_{n}$ is a differentiable path joining A, B, i.e. $\rho(0)=A, \rho(1)=B$, then the length of ρ can be defined as

$$
L(\rho)=\int_{0}^{1} \sqrt{K_{\rho(t)}^{\psi_{2}}\left(\rho^{\prime}(t), \rho^{\prime}(t)\right)} d t=\int_{0}^{1}\left\|\rho^{-\frac{1}{2}}(t) \rho^{\prime}(t) \rho^{-\frac{1}{2}}(t)\right\|_{\mathrm{HS}} d t
$$

length of differentiable path in $\left(P_{n}, K^{\psi_{3}}\right)$

Recall:

$\left(P_{n}, K^{\psi_{3}}\right)$: a Riemannian manifold with Riemannian metric $K_{D}^{\psi}(H, K):=\operatorname{tr} D^{-1} H D^{-1} K$, where the kernel function $\psi_{3}(x, y)=x y$. Supp. $\rho:[0,1] \rightarrow P_{n}$ is a differentiable path joining A, B, i.e. $\rho(0)=A, \rho(1)=B$, then the length of ρ can be defined as

$$
L(\rho)=\int_{0}^{1} \sqrt{K_{\rho(t)}^{\psi}\left(\rho^{\prime}(t), \rho^{\prime}(t)\right)} d t=\int_{0}^{1}\left\|\rho^{-\frac{1}{2}}(t) \rho^{\prime}(t) \rho^{-\frac{1}{2}}(t)\right\|_{\mathrm{HS}} d t .
$$

Definition:

A map $\Phi: P_{n} \rightarrow P_{n}$ preserving the length of all differentiable paths means that given any differentiable path ρ joining A, B, the composition $\Phi \circ \rho$ is a path joining $\Phi(A), \Phi(B)$, for which $L(\Phi \circ \rho)=L(\rho)$. That is,
$\int_{0}^{1}\left\|(\Phi \circ \rho)^{-\frac{1}{2}}(t)(\Phi \circ \rho)^{\prime}(t)(\Phi \circ \rho)^{-\frac{1}{2}}(t)\right\|_{\mathrm{HS}} d t=\int_{0}^{1}\left\|\rho^{-\frac{1}{2}}(t) \rho^{\prime}(t) \rho^{-\frac{1}{2}}(t)\right\|_{\mathrm{HS}} d t$ for any $A, B \in P_{n}$ and differentiable path ρ joining A, B.

preserve geodesic $\gamma_{3, \kappa}(t)$

Recall:

$\gamma_{3, \kappa}(t)=\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}=\left(A^{\kappa / 2}\left(A^{-\kappa / 2} B^{\kappa} A^{-\kappa / 2}\right)^{t} A^{\kappa / 2}\right)^{1 / \kappa}, 0 \leq t \leq 1, \kappa>0$.

preserve geodesic $\gamma_{3, k}(t)$

Recall:

$\gamma_{3, \kappa}(t)=\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}=\left(A^{\kappa / 2}\left(A^{-\kappa / 2} B^{\kappa} A^{-\kappa / 2}\right)^{t} A^{\kappa / 2}\right)^{1 / \kappa}, 0 \leq t \leq 1, \kappa>0$.

Corollary

For $n \geq 3$. Let $\Phi: P_{n} \rightarrow P_{n}$ be a continuous bijective map. Then

$$
\Phi\left(\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}\right)=\left(\Phi(A)^{\kappa} \#_{t} \Phi(B)^{\kappa}\right)^{1 / \kappa} \quad \forall t \in[0,1], A, B \in P_{n}
$$

preserve geodesic $\gamma_{3, \kappa}(t)$

Recall:

$\gamma_{3, \kappa}(t)=\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}=\left(A^{\kappa / 2}\left(A^{-\kappa / 2} B^{\kappa} A^{-\kappa / 2}\right)^{t} A^{\kappa / 2}\right)^{1 / \kappa}, 0 \leq t \leq 1, \kappa>0$.

Corollary

For $n \geq 3$. Let $\Phi: P_{n} \rightarrow P_{n}$ be a continuous bijective map. Then

$$
\Phi\left(\left(A^{\kappa} \#_{t} B^{\kappa}\right)^{1 / \kappa}\right)=\left(\Phi(A)^{\kappa} \#_{t} \Phi(B)^{\kappa}\right)^{1 / \kappa} \quad \forall t \in[0,1], A, B \in P_{n} .
$$

\Leftrightarrow
$\exists S$: inv. bdd. linear on \mathbb{C}^{n} s.t. Φ is of one of the forms
$\Phi(A)=(\operatorname{det} A)^{c}\left(S A^{\kappa} S^{*}\right)^{1 / \kappa}, \Phi(A)=(\operatorname{det} A)^{c}\left(S\left(A^{T}\right)^{\kappa} S^{*}\right)^{1 / \kappa}, c \in \mathbb{R} \backslash \frac{-1}{n}$
or of the forms

$$
\Phi(A)=(\operatorname{det} A)^{c}\left(S A^{-\kappa} S^{*}\right)^{1 / \kappa}, \Phi(A)=(\operatorname{det} A)^{c}\left(S\left(A^{T}\right)^{-\kappa} S^{*}\right)^{1 / \kappa}, c \in \mathbb{R} \backslash \frac{1}{n}
$$

continuity condition

Remark: In above, condition of "continuity" cannot be omitted.

continuity condition

Remark: In above, condition of "continuity" cannot be omitted.

Example:

Let $f:] 0, \infty[\rightarrow] 0, \infty[$ be a multiplicative, non-continuous function, then s.t. Φ is of one of the forms

$$
\Phi(A)=(\operatorname{det} A)^{c} S A^{-1} S^{*}, \Phi(A)=(\operatorname{det} A)^{c} S\left(A^{-1}\right)^{T} S^{*}, c \in \mathbb{R}, c \neq \frac{1}{n} .
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)
For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).
(1) Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} .
$$

$$
\text { for all } \rho, \sigma \in \mathcal{S}_{p}^{+}(H), 0 \leq t \leq 1 \text {. }
$$

(2) for all $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$, one has $\sigma^{p-1} \rho \in \mathcal{S}_{1}(H)$,

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right) .
$$

(3) $\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)$

$$
\Phi(\rho)=U \rho U^{*} \quad \text { or } \quad \Phi(\rho)=U \rho^{T} U^{*} .
$$

it is easy to check that for S : inv. bdd. linear on \mathbb{C}^{n},

$$
\phi(A)=f\left((\operatorname{det} A)^{c}\right) S A S^{*}, \quad c \neq 1
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).
(1) Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} .
$$

$$
\text { for all } \rho, \sigma \in \mathcal{S}_{p}^{+}(H), 0 \leq t \leq 1 \text {. }
$$

(2) for all $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$, one has $\sigma^{p-1} \rho \in \mathcal{S}_{1}(H)$,

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right) .
$$

(3) $\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)$

$$
\Phi(\rho)=U \rho U^{*} \quad \text { or } \quad \Phi(\rho)=U \rho^{T} U^{*} .
$$

it is easy to check that for S : inv. bdd. linear on \mathbb{C}^{n},

$$
\phi(A)=f\left((\operatorname{det} A)^{c}\right) S A S^{*}, \quad c \neq 1
$$

Differentiable

Lemma (Abatzoglou, 1979)

$\forall \rho, \sigma \in \mathcal{S}_{p}(H), \rho \neq 0$ with $\rho=U|\rho|$: polar decomposition, the norm of $\mathcal{S}_{p}(H)$ is Fréchet differentiable at ρ and

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\mid \rho \rho^{p-1} U^{*} \sigma}{\|\rho\|_{p}^{p-1}}\right) \quad\left(=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right) \text { if } \rho \geq 0\right)
$$

Differentiable

Lemma (Abatzoglou, 1979)

$\forall \rho, \sigma \in \mathcal{S}_{p}(H), \rho \neq 0$ with $\rho=U|\rho|$: polar decomposition, the norm of $\mathcal{S}_{p}(H)$ is Fréchet differentiable at ρ and

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\mid \rho \rho^{p-1} U^{*} \sigma}{\|\rho\|_{p}^{p-1}}\right) \quad\left(=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right) \text { if } \rho \geq 0\right)
$$

Theorem (Wigner, 1931)

Let $\Phi: P_{1}(H) \rightarrow P_{1}(H)$ be a (resp., bijective) map satisfying

$$
\operatorname{tr} \Phi(P) \Phi(Q)=\operatorname{tr} P Q \quad\left(P, Q \in P_{1}(H)\right)
$$

$\Leftrightarrow \exists U$: linear isometry (resp., unitary) on H s.t. $\Phi(P)=U P U^{*}$, $P \in P_{1}(H)$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}(H)$

Supp. $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|=\|t \rho+(1-t) \sigma\|, \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H), 0 \leq t \leq 1
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}(H)$

Supp. $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|=\|t \rho+(1-t) \sigma\|, \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H), 0 \leq t \leq 1
$$

Then (1) $\Phi(-\rho)=-\Phi(\rho)$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}(H)$

Supp. $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|=\|t \rho+(1-t) \sigma\|, \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H), 0 \leq t \leq 1
$$

Then (1) $\Phi(-\rho)=-\Phi(\rho)$.
(2) $\|\Phi(\rho)-\Phi(\sigma)\|=\|\rho-\sigma\| \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H)$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}(H)$

Supp. $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|=\|t \rho+(1-t) \sigma\|, \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H), 0 \leq t \leq 1
$$

Then (1) $\Phi(-\rho)=-\Phi(\rho)$.
(2) $\|\Phi(\rho)-\Phi(\sigma)\|=\|\rho-\sigma\| \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H)$.

Recall: Theorem (Mazur-Ulam, 1932)
Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right.$) be normed linear spaces and $\Phi: X \rightarrow Y$ be surjective isometry, i.e.,

$$
\left\|\Phi\left(x_{1}\right)-\Phi\left(x_{2}\right)\right\|_{Y}=\left\|x_{1}-x_{2}\right\|_{X}
$$

Then $\quad \Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X, 0 \leq t \leq 1$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}(H)$

Supp. $\Phi: \mathcal{S}_{p}(H) \rightarrow \mathcal{S}_{p}(H)$ is surjective and preserves norm of convex combinations, i.e.,

$$
\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|=\|t \rho+(1-t) \sigma\|, \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H), 0 \leq t \leq 1
$$

Then (1) $\Phi(-\rho)=-\Phi(\rho)$.
(2) $\|\Phi(\rho)-\Phi(\sigma)\|=\|\rho-\sigma\| \quad \forall \rho, \sigma \in \mathcal{S}_{p}(H)$.

Recall: Theorem (Mazur-Ulam, 1932)
Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right.$) be normed linear spaces and $\Phi: X \rightarrow Y$ be surjective isometry, i.e.,

$$
\left\|\Phi\left(x_{1}\right)-\Phi\left(x_{2}\right)\right\|_{Y}=\left\|x_{1}-x_{2}\right\|_{X}
$$

Then $\quad \Phi(t x+(1-t) y)=t \Phi(x)+(1-t) \Phi(y), \quad \forall x, y \in X, 0 \leq t \leq 1$.
(3) Φ is real linear $(\because \Phi(0)=0)$.

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)
For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}\right)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}\right)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).
(1) Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p}
$$

$$
\text { for all } \left.\rho, \sigma \in \mathcal{S}_{p}^{+}(H) \text { (resp., } \mathcal{S}_{p}^{+}(H)_{1}\right), 0 \leq t \leq 1
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}\right)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).
(1) Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p}
$$

$$
\text { for all } \left.\rho, \sigma \in \mathcal{S}_{p}^{+}(H) \text { (resp., } \mathcal{S}_{p}^{+}(H)_{1}\right), 0 \leq t \leq 1
$$

(2) for all $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\mathcal{S}_{p}^{+}(H)_{1}\right)$, one has $\sigma^{p-1} \rho \in \mathcal{S}_{1}(H)$,

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right)
$$

preserves $\|\cdot\|_{p}$ of convex combinations on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

For $1<p<+\infty$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H) \rightarrow \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}\right)$, which will be assumed to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E. (the following are equivalent).
(1) Φ preserves $\|\cdot\|_{p}$ of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p}
$$

$$
\text { for all } \left.\rho, \sigma \in \mathcal{S}_{p}^{+}(H) \text { (resp., } \mathcal{S}_{p}^{+}(H)_{1}\right), 0 \leq t \leq 1
$$

(2) for all $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\mathcal{S}_{p}^{+}(H)_{1}\right)$, one has $\sigma^{p-1} \rho \in \mathcal{S}_{1}(H)$,

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right)
$$

(3) $\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)$ (resp., $\left.\mathcal{S}_{p}^{+}(H)_{1}\right)$

$$
\Phi(\rho)=U \rho U^{*} \quad \text { or } \quad \Phi(\rho)=U \rho^{T} U^{*}
$$

Generalization on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and nonzero $\alpha, \beta \in \mathbb{R}$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}$ is a map satisfying

$$
\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)_{1}
$$

and Φ is surjective if $\operatorname{dim} H=+\infty$.

Generalization on $\mathcal{S}_{p}^{+}(H)_{1}$

Theorem (Nagy, 2014)

Let $1<p<+\infty$ and nonzero $\alpha, \beta \in \mathbb{R}$. Supp. $\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}$ is a map satisfying

$$
\|\alpha \Phi(\rho)+\beta \Phi(\sigma)\|_{p}=\|\alpha \rho+\beta \sigma\|_{p} \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)_{1}
$$

and Φ is surjective if $\operatorname{dim} H=+\infty$.
Then $\exists U$: unitary on H, s.t. Φ has the following form:

$$
\Phi(\rho)=U \rho U^{*} \quad \text { or } \quad \Phi(\rho)=U \rho^{T} U^{*} \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)_{1}
$$

proof by hermitian preserving, geodesic $\gamma_{1}(t)$

Proof: Define $\psi: H_{n} \rightarrow H_{n}$ by $\psi(T)=\log \Phi\left(e^{T}\right)$ for $T \in H_{n}$. Then

$$
\psi((1-t) \log A+t \log B)=(1-t) \psi(\log A)+t \psi(\log B) .
$$

proof by hermitian preserving, geodesic $\gamma_{1}(t)$

Proof: Define $\psi: H_{n} \rightarrow H_{n}$ by $\psi(T)=\log \Phi\left(e^{T}\right)$ for $T \in H_{n}$. Then

$$
\psi((1-t) \log A+t \log B)=(1-t) \psi(\log A)+t \psi(\log B) .
$$

Theorem (Hill, 1973)

Let $\Phi: M_{n} \rightarrow M_{n}$ be a linear map. Then $\Phi\left(H_{n}\right) \subseteq H_{n}$
\Leftrightarrow
Φ is of the form

$$
\Phi(A)=\sum_{j=1}^{r} \epsilon_{j} V_{j}^{*} A V_{j}, \quad \text { for some } \epsilon_{j}= \pm 1, V_{1}, \ldots, V_{r} \in M_{n} .
$$

Counterexample

Let $\left\{e_{i}\right\}_{i=1}^{n}$: an o.n.b.(orthonormal basis) of \mathbb{C}^{n} and $1 \leq p<+\infty$.
Define $\Phi: \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right)$ by
$\Phi(\rho)= \begin{cases}0, & \text { if } \rho=0, \\ \frac{\|\rho\|_{p}}{\left\|\sum_{i=1}^{n} P_{i} \rho P_{i}\right\|_{p}} \sum_{i=1}^{n} P_{i} \rho P_{i}, & \text { if } \rho \neq 0,\end{cases}$
where $P_{i}=e_{i} e_{i}^{*}, \quad \forall i$.

Counterexample

Let $\left\{e_{i}\right\}_{i=1}^{n}$: an o.n.b.(orthonormal basis) of \mathbb{C}^{n} and $1 \leq p<+\infty$. Define $\Phi: \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right)$ by
$\Phi(\rho)= \begin{cases}0, & \text { if } \rho=0, \\ \frac{\|\rho\|_{p}}{\left\|\sum_{i=1}^{n} P_{i} \rho P_{i}\right\|_{p}} \sum_{i=1}^{n} P_{i} \rho P_{i}, & \text { if } \rho \neq 0,\end{cases}$
where $P_{i}=e_{i} e_{i}^{*}, \quad \forall i$.

Let $\rho_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \rho_{2}=I_{2}$. Then $\Phi\left(\rho_{1}\right)=2^{1-(1 / p)} I_{2}, \Phi\left(\rho_{2}\right)=I_{2}$.

Counterexample

Let $\left\{e_{i}\right\}_{i=1}^{n}$: an o.n.b.(orthonormal basis) of \mathbb{C}^{n} and $1 \leq p<+\infty$.
Define $\Phi: \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right)$ by
$\Phi(\rho)= \begin{cases}0, & \text { if } \rho=0, \\ \frac{\|\rho\|_{p}}{\left\|\sum_{i=1}^{n} P_{i} \rho P_{i}\right\|_{p}} \sum_{i=1}^{n} P_{i} \rho P_{i}, & \text { if } \rho \neq 0,\end{cases}$
where $P_{i}=e_{i} e_{i}^{*}, \quad \forall i$.

Let $\rho_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \rho_{2}=I_{2}$. Then $\Phi\left(\rho_{1}\right)=2^{1-(1 / p)} I_{2}, \Phi\left(\rho_{2}\right)=I_{2}$.
(1) $1<p<+\infty:\|\Phi(\rho)\|_{p}=\|\rho\|_{p}$, but we may have

$$
\left\|t \Phi\left(\rho_{1}\right)+(1-t) \Phi\left(\rho_{2}\right)\right\|_{p} \neq\left\|t \rho_{1}+(1-t) \rho_{2}\right\|_{p} \text { for some } t \in(0,1)
$$

Counterexample

Let $\left\{e_{i}\right\}_{i=1}^{n}$: an o.n.b.(orthonormal basis) of \mathbb{C}^{n} and $1 \leq p<+\infty$.
Define $\Phi: \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right)$ by
$\begin{cases}0, & \text { if } \rho=0,\end{cases}$
where $P_{i}=e_{i} e_{i}^{*}, \quad \forall i$.

Let $\rho_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \rho_{2}=I_{2}$. Then $\Phi\left(\rho_{1}\right)=2^{1-(1 / p)} I_{2}, \Phi\left(\rho_{2}\right)=I_{2}$.
(1) $1<p<+\infty:\|\Phi(\rho)\|_{p}=\|\rho\|_{p}$, but we may have

$$
\left\|t \Phi\left(\rho_{1}\right)+(1-t) \Phi\left(\rho_{2}\right)\right\|_{p} \neq\left\|t \rho_{1}+(1-t) \rho_{2}\right\|_{p} \text { for some } t \in(0,1)
$$

(2) $p=1$: In fact, $\Phi(\rho)=\sum_{i=1}^{n} P_{i} \rho P_{i}$. Hence $\forall \rho, \sigma \in \mathcal{S}_{1}^{+}(H), t \in[0,1]$

$$
\|t \rho+(1-t) \sigma\|_{1}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{1} .
$$

Counterexample

Let $\left\{e_{i}\right\}_{i=1}^{n}$: an o.n.b.(orthonormal basis) of \mathbb{C}^{n} and $1 \leq p<+\infty$. Define $\Phi: \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{S}_{p}^{+}\left(\mathbb{C}^{n}\right)$ by
$\begin{cases}0, & \text { if } \rho=0,\end{cases}$
where $P_{i}=e_{i} e_{i}^{*}, \quad \forall i$.

Let $\rho_{1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \rho_{2}=I_{2}$. Then $\Phi\left(\rho_{1}\right)=2^{1-(1 / p)} I_{2}, \Phi\left(\rho_{2}\right)=I_{2}$.
(1) $1<p<+\infty:\|\Phi(\rho)\|_{p}=\|\rho\|_{p}$, but we may have

$$
\left\|t \Phi\left(\rho_{1}\right)+(1-t) \Phi\left(\rho_{2}\right)\right\|_{p} \neq\left\|t \rho_{1}+(1-t) \rho_{2}\right\|_{p} \text { for some } t \in(0,1)
$$

(2) $p=1$: In fact, $\Phi(\rho)=\sum_{i=1}^{n} P_{i} \rho P_{i}$. Hence $\forall \rho, \sigma \in \mathcal{S}_{1}^{+}(H), t \in[0,1]$
$\|t \rho+(1-t) \sigma\|_{1}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{1}$.
But $\nexists U$: unitary, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}, \quad \forall \rho \in \mathcal{S}_{1}^{+}(H)$.

Counterexample

Example

Let H be a separable Hilbert space with an o.n.b. $\left\{e_{n}: n=1,2, \ldots\right\}$ Let S be the unilateral shift on H defined by $S e_{n}=e_{n+1}$ for $n=1,2, \ldots$. Let Φ be defined by $\Phi(\rho)=S \rho S^{*} \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)$.

Counterexample

Example

Let H be a separable Hilbert space with an o.n.b. $\left\{e_{n}: n=1,2, \ldots\right\}$ Let S be the unilateral shift on H defined by $S e_{n}=e_{n+1}$ for $n=1,2, \ldots$.
Let Φ be defined by $\Phi(\rho)=S \rho S^{*} \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)$.
Then Φ is linear, $\Phi\left(\left[a_{i j}\right]\right)=\left[\begin{array}{cc}0 & 0 \\ 0 & a_{i j}\end{array}\right]$.
Hence Φ is not surjective ($\because e_{1} e_{1}^{*} \notin$ Range Φ).

Counterexample

Example

Let H be a separable Hilbert space with an o.n.b. $\left\{e_{n}: n=1,2, \ldots\right\}$
Let S be the unilateral shift on H defined by $S e_{n}=e_{n+1}$ for $n=1,2, \ldots$.
Let Φ be defined by $\Phi(\rho)=S \rho S^{*} \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)$.
Then Φ is linear, $\Phi\left(\left[a_{i j}\right]\right)=\left[\begin{array}{cc}0 & 0 \\ 0 & a_{i j}\end{array}\right]$.
Hence Φ is not surjective ($\because e_{1} e_{1}^{*} \notin$ Range Φ).
And $\forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)$,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} \quad t \in[0,1] .
$$

Counterexample

Example

Let H be a separable Hilbert space with an o.n.b. $\left\{e_{n}: n=1,2, \ldots\right\}$ Let S be the unilateral shift on H defined by $S e_{n}=e_{n+1}$ for $n=1,2, \ldots$. Let Φ be defined by $\Phi(\rho)=S \rho S^{*} \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)$.
Then Φ is linear, $\Phi\left(\left[a_{i j}\right]\right)=\left[\begin{array}{cc}0 & 0 \\ 0 & a_{i j}\end{array}\right]$.
Hence Φ is not surjective ($\because e_{1} e_{1}^{*} \notin$ Range Φ).
And $\forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)$,

$$
\|t \rho+(1-t) \sigma\|_{p}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{p} \quad t \in[0,1] .
$$

But $\nexists U$: unitary, s.t. $\Phi(\rho)=U \rho U^{*}$ or $\Phi(\rho)=U \rho^{T} U^{*}, \quad \forall \rho \in \mathcal{S}_{p}^{+}(H)$.

$\mathcal{S}_{2}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

Supp. $\Phi: \mathcal{S}_{2}^{+}(H)_{1} \rightarrow \mathcal{S}_{2}^{+}(H)_{1}$, which needs to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E.

$\mathcal{S}_{2}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

Supp. $\Phi: \mathcal{S}_{2}^{+}(H)_{1} \rightarrow \mathcal{S}_{2}^{+}(H)_{1}$, which needs to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E.
(1) Φ preserves Hilbert-Schmidt norms of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{2}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}, t \in[0,1]
$$

$\mathcal{S}_{2}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

Supp. $\Phi: \mathcal{S}_{2}^{+}(H)_{1} \rightarrow \mathcal{S}_{2}^{+}(H)_{1}$, which needs to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E.
(1) Φ preserves Hilbert-Schmidt norms of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{2}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}, t \in[0,1] .
$$

(2) For some α in $(0,1)$, we have

$$
\|\alpha \rho+(1-\alpha) \sigma\|_{2}=\|\alpha \Phi(\rho)+(1-\alpha) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}
$$

$\mathcal{S}_{2}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

Supp. $\Phi: \mathcal{S}_{2}^{+}(H)_{1} \rightarrow \mathcal{S}_{2}^{+}(H)_{1}$, which needs to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E.
(1) Φ preserves Hilbert-Schmidt norms of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{2}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}, t \in[0,1]
$$

(2) For some α in $(0,1)$, we have

$$
\|\alpha \rho+(1-\alpha) \sigma\|_{2}=\|\alpha \Phi(\rho)+(1-\alpha) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}
$$

(3) $\operatorname{tr}(\rho \sigma)=\operatorname{tr}(\Phi(\rho) \Phi(\sigma)) \quad \forall \rho, \sigma$ in $\mathcal{S}_{2}^{+}(H)_{1}$.

$\mathcal{S}_{2}^{+}(H)_{1}$

Theorem (Kuo, Tsai, Wong, Zhang, 2014)

Supp. $\Phi: \mathcal{S}_{2}^{+}(H)_{1} \rightarrow \mathcal{S}_{2}^{+}(H)_{1}$, which needs to be surjective when $\operatorname{dim} H=+\infty$. Then T.F.A.E.
(1) Φ preserves Hilbert-Schmidt norms of convex combinations, i.e.,

$$
\|t \rho+(1-t) \sigma\|_{2}=\|t \Phi(\rho)+(1-t) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}, t \in[0,1]
$$

(2) For some α in $(0,1)$, we have

$$
\|\alpha \rho+(1-\alpha) \sigma\|_{2}=\|\alpha \Phi(\rho)+(1-\alpha) \Phi(\sigma)\|_{2}, \quad \forall \rho, \sigma \in \mathcal{S}_{2}^{+}(H)_{1}
$$

(3) $\operatorname{tr}(\rho \sigma)=\operatorname{tr}(\Phi(\rho) \Phi(\sigma)) \quad \forall \rho, \sigma$ in $\mathcal{S}_{2}^{+}(H)_{1}$.
(4) $\exists U$: unitary on H s.t. $\forall \rho \in \mathcal{S}_{p}^{+}(H)_{1}$

$$
\Phi(\rho)=U \rho U^{*} \quad \text { or } \quad \Phi(\rho)=U \rho^{T} U^{*}
$$

Linear surjective isometries on C^{*}-algebras

Definition: Let $\mathcal{A}, \mathcal{B}: C^{*}$-algebras. A Jordan *-isomorphism $J: \mathcal{A} \rightarrow \mathcal{B}$ is

Linear surjective isometries on C^{*}-algebras

Definition: Let $\mathcal{A}, \mathcal{B}: C^{*}$-algebras. A Jordan $*$-isomorphism $J: \mathcal{A} \rightarrow \mathcal{B}$ is a linear isomorphism of \mathcal{A} onto \mathcal{B} with $J\left(a^{2}\right)=J(a)^{2}$ (equivalently, $J(a b+b a)=J(a) J(b)+J(b) J(a)$ for $a, b \in \mathcal{A}$) and $J\left(a^{*}\right)=J(a)^{*}$ for $a \in \mathcal{A}$.

Linear surjective isometries on C^{*}-algebras

Definition: Let $\mathcal{A}, \mathcal{B}: C^{*}$-algebras. A Jordan $*$-isomorphism $J: \mathcal{A} \rightarrow \mathcal{B}$ is a linear isomorphism of \mathcal{A} onto \mathcal{B} with $J\left(a^{2}\right)=J(a)^{2}$ (equivalently, $J(a b+b a)=J(a) J(b)+J(b) J(a)$ for $a, b \in \mathcal{A}$) and $J\left(a^{*}\right)=J(a)^{*}$ for $a \in \mathcal{A}$.

Theorem (Kadison, 1951)

Let \mathcal{A}, \mathcal{B} be C^{*}-algebras and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a linear surjective isometry.

Linear surjective isometries on C^{*}-algebras

Definition: Let $\mathcal{A}, \mathcal{B}: C^{*}$-algebras. A Jordan $*$-isomorphism $J: \mathcal{A} \rightarrow \mathcal{B}$ is a linear isomorphism of \mathcal{A} onto \mathcal{B} with $J\left(a^{2}\right)=J(a)^{2}$ (equivalently, $J(a b+b a)=J(a) J(b)+J(b) J(a)$ for $a, b \in \mathcal{A}$) and $J\left(a^{*}\right)=J(a)^{*}$ for $a \in \mathcal{A}$.

Theorem (Kadison, 1951)

Let \mathcal{A}, \mathcal{B} be C^{*}-algebras and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a linear surjective isometry. Then \exists a Jordan $*$-isomorphism $J: \mathcal{A} \rightarrow \mathcal{B}$ and a unitary $U \in \mathcal{B}$, s.t.

$$
\Phi(A)=U \cdot J(A)
$$

Linear isometries on $M_{m, n}$

Recall: A norm $\|\cdot\|$ is called unitarily invariant norm if

$$
\|U A V\|=\|A\| \quad \forall \text { unitaries } U V
$$

Linear isometries on $M_{m, n}$

Recall: A norm || $\cdot \|$ is called unitarily invariant norm if

$$
\|U A V\|=\|A\| \quad \forall \text { unitaries } U V \text {. }
$$

Theorem (Li and Tsing, 1990)

Let $\Phi: M_{m, n} \rightarrow M_{m, n}$ be a linear isometry w.r.t. unitarily invariant norm $\|\cdot\|$. Supp. the norm $\|\cdot\|$ is is not a scalar multiple of the Hilbert-Schmidt norm.

Linear isometries on $M_{m, n}$

Recall: A norm || $\cdot \|$ is called unitarily invariant norm if

$$
\|U A V\|=\|A\| \quad \forall \text { unitaries } U V \text {. }
$$

Theorem (Li and Tsing, 1990)

Let $\Phi: M_{m, n} \rightarrow M_{m, n}$ be a linear isometry w.r.t. unitarily invariant norm $\|\cdot\|$. Supp. the norm $\|\cdot\|$ is is not a scalar multiple of the Hilbert-Schmidt norm.
Then $\exists U, V$: unitaries on H, s.t. Φ has the following form:

$$
\Phi(A) \equiv U A V \quad \text { or } \quad \Phi(A) \equiv U A^{T} V
$$

Differentiable

Lemma (Abatzoglou, 1979)

Let $1<p<+\infty$ and ρ in $\mathcal{S}_{p}^{+}(H)$ be nonzero. The norm of $\mathcal{S}_{p}^{+}(H)$ is Fréchet differentiable at ρ. For any σ in $\mathcal{S}_{p}^{+}(H)$ we have

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right)
$$

Differentiable

Lemma (Abatzoglou, 1979)

Let $1<p<+\infty$ and ρ in $\mathcal{S}_{p}^{+}(H)$ be nonzero. The norm of $\mathcal{S}_{p}^{+}(H)$ is Fréchet differentiable at ρ. For any σ in $\mathcal{S}_{p}^{+}(H)$ we have

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right)
$$

Lemma

Supp. $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)(1<p<+\infty)$. Then T.F.A.E.
(1) $\rho=\sigma$.
(2) $\|t \rho+(1-t) P\|_{p}=\|t \sigma+(1-t) P\|_{p}$ for all P in $P_{1}(H)$ and all t in $[0,1]$.
(3) $\operatorname{tr}(P \rho)=\operatorname{tr}(P \sigma)$ for all P in $P_{1}(H)$.

orthogonal

Lemma

Supp. $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$ for $1<p<+\infty$. Then T.F.A.E.
(1) ρ, σ are orthogonal, i.e., $\rho \sigma=0$.
(2) $\|\alpha \rho+(1-\alpha) \sigma\|_{p}^{p}=\alpha^{p}\|\rho\|_{p}^{p}+(1-\alpha)^{p}\|\sigma\|_{p}^{p}$ for any (and thus all) α in $(0,1)$.
(3) $\operatorname{tr}(\rho \sigma)=0$.
(4) $\|\rho+t \sigma\|_{p} \geq\|\rho\|_{p}$ for all t in \mathbb{R}, that is, $\rho \perp \sigma$ in Birkhoff's sense.
(5) $\operatorname{tr}\left(\rho^{p-1} \sigma\right)=0$.

orthogonal

Lemma

Supp. $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)$ for $1<p<+\infty$. Then T.F.A.E.
(1) ρ, σ are orthogonal, i.e., $\rho \sigma=0$.
(2) $\|\alpha \rho+(1-\alpha) \sigma\|_{p}^{p}=\alpha^{p}\|\rho\|_{p}^{p}+(1-\alpha)^{p}\|\sigma\|_{p}^{p}$ for any (and thus all) α in $(0,1)$.
(3) $\operatorname{tr}(\rho \sigma)=0$.
(4) $\|\rho+t \sigma\|_{p} \geq\|\rho\|_{p}$ for all t in \mathbb{R}, that is, $\rho \perp \sigma$ in Birkhoff's sense.
(5) $\operatorname{tr}\left(\rho^{p-1} \sigma\right)=0$.

Lemma

Let $1<p<+\infty$. Supp. Φ is a map from $\mathcal{S}_{p}^{+}(H)_{1}$ into $\mathcal{S}_{p}^{+}(H)_{1}$ preserving the Schatten p-norms of convex combinations. Then

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right)
$$

Proposition

Proposition

Supp. $\Phi: \mathcal{S}_{p}^{+}(H)_{1} \rightarrow \mathcal{S}_{p}^{+}(H)_{1}$ satisfies that

$$
\operatorname{tr}\left(\sigma^{p-1} \rho\right)=\operatorname{tr}\left(\Phi(\sigma)^{p-1} \Phi(\rho)\right), \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)_{1} .
$$

Then (1) Φ preserves orthogonality in both directions, that is

$$
\rho \sigma=0 \Leftrightarrow \Phi(\rho) \Phi(\sigma)=0, \quad \forall \rho, \sigma \in \mathcal{S}_{p}^{+}(H)_{1} .
$$

(2) When $\operatorname{dim} H<+\infty, \Phi\left(P_{1}(H)\right) \subseteq P_{1}(H)$. This holds when $\operatorname{dim} H=+\infty$ and Φ is surjective.
(3) When $\operatorname{dim} H<+\infty$, we have

$$
\operatorname{tr} P Q=\operatorname{tr} \Phi(P) \Phi(Q), \quad \forall P, Q \in P_{1}(H)
$$

This holds when $\operatorname{dim} H=+\infty$ and Φ is surjective.

Differentiable

Lemma (Abatzoglou, 1979)

Let $1<p<+\infty$ and ρ in $\mathcal{S}_{p}^{+}(H)$ be nonzero. The norm of $\mathcal{S}_{p}^{+}(H)$ is Fréchet differentiable at ρ. For any σ in $\mathcal{S}_{p}^{+}(H)$ we have

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right)
$$

Differentiable

Lemma (Abatzoglou, 1979)

Let $1<p<+\infty$ and ρ in $\mathcal{S}_{p}^{+}(H)$ be nonzero. The norm of $\mathcal{S}_{p}^{+}(H)$ is Fréchet differentiable at ρ. For any σ in $\mathcal{S}_{p}^{+}(H)$ we have

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{\rho^{p-1} \sigma}{\|\rho\|_{p}^{p-1}}\right)
$$

Remark: $\forall \rho, \sigma \in \mathcal{S}_{p}(H), \rho \neq 0$ with $\rho=U|\rho|$: polar decomposition,

$$
\left.\frac{d\|\rho+t \sigma\|_{p}}{d t}\right|_{t=0}=\operatorname{tr}\left(\frac{|\rho|^{p-1} U^{*} \sigma}{\|\rho\|_{p}^{p-1}}\right)
$$

Wigner

Lemma

Supp. $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)(1<p<+\infty)$. Then T.F.A.E.
(1) $\rho=\sigma$.
(2) $\|t \rho+(1-t) P\|_{p}=\|t \sigma+(1-t) P\|_{p}$ for all P in $P_{1}(H)$ and all t in $[0,1]$.
(3) $\operatorname{tr}(P \rho)=\operatorname{tr}(P \sigma)$ for all P in $P_{1}(H)$.

Wigner

Lemma

Supp. $\rho, \sigma \in \mathcal{S}_{p}^{+}(H)(1<p<+\infty)$. Then T.F.A.E.
(1) $\rho=\sigma$.
(2) $\|t \rho+(1-t) P\|_{p}=\|t \sigma+(1-t) P\|_{p}$ for all P in $P_{1}(H)$ and all t in $[0,1]$.
(3) $\operatorname{tr}(P \rho)=\operatorname{tr}(P \sigma)$ for all P in $P_{1}(H)$.

Theorem (Uhlhorn, 1963)

Supp. $\operatorname{dim} H \geq 3$ and $\Phi: P_{1}(H) \rightarrow P_{1}(H)$ is a bijective map. Then Φ satisfies

$$
P Q=0 \Leftrightarrow \Phi(P) \Phi(Q)=0 \quad\left(P, Q \in P_{1}(H)\right)
$$

$\Leftrightarrow \exists U$: linear unitary on H s.t. $\Phi(P)=U P U^{*}, P \in P_{1}(H)$.

geometric mean

Geometric mean of positive operators: Pusz and Woronowicz (1973) and later Ando (1978).

$$
A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+} .
$$

geometric mean

Geometric mean of positive operators: Pusz and Woronowicz (1973) and later Ando (1978).

$$
A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+} .
$$

Properties of the geometric mean:
(G1) $A \# B=B \# A$.
(G2) If $A \leq C$ and $B \leq D$, then $A \# B \leq C \# D$.
(G3) (Transfer property) $\forall S$: inv. bdd. linear or conjugate-linear on H, we have $S(A \# B) S^{*}=\left(S A S^{*}\right) \#\left(S B S^{*}\right)$.
(G4) Supp. $A_{1} \geq A_{2} \geq \cdots \geq 0, B_{1} \geq B_{2} \geq \cdots \geq 0$ and $A_{n} \rightarrow A$,
$B_{n} \rightarrow B$ strongly. Then $A_{n} \# B_{n} \rightarrow A \# B$ strongly.
(G5) $A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}$ if A is invertible.

preserve Geometric mean on $B(H)^{+}$

Recall: Geometric mean of positive operators:

$$
A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+}
$$

preserve Geometric mean on $B(H)^{+}$

Recall: Geometric mean of positive operators:

$$
A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+}
$$

$$
\text { and } A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} \text { if } A \in B(H)_{-1}^{+} \text {. }
$$ is the midpoint of geodesic $A \#_{t} B, 0 \leq t \leq 1$ if $A, B \in P_{n}$.

preserve Geometric mean on $B(H)^{+}$

Recall: Geometric mean of positive operators:

$$
A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+}
$$

$$
\text { and } A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} \text { if } A \in B(H)_{-1}^{+} \text {. }
$$ is the midpoint of geodesic $A \#_{t} B, 0 \leq t \leq 1$ if $A, B \in P_{n}$.

Theorem (MoInár, 2009)

Supp. $\operatorname{dim} H \geq 2$ and $\Phi: B(H)^{+} \rightarrow B(H)^{+}$is a bijective map satisfying

$$
\Phi(A \# B)=\Phi(A) \# \Phi(B) \quad \forall A, B \in B(H)^{+} .
$$

preserve Geometric mean on $B(H)^{+}$

Recall: Geometric mean of positive operators:

$$
\begin{aligned}
& A \# B=\max \left\{X \geq 0:\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0\right\}, \quad A, B \in B(H)^{+} \\
& \text {and } A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} \text { if } A \in B(H)_{-1}^{+} \text {. } \\
& \text { is the midpoint of geodesic } A \#_{t} B, 0 \leq t \leq 1 \text { if } A, B \in P_{n} \text {. }
\end{aligned}
$$

Theorem (MoInár, 2009)

Supp. $\operatorname{dim} H \geq 2$ and $\Phi: B(H)^{+} \rightarrow B(H)^{+}$is a bijective map satisfying

$$
\Phi(A \# B)=\Phi(A) \# \Phi(B) \quad \forall A, B \in B(H)^{+} .
$$

Then $\exists S$: inv. bdd. linear or conjugate-linear on H, s.t. Φ is of the form

$$
\Phi(A)=S A S^{*} \quad \forall A \in B(H)^{+}
$$

proof by Jordan triple automorphisms on P_{n}

Theorem (MoInár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple automorphism, i.e., Φ is a continuous bijective map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

proof by Jordan triple automorphisms on P_{n}

Theorem (MoInár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple automorphism, i.e., Φ is a continuous bijective map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

Then $\exists U$: unitary, $c \in \mathbb{R}, c \neq-1 / n$, s.t. Φ is of one of the following forms:

proof by Jordan triple automorphisms on P_{n}

Theorem (MoInár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple automorphism, i.e., Φ is a continuous bijective map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

Then $\exists U$: unitary, $c \in \mathbb{R}, c \neq-1 / n$, s.t. Φ is of one of the following forms:

(1) $\Phi(A)=(\operatorname{det} A)^{c} U A U^{*}$,	$\forall A \in P_{n}$
(2) $\Phi(A)=(\operatorname{det} A)^{c} U A^{-1} U^{*}$,	$\forall A \in P_{n}$
(3) $\Phi(A)=(\operatorname{det} A)^{c} U A^{T} U^{*}$,	$\forall A \in P_{n}$
(4) $\Phi(A)=(\operatorname{det} A)^{c} U\left(A^{T}\right)^{-1} U^{*}$,	$\forall A \in P_{n}$

Jordan triple endomorphisms on P_{n}

Theorem (MoInár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple endomorphism, i.e., Φ is a continuous map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

Jordan triple endomorphisms on P_{n}

Theorem (MoInár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple endomorphism, i.e., Φ is a continuous map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

Then $\exists U$: unitary, a mutually orthogonal set $\left\{P_{1}, \ldots, P_{n}\right\} \subseteq P_{1}(H)$, c, c_{1}, \ldots, c_{n} : real numbers, s.t. Φ is of one of the following forms:

Jordan triple endomorphisms on P_{n}

Theorem (Molnár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 3)$ be a continuous Jordan triple endomorphism, i.e., Φ is a continuous map which satisfies

$$
\Phi(A B)=\Phi(A) \Phi(B) \Phi(A) \quad A, B \in P_{n}
$$

Then $\exists U$: unitary, a mutually orthogonal set $\left\{P_{1}, \ldots, P_{n}\right\} \subseteq P_{1}(H)$, c, c_{1}, \ldots, c_{n} : real numbers, s.t. Φ is of one of the following forms:
(1) $\Phi(A)=(\operatorname{det} A)^{c} U A U^{*}$,

$$
\forall A \in P_{n}
$$

$$
\text { (2) } \Phi(A)=(\operatorname{det} A)^{c} U A^{-1} U^{*}, \quad \forall A \in P_{n}
$$

$$
\text { (3) } \Phi(A)=(\operatorname{det} A)^{c} U A^{T} U^{*}, \quad \forall A \in P_{n}
$$

$$
\text { (4) } \Phi(A)=(\operatorname{det} A)^{c} U\left(A^{T}\right)^{-1} U^{*}, \quad \forall A \in P_{n}
$$

$$
\text { (5) } \Phi(A)=\sum_{j=1}^{n}(\operatorname{det} A)^{c_{j}} P_{j}, \quad \forall A \in P_{n}
$$

proof

Recall: the geodesic distance between A and B w.r.t. $K^{\psi_{3}}$ is

$$
\delta(A, B)=\left\|\log \left(A^{-1 / 2} B A^{-1 / 2}\right)\right\|_{\mathrm{HS}}
$$

Theorem (Molnár, 2013)

Let $\Phi: P_{n} \rightarrow P_{n}(n \geq 2)$ be a surjective isometry w.r.t d_{N}, where N : unitarily invariant norm on M_{n}. Then \exists invertible $T \in M_{n}$, s.t. for
(1) $\Phi(A)=T A T^{*}$,
(2) $\Phi(A)=T A^{-1} T^{*}$
(3) $\Phi(A)=T A^{t r} T^{*}$,
(4) $\Phi(A)=T A^{t r-1} T^{*}$
(5) $\Phi(A)=(\operatorname{det} A)^{-2 / n} T A T^{*}$
(6) $\Phi(A)=(\operatorname{det} A)^{2 / n} T A^{-1} T^{*}$
(7) $\Phi(A)=(\operatorname{det} A)^{-2 / n} T A^{t r} T^{*}$
(8) $\Phi(A)=(\operatorname{det} A)^{2 / n} T A^{t r-1} T^{*}$
a. $n=2, \Phi$ is of one of (1)-(4).
b. $n \geq 3, N$: scalar of the Hilbert-Schmidt norm, Φ is of one of (1)-(8).
c. $n \geq 3, N$: not scalar of the Hilbert-Schmidt norm. Then Φ is of one of (1)-(4) if $n \neq 4$ (resp., (1)-(8) if $n=4$).

Reference

15. R.V. Kadison, Isometries of operator algebras, Ann. Math., 1951
16. C.K. Li, N.K. Tsing, Linear operators preserving unitarily invariant norms on matrices, Linear and Multilinear Algebra, 1990
17. L. Molnár, Maps preserving the geometric mean of positive operators, Proc. Amer. Math. Soc., 2009
18. L. Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc., 2009
19. L. Molnár, G. Nagy, Thompson isometries on positive operators: the 2-dimensional case, Electron. J. Linear Algebra, 2010
