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B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.
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B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.

For dim H = n < oo, B(H) = M,,, n x n complex matrices.
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B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.

For dim H = n < oo, B(H) = M,,, n x n complex matrices.

The spectrum of A € B(H) is

o(A) ={z € C: zI — Ais not invertible in B(H)}
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B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.

For dim H = n < oo, B(H) = M,,, n x n complex matrices.
The spectrum of A € B(H) is

o(A) ={z € C: zI — Ais not invertible in B(H)}
For a given € > 0,

Yiu Tung Poon Pseudospectra and Preserver problems



B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.

For dim H = n < oo, B(H) = M,,, n x n complex matrices.
The spectrum of A € B(H) is

o(A) ={z € C: zI — Ais not invertible in B(H)}
For a given € > 0, the e-pseudospectrum of A is

0e(A) =U{c(A+ E): E € B(H),|E| <e}.
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B(H) : the Banach algebra of all bounded linear operators on a complex
Hilbert space H.

For dim H = n < oo, B(H) = M,,, n x n complex matrices.
The spectrum of A € B(H) is

o(A) ={z € C: zI — Ais not invertible in B(H)}
For a given € > 0, the e-pseudospectrum of A is

0e(A) =U{c(A+ E): E € B(H),|E| <e}.
Relationship between o(A) and o.(A) :

Ne>00¢ (A) = U(A)
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Properties of o.(A)

Equivalent conditions for o.(A) :

o(A)= {z€C:||(zI — A >e 1}

Yiu Tung Poon Pseudospectra and Preserver problems



Properties of o.(A)

Equivalent conditions for o.(A) :
0:(A) = {2€C:|l(zI - A~ >e7"}

= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}
= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}
Some properties of o.(A) :

(1) o(4) + D(0,¢) € 0= (A).
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}
= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}
Some properties of o.(A) :

(1) o(A) + D(0,e) Co-(A). D(a,r)={z€C:|z—c| <r}.
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}
= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}
Some properties of o.(A) :
(1) o(A) + D(0,e) Co-(A). D(a,r)={z€C:|z—c| <r}.
(2) If A is normal, then o.(A) = o(A) + D(0,¢).
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}

= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}

Some properties of o.(A) :

(1) o(A) + D(0,e) Co-(A). D(a,r)={z€C:|z—c| <r}.

(2) If A is normal, then o.(A) = o(A) + D(0,¢).

(3) Foranyce C, o.(A+cl) =c+o-(A).
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}

= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}

Some properties of o.(A) :

(1) o(A) + D(0,e) Co-(A). D(a,r)={z€C:|z—c| <r}.

(2) If A is normal, then o.(A) = o(A) + D(0,¢).

(3) Forany c € C, o.(A+cl) = c+ 0.(A).

(4)

4) For any nonzero ¢ € C, o.(cA) = co = (A).

lel
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}
= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}
Some properties of o.(A) :
(1) o(A) + D(0,e) Co-(A). D(a,r)={z€C:|z—c| <r}.
2) If A is normal, then o.(A) = o(A) + D(0,¢).

3) Foranyce C, o.(A+cl) =c+ o.(4).

(2)

3)

(4) For any nonzero c € C, o.(cA) = o (A).
(5)

5) 0-(A) is a nonempty open subset of C,
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Properties of o.(A)

Equivalent conditions for o.(A) :
oe(A) = {z€C:|l(zI - A7 >}

= {ze€C:|(2I — A)z| < ¢ for some unit vector z € H}
= {2€C:smm(zl —A)<e}

Some properties of o.(A) :

(1) o(A) + D(0,e) Co-(A). D(a,r)={2z€C:|z—¢| <r}.

(2) If A is normal, then o.(A) = o(A) + D(0,¢).

(3) Forany c € C, o.(A+cl) = c+ 0.(A).

(

4) For any nonzero ¢ € C, o.(cA) = o (A).

(5) 0-(A) is a nonempty open subset of C, and any bounded connected
component of o.(A) has a nonempty intersection with o(A).
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Properties of o.(A)

Theorem 1 Lete >0, A€ B(H), and t € R.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.

Corollary 2 Let e >0 and A € B(H).
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.

(2) Let a € C be nonzero.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.

(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)
such that A = aP
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.

(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)
such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)

such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).

Theorem 3 Let £ > 0.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)

such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).

Theorem 3 Let ¢ > 0. If X € B(H) satisfies X2 = 0,
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)

such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).

Theorem 3 Let ¢ > 0. If X € B(H) satisfies X2 = 0, then

0e(X) = D(0,y/e2 + | X||e).
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)

such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).

Theorem 3 Let ¢ > 0. If X € B(H) satisfies X2 = 0, then

0e(X) = D(0,y/e2 + | X||e).

Corollary 4 Let e >0 and z, f € H.
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Properties of o.(A)

Theorem 1 Let e >0, A € B(H), and t € R. Then e A is self-adjoint if
and only if

o.(A)C{zeC: |Imetz| <e}.
Corollary 2 Let e >0 and A € B(H). Then we have
(1) A=al if and only if 0.(A) = D(a,e), where a € C.
(2) Let a € C be nonzero. There exists a nontrivial projection P € B(H)

such that A = aP if and only if 0.(A) = D(0,¢) U D(a,¢).

Theorem 3 Let ¢ > 0. If X € B(H) satisfies X2 = 0, then

=D(0, /2 + || X]e).

Corollary 4 Let € > 0 and z, f € H. Then (z, f) = 0 if and only if

oe(z @ f) = D(0, /e + |[z[l[| flle
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Continuity of o.(A)

Theorem 5 The map (g, A) — o-(A), which sends a positive number ¢
and A € B(H) to the bounded set 0.(A) in C, is continuous
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Continuity of o.(A)

Theorem 5 The map (g, A) — o-(A), which sends a positive number ¢
and A € B(H) to the bounded set 0.(A) in C, is continuous using the
metric

d((e1, A1), (e2,A2)) = [|[A1 — Az + |61 — &2

in the domain
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Continuity of o.(A)

Theorem 5 The map (g, A) — o-(A), which sends a positive number ¢
and A € B(H) to the bounded set 0.(A) in C, is continuous using the
metric

d((e1, A1), (e2,42)) = [[A1 — Az|| + [e1 — &2
in the domain and the metric
d(A, A) = max {sup ¢, infiena |s — t],sup,cp infen |s — ¢}

in the co-domain, where A and A are two sets in C.
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H)
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,

where A' denotes the transpose of A relative to an arbitrary but fixed
orthonormal basis of H.
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,

where A' denotes the transpose of A relative to an arbitrary but fixed
orthonormal basis of H. Furthermore, when H is finite dimensional, the
surjectivity assumption on ® can be removed.
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,

where A' denotes the transpose of A relative to an arbitrary but fixed
orthonormal basis of H. Furthermore, when H is finite dimensional, the
surjectivity assumption on ® can be removed.

Corollary 7 Let £ > 0. A surjective map @ : B(H) — B(H) satisfies
0e(P(A) +®(B)) =0.(A+B) forall A,B e B(H)
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,

where A' denotes the transpose of A relative to an arbitrary but fixed
orthonormal basis of H. Furthermore, when H is finite dimensional, the
surjectivity assumption on ® can be removed.

Corollary 7 Let £ > 0. A surjective map @ : B(H) — B(H) satisfies
0e(P(A) +®(B)) =0.(A+B) forall A,B e B(H)

if and only if there is a unitary operator U € B(H) such that ® has the

form
A UAU* or A UAU™.
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Pseudospectrum preservers of the difference of operators

Theorem 6 Let € > 0. A surjective map ® : B(H) — B(H) satisfies
oe(P(A) — ®(B)) = 0.(A— B), for all A,B € B(H)

if and only if there exist S € B(H) and a unitary operator U € B(H)
such that @ has the form

A— UAU* + S or A~ UAU* + S,

where A' denotes the transpose of A relative to an arbitrary but fixed
orthonormal basis of H. Furthermore, when H is finite dimensional, the
surjectivity assumption on ® can be removed.

Corollary 7 Let £ > 0. A surjective map @ : B(H) — B(H) satisfies
0e(P(A) +®(B)) =0.(A+B) forall A,B e B(H)

if and only if there is a unitary operator U € B(H) such that ® has the
form
A~ UAU* or A UAU™.

Furthermore, when H is finite dimensional, the surjectivity assumption on
® can be removed.
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Pseudospectrum preservers of the product of operators

Theorem 8 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies
0:(®P(A)®(B)) = 0.(AB) for all A,B € B(H)

Yiu Tung Poon Pseudospectra and Preserver problems



Pseudospectrum preservers of the product of operators

Theorem 8 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies
0:(®P(A)®(B)) = 0.(AB) for all A,B € B(H)

if and only if there exist a unitary operator U € B(H) and p € {1,—1}
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Pseudospectrum preservers of the product of operators

Theorem 8 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies
0:(®P(A)®(B)) = 0.(AB) for all A,B € B(H)

if and only if there exist a unitary operator U € B(H) and p € {1,—1}
such that
O(A) = pUAU™ for every A € B(H).
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Pseudospectrum preservers of the product of operators

Theorem 8 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies
0:(®P(A)®(B)) = 0.(AB) for all A,B € B(H)

if and only if there exist a unitary operator U € B(H) and p € {1,—1}
such that
O(A) = pUAU™ for every A € B(H).

Furthermore, when H is finite dimensional, the surjectivity assumption on
® can be removed.
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Pseudospectrum preservers of Jordan product

Theorem 9 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies

0.(AB + BA) = 0.(®(A)®(B) + ®(B)®(A))  for all A, B € B(H)
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Pseudospectrum preservers of Jordan product

Theorem 9 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies

0.(AB + BA) = 0.(®(A)®(B) + ®(B)®(A))  for all A, B € B(H)

if and only if there exists a unitary operator U € B(H) such that ® has
the form
A pUAU* or A pUAU™,

where 1 € {1, —1}.

Yiu Tung Poon Pseudospectra and Preserver problems



Pseudospectrum preservers of Jordan product

Theorem 9 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies

0.(AB + BA) = 0.(®(A)®(B) + ®(B)®(A))  for all A, B € B(H)

if and only if there exists a unitary operator U € B(H) such that ® has
the form
A pUAU* or A pUAU™,

where 1 € {1, —1}.

Furthermore, when H is finite dimensional, the surjectivity assumption on
® can be removed.
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Pseudospectrum preservers of Jordan product

Theorem 9 Let £ > 0. Then a surjective map ® : B(H) — B(H)
satisfies

0.(AB + BA) = 0.(®(A)®(B) + ®(B)®(A))  for all A, B € B(H)

if and only if there exists a unitary operator U € B(H) such that ® has
the form
A pUAU* or A pUAU™,

where 1 € {1, —1}.

Furthermore, when H is finite dimensional, the surjectivity assumption on
® can be removed.

Similar result holds with B(H) replaced by Bs(H), the set of all
self-adjoint operators on H.
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9

1) First consider the case for ® : Bs(H) — By(H).
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))

& o(AB + BA) = o(®(A)®(B) + 3(B)B(A))
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))

<  o(AB+ BA) =0(®(A)®(B) + ¢(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
< o0(AB+ BA) =o(®(A)®(B) + ®(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.
4) Suppose &(I) =1I.
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
< o0(AB+ BA) =o(®(A)®(B) + ®(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.

4) Suppose ®(I) = I. Show that There exists a unitary or conjugate
unitary operator U on H such that ®(P) = UPU* for every
P e P(H).
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
< o0(AB+ BA) =o(®(A)®(B) + ®(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.

4) Suppose ®(I) = I. Show that There exists a unitary or conjugate
unitary operator U on H such that ®(P) = UPU* for every
P € P(H).Then the result follows
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
< o0(AB+ BA) =o(®(A)®(B) + ®(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.

4) Suppose ®(I) = I. Show that There exists a unitary or conjugate
unitary operator U on H such that ®(P) = UPU* for every
P € P(H).Then the result follows

5) For the case ® : B(H) — B(H).
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Pseudospectrum preservers of Jordan product

Outline of proof of Theorem 9
1) First consider the case for ® : Bs(H) — By(H).
2) If dim H < oo, then
0:(AB + BA) = 0. (®(A)®(B) + ¢(B)®(A))
< o0(AB+ BA) =o(®(A)®(B) + ®(B)®(A))
3) For dim H = oo, show that ®(I) =1 or &(I) = —1I.

4) Suppose ®(I) = I. Show that There exists a unitary or conjugate
unitary operator U on H such that ®(P) = UPU* for every
P € P(H).Then the result follows

5) For the case ® : B(H) — B(H).First show that ® : B;(H) — Bs(H).
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Thank you!
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