Preservers of Unextendible Product Bases and Local Distinguishability of Quantum States

Nathaniel Johnston

Institute for Quantum Computing University of Waterloo

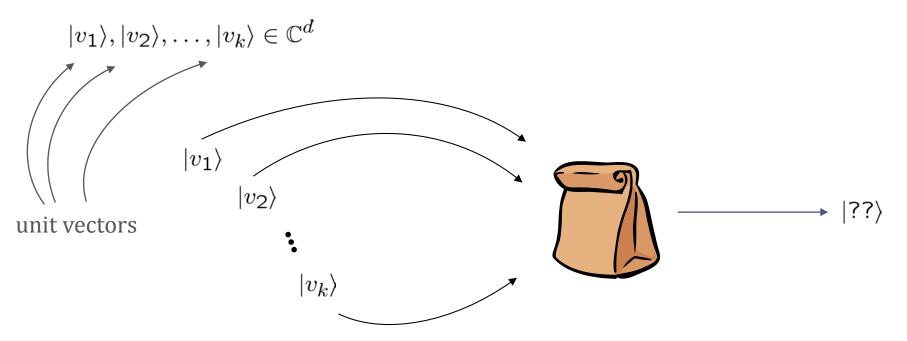
- Nonlocality without entanglement
- Unextendible product bases
- Preservers

Nonlocality without entanglement

- Can prepare states locally that we then cannot distinguish locally
- That's weird!
- Unextendible product bases
- Preservers

Nonlocality without entanglement

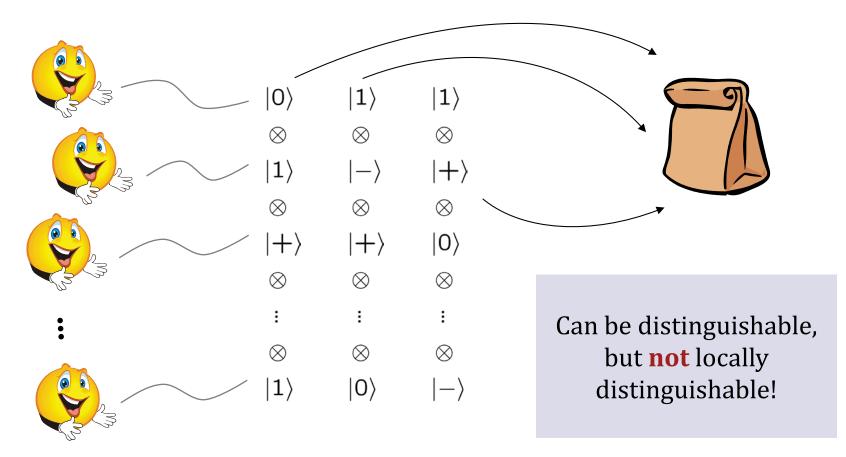
It is well-known that a set of pure quantum states



if and only if they are mutually orthogonal.

Nonlocality without entanglement

Many parties locally prepare some pure (product) quantum states:



Nonlocality without entanglement

One way to create such states:

unextendible product bases

- Nonlocality without entanglement
- Unextendible product bases
 - Exhibit nonlocality without entanglement
 - Also useful for other things
- Preservers

Unextendible product bases

An unextendible product basis (UPB) is a set of vectors

$$S \subset \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_p}$$

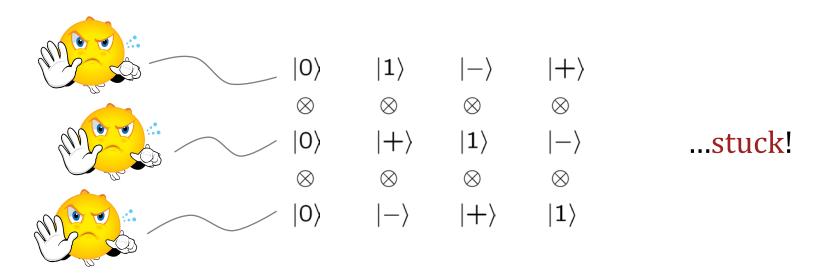
satisfying three properties:

unextendibility

- 1. Each $|v\rangle \in S$ is a product state (i.e., $|v\rangle = |v_1\rangle \otimes |v_2\rangle \otimes \cdots \otimes |v_p\rangle$).
- 2. Mutual orthogonality: $\langle w|v\rangle = 0 \quad \forall |v\rangle, |w\rangle \in S.$
- 3. There is no product state $|z\rangle$ satisfying $\langle z|v\rangle = 0 \quad \forall |v\rangle \in S.$

Unextendible product bases

A set is a UPB iff we get "stuck" when locally preparing them:



- No product state is orthogonal to them all, so this is a UPB.
- This is called the "shifts" UPB.

Unextendible product bases

Theorem (Bennett et. al., 1998)

The states of a UPB are not **perfectly** locally distinguishable in a **finite** amount of time.

What if we have infinite time or allow for arbitrarily small error?

- Seems to be a harder question.
- This is where preservers come in!

- Nonlocality without entanglement
- Unextendible product bases

Preservers

- Useful for answering the infinite time distinguishability question
- But we still don't know what they look like...

Preservers

We have two main questions about what the preservers of UPBs look like. ("Yes" to both \Rightarrow infinite time indistinguishability)

Question 1

Given a UPB $S \subset \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_p}$, suppose there exist $A_i \in M_{d_i}$ for $1 \leq i \leq p$ such that:

- $\langle v | (A_1 \otimes \cdots \otimes A_p) | v \rangle \neq 0 \quad \forall | v \rangle \in S$, and
- $(A_1 \otimes \cdots \otimes A_p)S$ is a set of mutually orthogonal vectors.

Does this imply that each A_i has full rank?

need unextendibility of S

maybe not unit vectors '

Preservers

Question 2

Given a UPB $S \subset \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_p}$, suppose there exist full rank $A_i \in M_{d_i}$ for $1 \leq i \leq p$ such that $(A_1 \otimes \cdots \otimes A_p)S$ is a UPB. Does this imply that each A_i is a multiple of a unitary matrix?

members of this UPB don't need to have unit length

- Multiples of unitary matrices preserve UPBs
- Question 2 asks whether or not these are *all* preservers

Preservers

What is known?

- In $3 \otimes 3$ systems, the answer to both questions is "yes" (Fu-Leung-Mančinska, arXiv:1312.5350).
- In 2 ⊗ 2 ⊗ · · · ⊗ 2 systems, the answer to both questions is "yes" (unpublished).

- Proof techniques don't generalize to other cases
- Don't know the answer any other cases

