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Abstract

Application of the nonlinear optical microscopy (NLOM) for investigation of biological

samples has, to date, primarily focused the qualitative analysis of images. The general

consensus is that nonlinear optical (NLO) techniques provide enough biochemical infor-

mation when compared to, for example, visible light microscopy. Herein, is presented

a detailed study where a set of tools for quantitative extraction of information from

NLO images were developed and tested for the analysis of complex tissue assemblies.

Two-photon excited autofluorescence (TPEF), second-harmonic generation (SHG), and

coherent anti-Stokes Raman scattering (CARS) were used for the characterization of

atherosclerotic plaques.

Our NLO-based image analysis of animal arteries a↵ected by atherosclerotic plaque

accumulation revealed that images of the healthy regions of the artery can be readily

distinguished by marked di↵erences in morphology, due to a fluorescent signal generated

from the presence of generally intact elastic layer. Regions a↵ected by lesions were

dominated by lipid-rich cells and collagen fibers; the elastic layer was disrupted and

the presence of fluorescent particles were also detected. Next, the potential of using

information extracted from NLO images led us to the development of a new optical

index for plaque burden (OIPB). Through the OIPB, it was possible to investigate

and to classify the plaque severity regarding the already established and currently used

definition during clinical analyses.

Extrapolating to and anticipating future applications, several methods for extracting

specific information from images acquired by each NLOM modality were developed and

tested. Texture analysis, particle-specific features, fractal analysis and directionality of

components within the images were successfully adapted and tailored to better extract

relevant information from the NLO images. Even though the methods presented in

this thesis were mostly tested in images from arterial plaques, there is strong evidence

that all tools presented here are capable of tracking changes that occur in many medical

conditions and applications.
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Chapter 1

Introduction

The challenge of developing new tools for research and clinical applications in biol-

ogy and medicine is always generating interest among scientists all around the world.

Multidisciplinary research combining optical physics, engineering and medicine enables

researchers to use light-matter interactions to explore biological structures and to relate

their observations to various physiological functions. With the help of recent advances

in optical technologies and their translation into clinical devices, our understanding of

biology and medicine has also advanced.

Over the last 15 years, nonlinear optical microscopy (NLOM) has emerged as a pow-

erful research tool [27–30]. Based on the physics of nonlinear light-matter interactions,

and using these interactions as contrast mechanisms for cellular and tissue imaging in-

vestigations, NLOM has acquired a reputation of an excellent optical tool for answering

multiple biological questions [30–33].

Traditional microscopy techniques, such as confocal microscopy, fluorescence mi-

croscopy [34], generate image contrast from light-matter interactions in which the ele-

mentary process of absorption involves a single photon, and are dependent linearly on the

intensity of the incident light. Nonlinear techniques are fundamentally di↵erent in that

they use “higher-order” light-matter interactions, involving the absorption or scattering

of multiple photons for contrast generation. The nonlinear nature of these interactions

leads to new findings and possibilities.
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There are two main advantages of using nonlinear optical microscopy. First, NLOM

can generate images with sub-micron lateral and axial resolution. Such intrinsic confocal-

ity makes it possible to generate 3D (three-dimensional) data set. Secondly, many of the

nonlinear optical processes rely on endogenous intracellular and extracellular contrasts

without labeling. Therefore, these NLOM techniques are capable of providing detailed

structural images with chemical information from intact unstained samples. Also, the

better collection e�ciency of NLOM compared to traditional techniques, makes it a

more suitable tool to characterize highly scattering biological tissue. These images can

then be used for correlation with the bio-morphological composition of the samples un-

der investigation entirely based on intrinsic optical selectivity inherent to each of the

nonlinear technique.

This thesis is focused on one (among possible others) particular biomedical applica-

tion of nonlinear optical microscopy. This work tests potential of using nonlinear optical

techniques for medical diagnosis tool and to help better understand the biology behind

cardiovascular diseases, and atherosclerosis in particular.

Several groups have been studying arterial diseases [1,35–39] usingNLOM, and have

presented interesting results. For example, Lilledahl et al. [40] had studied collagen fibrils

accumulation in the fibrous cap of atherosclerotic plaque, through two-photon emission

fluorescence (TPEF) and second-harmonic generation (SHG) images. Megens et al. [41]

applied TPEF microscopy to image arteries labeled with specific, fluorescent markers for

collagen, inflammatory cells, cell nuclei, and lipids to gain insight into the distribution of

collagen and its association with inflammatory cells during plaque formation. Doras et

al. [42] have performed nonlinear optical image reconstructions, as well as polarization

state analysis inside an artery wall a↵ected by atherosclerosis, to investigate the changes

in collagen structure. However, until the beginning of this work, none of these studies

had tried to develop reliable methodologies to quantify the obtained information, by

performing systematic and objective analysis. Thus, it was di�cult to evaluate the

actual potential of NLOM as a diagnostic tool.

To extend NLOM beyond a qualitative tool for visualization, we have pioneered a



1.1 Motivation 3

thorough study of quantitativeNLOM imaging to investigate biochemical changes which

occur in samples taken from a rabbit model for atherosclerosis. One of the main outcomes

of this study is a thorough characterization of how atherosclerosis is progressing by closely

following relevant biochemical changes in accumulated plaques. This characterization

was based on testing, application and validation of a novel in-house developed index for

quantification of plaque burden [18].

Several other methodologies for image analysis were also performed. For example,

texture analysis was applied to analyze and to quantify biochemical compounds accumu-

lated in the plaque [16]. This imaging analysis was implemented to extract structural

and biochemical information from images acquired by each nonlinear optical (NLO)

technique (i.e. TPEF, SHG, and CARS). Complementary results from other estab-

lished techniques and experiments (e.g. histology and immunohistochemistry), were also

presented to validate our hypothesis.

In addition to developing a method specifically relevant for atherosclerosis, this work

has also culminated in the development of a unique package for nonlinear optical image

analysis. Developed methods and tests specific tailored for each nonlinear technique

were tied together and represent a step forward in the characterization of biological

components, such as collagen, lipid-rich structures and elastic fibers using quantitative

NLOM imaging. The methods presented in this thesis can be broadly used in many

other applications where objective analysis is needed.

1.1 Motivation

There is a need for new tools to better investigate the underlying mechanisms of

atherosclerosis and to characterize the various stages of plaque burden progression. Non-

linear optical microscopy, a primarily label-free method, is a useful tool for studying key

facets of atherosclerosis. Its label-free characteristic, combined with high sensitivity and

specificity for major extracellular molecules, makes it an attractive alternative to con-

ventional histology or fluorescence microscopy in studying arterial structures and vessel
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wall composition. The optical sectioning capability of NLO methods also provides a

means of imaging bulk tissue in 3D.

Three NLO methods are employed in this study. Two-photon excited autofluores-

cence (TPEF) has the capability to specifically image extracellular elastin fibers, while

second-harmonic generation (SHG) can probe type-1 collagen fibrils e�ciently. Coher-

ent anti-Stokes Raman scattering (CARS), when tuned to image the C-H stretching

vibrations, can quickly visualize lipid-rich structures, intracellular and extracellular lipid

droplets in unstained intact tissue.

It is well known that both elastin and collagen are the major structural proteins

implicated in the remodelling of the arterial wall during plaque development, while lipid

accumulation is a hallmark feature of atherosclerosis [43,44]. Therefore, NLO methods

are particularly suited to understanding the role and interplay between these key extra-

cellular molecules involved in plaque development. Several studies have demonstrated

the use of the NLOM to image arterial tissue [1,35–39]. However, none of these studies

have provided quantitative descriptors of the images and related these metrics to the

development of atherosclerosis or vascular wall anatomy and pathology.

In the first part of this thesis, the utility of using nonlinear optical images to study

structural and biochemical changes that occur in several stages of vascular atheroscle-

rosis were explored. A new quantitative metric (the Optical Index for Plaque Burden -

OIPB) was developed, tested, and validated to acutely track and classify plaque burden

development.

The second part consists of the applications of several methodologies to extract de-

tailed information about each specific component imaged through the NLOM. Texture

analysis, object identification, particle-specific features are only some examples of pos-

sible imaging analyses that were performed. Each image set, acquired by each NLO

technique, was individually evaluated, aiming to identify specific patterns which can be

used to better understand pathological changes during plaque development as well as

other diseases.

Additionally, the validation of all results presented in this thesis was carried out
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through histological analysis of sections obtained from each analyzed sample. Comple-

mentarily, some experiments based on immunohistochemistry (IHC) were also performed

to provide us with more information in order to understand the observed biological

changes.

These experiments, coupled with data analysis based on a solid statistical approach,

enabled the development of a valid methodology to extract large amount of information

from NLO images. It is expected that all our work will contribute not only within the

scope of atherosclerosis disease, but also in a more general manner.

1.2 Thesis contributions

In this work, NLOM was demonstrated as a highly capable technique for imaging of

atherosclerotic plaque, at submicron resolution and with highly specific chemical identi-

fication. Specifically, the nonlinear processes of TPEF, SHG, and CARS were utilized

in a single, multimodal imaging platform to characterize structural and compositional

features of the atherosclerotic plaque lesion.

This thesis presents a novel biomedical application of nonlinear optical microscopy,

as well as the development of a novel set of tools to interpret the acquired images. In

summary, the main contributions achieved during this study were:

• establishment of NLOM is a powerful technique that can be used to visualize the

extracellular components, such as collagen, elastin, and lipids in atherosclerotic

plaques;

• determination of the spatial distribution of these components, and extensive com-

parison with histopathology, establishing that NLOM may be e↵ectively used

for optical sectioning to examine bulk tissue without the need for sectioning and

staining of the tissue;

• development, testing, and validation of a new quantitative metric (the Optical

Index for Plaque Burden - OIPB) to accurately track plaque burden development;

• confirmation of critical locations along the aorta for atherosclerotic plaque accu-
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mulation, based on results obtained using the OIPB;

• classification of plaque levels purely based NLO images;

• extraction of textural parameters fromNLO images provided quantitative descrip-

tors that were linked to specific structural and compositional motifs that charac-

terize di↵erent stages of atherosclerotic plaques;

• identification of changes regarding the morphology, orientation, distribution and

amount of collagen, elastin and lipid-rich structures were successfully tracked by

quantitative methods;

As the main outcome of this study, this research helped to extend NLOM beyond its

use as a primarily qualitative tool for simple visualization of biological tissue and cells.

The work presented here was one of the pioneering in the development of quantitative

tools to extract information from NLOimages.

1.3 Thesis outline

This thesis consists of ten chapters. After a brief introduction (Chapter 2), a more

general introduction is provided in Chapter 3. The description of the biology behind

atherosclerosis is given. Some key points are discussed, including relevant aspects about

the biochemical changes observed in vessel wall when plaque formation is initiated. Stan-

dards currently used for classification of plaque type and severity, as well as hypothesis

about the probable causes of plaque accumulation at preferential vessel sites are also

discussed. Finally, the main advantages of specific animal model (WHHLMI rabbits)

chosen to perform this study is also presented. Also, the theoretical background of

nonlinear microscopy techniques used in this study is presented and discussed.

In Chapter 3, technical details related to instrumentation, the microscope and its

features are highlighted. A brief discussion about how we can apply NLOM to visualize

changes that occur in atherosclerotic plaques is given. In Appendix A, tables summariz-

ing possible sources that generate nonlinear contrasts are presented. Finally, this chapter

also discusses the experimental procedure adopted in each step of this work, as well as
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aspects related to the image analysis and classification.

This thesis is divided into two major parts. The first part focuses on the charac-

terization of atherosclerotic plaque using NLOM and its progression. The second part

describes the development of quantitative methods to extract information from NLO

images, creating a set of tools specific to the study of cardiovascular diseases.

In Chapter 4, the development and application of in-house developed Optical Index

for Plaque Burden (OIPB) is presented. This index was applied to di↵erentiate healthy

from abnormal arterial regions along the vessel. OIPB was also tested to track disease

progression relative to the animal�s age. The study of which locations along the vessel

are more prone to plaque development was also performed. Two peer-reviewed journal

papers and two conference proceedings were published from these results (Appx. D).

Chapter 5 contains results related to the application of texture analysis for the study

of arterial samples. Information regarding how these parameters can track specific fea-

tures related to the plaque development is presented. One peer-reviewed journal paper

and two conference proceedings were generated from these results (Appx. D).

Finally, the last sections of this part presents the results obtained from combining

OIPB and texture analysis approach. Aiming to improve the scoring and classification of

atherosclerotic lesions, according to the American Heart Association (AHA) definitions.

The results presented in this chapter show the real potential that NLO microscopy has

for clinical applications.

The second part of this thesis contains more specific methods to analyze and to clas-

sify SHG, TPEF, and CARS images. These methods were developed and tested with

images acquired for the previous sections of this thesis research, i.e. from arterial sam-

ples. Although the results presented are related to cardiovascular diseases, the methods

presented in the next three chapters show high potential to be e↵ective in a wide range

of applications.

Chapter 7 focuses on the discussion of results obtained by the texture analysis of

the SHG images to extract complementary information about collagen. In Chapter

8, texture and some particle-specific features were tested in order to classify lipid-rich
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structures imaged by CARS. Chapter 9 is focused on methods to better characterize

the elastic layer of arterial vessels, based on TPEF images. Another two peer-reviewed

journal papers (referent to each chapter), and two conference proceedings were generated

from these results (Appx. D). One additional manuscript is still under preparation. More

details can be found in Appendix D. Chapter 10 concluded this work and provided

potential future directions.



Chapter 2

Background & techniques review

2.1 Atherosclerosis and blood vessels

Atherosclerosis involves a set of factors interconnected in a very complex way. To

better understand some major aspects of atherosclerosis, a brief explanation of blood

vessel structure and its composition is necessary. The arterial wall is basically composed

of three layers (or tunica), as shown in Fig. 2.1. The tunica intima or inner layer is

relatively thin and mainly consists of a single layer of endothelial cells that lines the

vessel lumen.

It is now recognized that the endothelial cells have an important regulatory function

for several biological processes [43, 44], rather than being a passive barrier between

blood and the tissue. The function of endothelial cells di↵ers considerably throughout

the vasculature, not only between di↵erent organs but also between large and small blood

vessels and between vessels at the arterial and venous side of the circulation [45].

The most abluminal (i.e. outer) part of the tunica intima is the internal elastic

lamina (IEL) which separates it from the tunica media. The IEL is composed of a layer

of elastin. The network-like structure of this layer contributes to cell-cell contact and

also allows di↵usion of substances [46].
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Figure 2.1: Schematic representation of a healthy artery. The arteries have three
main layers. The tunica intima is a single layer of simple squamous endothelial cells
glued by a polysaccharide intercellular matrix, surrounded by a thin layer of sub-
endothelial connective tissue interlaced with a number of circularly arranged elastic
bands called the internal elastic lamina (IEL). The tunica media (the thickest layer)
is composed of circularly arranged elastic fiber, connective tissue, and polysaccharide
substances; the second and third layer are separated by another thick elastic band
called external elastic lamina (EEL). The tunica media may (especially in arteries)
may be rich in vascular smooth muscle, which controls the caliber of the vessel. Tunica
adventitia is entirely composed of collagen and connective tissue. (SMCs - smooth
muscle cells). Note: The elements of this figure are not to scale. (© L.Mostaço-
Guidolin, 2014)

The tunica media or medial layer primarily consists of several concentric layers of

helically arranged vascular SMC. The number of layers depends on size and type of the

artery. Vascular SMC are separated by fibers of extracellular matrix (ECM - collagen,

elastin). Interposed between these layers of vascular smooth muscle cells, we have the

intermediate elastic lamina (the number of intermediate lamina, again, depends on the

size and type of the artery). The main function of the tunica media is to control the

vascular tonus. Moreover, the vascular smooth muscle cells are the cellular source of the

extracellular matrix [47]. The external elastic lamina (EEL), mainly elastin fibers, is the

most outer elastic lamina of the tunica media, separating it from the tunica adventitia.

The tunica adventitia is the external layer of the arterial vessel wall and mainly

consists of collagen and elastin fibers, which give the vessel structural integrity [47]. In

between these fibers, fibroblast-like cells and vasomotor nerves are present. In the tunica

adventitia of large arteries, with a vessel wall that is too thick to be solely nourished

by di↵usion, a network of branched small blood vessels - or vasa vasorum - is present,

providing metabolites and oxygen to the tunica adventitia and abluminal parts of the

tunica media [47]. The vessel walls of various large arteries have a number of structural
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features in common, although structural variations between comparable arteries can be

considerable. Note that thickness, detailed structure, and function of all tunica types

strongly depend on total diameter and type of blood vessel.

2.1.1 Atherosclerosis: a general overview

Historically, atherosclerosis was regarded as a disease of vascular lipid accumulation

and the endothelial alterations were mainly left out of the picture. The response-to-injury

hypothesis, introduced by Virchow in 1856 [48] and later modified by Ross et al. [49],

postulates that noxious agents, such as shear stress, lipids and oxidation products, dam-

age the endothelium, resulting in increased permeability and enhanced expression of cell

adhesion molecules. The ensuing infiltration of inflammatory cells starts a complex pro-

cess of persistent inflammation and vascular remodeling, which stretches over decades

and leads to the development and progression of atheromatous plaques, aneurysms and

arterial thrombosis. A sketch showing the progression of atherosclerotic plaques is pre-

sented in Fig. 2.2.

Infiltrating leukocytes scavenge lipids and subsequently transform to foam cells, mak-

ing up the bulk of early lesions [50]. The ensuing inflammation attracts more leukocytes

and stimulates vascular smooth muscle cells to proliferate and migrate towards the in-

tima [51]. The latter is the predominant source of extracellular matrix (ECM) proteins,

such as collagen and elastin, which contributes to progressive plaque growth and arterial

remodeling [52, 53]. During lesion progression, the ongoing inflammation and oxygen

deprivation in the core of the plaque results in apoptotic and necrotic cell death [54].
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Figure 2.2: Progression of atherosclerotic lesions. The normal artery (1) starts to
show an accumulation of foam cells, formation of fatty streaks (2); these fatty streaks
will lead to an initial atheroma (3). As shown in (4), an atherosclerotic plaque has a
core made up of dead foam cells (lipid-engorged macrophages and smooth muscle cells)
covered by a fibrous cap (a region of the intimal layer that has thickened as a result of
medial smooth muscle cells depositing collagen and elastin fibers); (5) the thickening
artery wall of an atherosclerotic plaque gradually encroaches upon the luminal space
and can eventually result in a restriction to the blood flow. Unstable plaques, which
are susceptible to rupture, are softer and have a thinner fibrous cap. (6) Plaque rupture
triggers the formation of a blood clot, which can block the flow of blood through the
artery. (© L.Mostaco-Guidolin, 2014)

This lipid-rich necrotic core is separated from the blood by the remaining fibrous

cap, rich in SMCs and SMC-derived collagen [55]. Thrombosis can be triggered by

fracture of the fibrous cap, exposing the tissue factor gruel from the core of the lesion, or

by endothelial erosion, exposing the sub-endothelial collagen, thereby starting platelet

aggregation [56]. The resulting acute ischemia often is the first clinical presentation of

atherosclerotic burden and by then atherosclerosis has already progressed to an advanced

stage [57].

Although biomedical research considerably increased our knowledge on the pathobi-

ology of atherosclerosis, many facets and causal relations remain unexplained or unex-

plored. A better understanding of many etiologic factors is important for the develop-

ment of strategies that could identify atherosclerosis prone individuals and stabilize, or
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even regress, existing lesions, therefore preventing or treating atherosclerosis in general

and acute ischemic events in particular.

2.1.2 Hemodynamic forces as the key behind plaque accumu-

lation

Atherosclerotic lesions show a remarkably consistent pattern distribution throughout

the arterial lumen, being mostly confined to branch points of large and middle sized

arteries [58]. Typical sites of atherosclerotic burden include the carotid bifurcation,

aortic arch, coronary arteries, the aorta near branch points of intercostal, renal and

mesenteric arteries, as well as the iliac bifurcation. A simplified scheme, illustrating these

main points is presented in Fig. 2.3. These sites correspond to deviant hemodynamic

conditions compared to the laminar flow pattern that is found in the greater part of the

vasculature [59].

Left carotid artery!
(to head)

Right subclavian 
artery

Artery to stomach

Artery to small / 
large intestine

Femoral arteries

Renal arteries

Aorta!
(main artery)

Critical locations for 
plaque accumulation

Aorta arch

Figure 2.3: Scheme illustrating main arteries found in mammalians. Typical sites
of plaque accumulation include the (a) carotid bifurcation, (b) aortic arch, the aorta
near branch points of (c) intercostal, (d) renal and mesenteric arteries, as well as the
iliac and (e) femoral bifurcation. (© L.Mostaco-Guidolin,2014)

The turbulence that occurs at these sites causes low and oscillatory shear forces on
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the endothelium. These biomechanical e↵ects change both the geometry of endothelial

cells and the gene expression profile [60, 61]. While the high shear stress of laminar

flow promotes the expression of atheroprotective genes [62,63], low and oscillatory shear

stress induces the expression of various cell adhesion molecules (e.g. VCAM-1, ICAM-

1) [64,65], chemokines (MCP-1) [66], cytokines [62], growth factors [67] and enzymes

(NADH oxidase,MMP-9) [68], that are involved in atherosclerotic plaque development

and progression. In the second part of this study, experiments involving tracking the

accumulation of adhesion molecules on vessel wall were performed, to identify high-risk

locations for plaque development.

Another important point that should be highlighted is that in advanced lesions, cir-

cumferential stress from high arterial blood pressure not only a↵ects gene expression, but

also directly a↵ects the structural integrity of the protective fibrous cap. The fibrous cap

of advanced atheromas gradually becomes thinner (and weaker) at the plaque shoulders,

and ultimately the fibrous cap ruptures. As a consequence, the thrombotic content of

the necrotic core is left uncovered for the blood [69–71]. The latter may result in throm-

bus formation which can occlude the artery, often causing acute ischemia in downstream

organs, which may result in loss of function, and ultimately in death.

2.1.3 Animal model - WHHLMI rabbits

In this thesis, myocardial infarction-prone Watanabe heritable hyperlipidemic rab-

bits, designated as WHHLMI rabbits [72,73], were used as an animal model to mimic

spontaneous myocardial infarction in humans. Due to a hereditary defect in LDL (low

density lipoprotein) processing,WHHLMI rabbits develop atherosclerotic plaques with-

out requiring a modified diet. Similar to human Familial Hypercholesterolemia, LDL

receptor’s function is genetically reduced in WHHLMI rabbits and they show hyperc-

holesterolemia [74, 75].

Arterial and cardiac samples from WHHLMI rabbits with an age ranging from 0 to

27 month-old were studied. According to several authors [19, 76] aortic atherosclerosis

is observed in WHHLMI rabbits as early as 2 month-old stage despite feeding them
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with normal rabbit chow. At approximately 6 month-old, aortic lesions are expanded to

cover about 40% of the aortic surface. Around 10-12 month-old, the lesions cover about

70% of the aortic surface. Above 16 month-old, the aortic lesions cover most of the aorta

[19, 76].

Complimentary, coronary atherosclerosis is observed starting from 2 months from

they were born. The average coronary narrowing (% of plaque area in the area at the

internal elastic lamina) of the circumflex artery reaches about 50% of 6 month, about

70% in 12 month-old, and 80% or higher in 18 month-old and older [77]. In addition,

many macrophages and foam cells are observed at the aortic valves.

2.2 Nonlinear optical microscopy

During the last several decades, histology has provided detailed insight in various

aspects of blood vessel biochemical morphology. However, preparations of histological

sections require extensive chemical treatment, pre and post tissue preparation. All of

these procedures could result in loss of tissue viability,functionality, and lead to structural

alterations.

An imaging technique, which enables simultaneous visualization of both structure and

function of the intact and viable diseased vascular wall, is therefore essential. NLOM

provides a minimally invasive, label free, optical method for fast molecular imaging at

sub-cellular resolution with 3D sectioning capability in thick, highly scattering biological

tissues [27–30].

In this thesis, three forms of NLO microscopic techniques, TPEF, SHG and CARS

[30–33] are used to study atherosclerosis progression through tissue imaging. These

modalities were chosen due to their respective sensitivity and specificity toward impor-

tant components of arterial wall and atherosclerotic lesions.
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2.2.1 TPEF - Two-photon excited autofluorescence

Currently, conventional fluorescence microscopy is the most common optical light

microscopy used in biomedical research because of its great specificity, sensitivity, and

ease of use. In fact, the comprehensive knowledge of structure and function of the

vasculature and vascular diseases such as atherosclerosis is realized in a large part based

on studies utilizing conventional fluorescence microscopic techniques.

In conventional fluorescence microscopy, fluorescent molecules (fluorophores) in the

sample are excited by absorption of a single photon with a specific wavelength (usually

between 350� 650nm). Subsequently, the molecules return from the excited state to its

ground state by emitting fluorescent light with lower wavelength 1, allowing high contrast

imaging of the distribution of fluorophores in the sample with high contrast (Fig. 2.4).

Figure 2.4: Schematic energy level diagram illustrating the processes of one and
two-photon excitation. Illustration at right: in the two-photon case fluorescence is
originated only from molecules excited at the plane of focus, as opposed to the en-
tire focusing cone in the single photon case. Image adapted from Webb Lab, Cornell
University. Adapted by L. Mostaço-Guidolin.

The process of fluorescence excitation occurs throughout the whole volume that is

illuminated by the excitation light. Therefore, out-of-focus fluorescence light also con-

tributes to image formation. It reduces contrast and signal-to-noise ratio, especially in

thick and scattering tissues. Furthermore, bleaching of the fluorescent molecules not

only occurs in the focal plane, but in the entire illuminated volume.

In combination with the high flux of excitation light that may cause cytotoxic e↵ects,

tissue viability is hampered in the large (illuminated) volume of the sample. Finally,

1or lower energy; the di↵erence between both wavelengths is called the Stokes shift.
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conventional single-photon fluorescence microscopy lacks su�cient penetration depth to

obtain high resolution images beyond the tissue surface. This happens due to the high

absorption and scattering of the excitation light as well as of the emitted fluorescence in

biological tissue. In order to visualize structures in their natural environment, TPEF

microscopy is a better alternative.

Developed by Webb et al. [30], TPEF microscopy has become a valuable tool for

biomedical studies. TPEF microscopy is based on the principle of two-photon TPEF

excitation, a process which was first described in 1931 by Maria Goppert-Mayer. Simul-

taneous absorption of two photons (where the total energy is equivalent to that of a single

photon at half the wavelength) leads to the electron excitation of fluorescent molecules

in the sample. Since the probability of two-photon absorption depends on the square of

the intensity of the incident light, excitation occurs only in a very small volume at the

focal position of the microscope lens. Therefore, out of focus absorption and excitation,

as in normal or confocal fluorescence microscopy, are negligible. As a result, detected

photons are primarily originating from the focal position and thus are independent of

scattering. Due to this excitation process, TPEF microscopy possesses some interesting

features: enhanced depth of penetration owing to the use of a near infrared excitation,

good optical sectioning, good axial resolution, and reduced photobleaching and photo-

toxicity [78–81]. Additionally, compared to a confocal microscope, photon detection is

much more e↵ective since even scattered photons contribute to the usable signal.

These features make TPEF microscopy a better tool than conventional microscopic

techniques for imaging structures located deep in (scattering) tissues such as brain [82,

83], kidney [84–87] and microvasculature [88]. Recently, TPEF microscopy was also

demonstrated as a valuable tool for imaging blood vessels [89].

The two-photon excitation of a fluorophore involves the simultaneous absorption

of two photons, generating an electronically excited state, followed by the subsequent

spontaneous emission of another photon (generally lower-energy) at the characteristic

wavelength of fluorophore emission. This induced fluorescence signal displays a quadratic

dependence on the exciting optical power. The basic equation relating the intensity, I2(t),
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of fluorescent signal emitted per molecule and unit time (in the absence of saturation,

self-quenching, photobleaching, or stimulated emission) to the experimental parameters

for TPEF is given by [90],

I2(t) / �

2
�2⇢

4, (2.1)

where � is the fluorescence quantum yield of the molecule, �2 is the two-photon ab-

sorption cross-section, and ⇢ is the incident photon flux density. The factor of 2 in the

denominator reflects the fact that two photons are required for each absorption event.

Since two-photon excitation is an almost instantaneous process, the peak of incident

photon flux density of a pulsed laser source, determines the excitation rate.

The requirement for simultaneous absorption of two photons means thatTPEF cross-

sections typically are very small [91]. As the electron is excited to a real excited energy

state it can remain in this state for a finite time (typically a few nanoseconds, dependent

on the fluorophore) before returning to its original energy state via fluorescence emission

[91,92].

The e↵ective sensitivity of fluorescence microscopy in thick samples is limited by

out-of-focus background signal. This introduces a di↵use background fluorescence that

does not encode any spatial information, and which therefore acts to reduce the image

contrast. In a confocal microscope, a confocal pinhole is used to reject the out-of-focus

background and produce an unblurred image which corresponds to a thin (< 1µm)

“optical section”. This greatly reduces the limitation of imaging extended samples and

enables high-resolution 3D imaging. TPEF is an alternative to confocal microscopy

that provides clear advantages for three-dimensional imaging. In particular, two-photon

excitation microscopy excels at high-resolution imaging in intact thick tissues such as

brain slices, embryos, whole organs, and live animals (intra-vital imaging).

For fluorescence microscopy in relatively thick samples, two-photon excitation often

provides the most attractive solution, although complementary three-dimensional fluo-

rescence microscopy methods each have particular benefits that can make them better

suited for certain experiments.
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Confocal microscopy uses a pinhole to reject out-of-focus background fluorescence.

Thus, this technique allows optical-sectioning for three-dimensional imaging in thicker

samples than conventional wide-field fluorescence microscopy. However, while the exci-

tation light generates fluorescence throughout the specimen, signal is collected only from

the focal plane. The absorption of the excitation light will causes photobleaching and

photodamage throughout the specimen, which can cause significant problems, especially

in live samples.

The penetration depth in confocal microscopy is also limited by sample scattering

of both the excitation and emission photons, as well as absorption of excitation energy.

Two-photon excitation provides optical sectioning for three-dimensional imaging, but in

contrast to confocal microscopy there is no absorption and fluorescence (and thus no

photobleaching and phototoxicity) above and below the plane of focus. Consequently, it

can be less perturbing to live samples due to the reduced phototoxicity incurred through-

out the sample. In addition, the ability to image at depth in the sample is less degraded

by sample scattering of excitation, emission photons, and better collection e�ciency.

2.2.2 SHG - Second-harmonic generation

The second nonlinear optical process discussed in this chapter is the second-harmonic

generation (SHG). It is a coherent elastic process where two excitation photons are

combined in an optically nonlinear medium, to create a SHG photon with a wavelength

exactly half of the excitation wavelength. This process is summarized in the energy level

diagram shown in Fig. 2.5.
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Figure 2.5: Second-harmonic generation is a nonlinear optical process, in which two
photons interacting within a nonlinear material are e↵ectively ”combined” to form
a new photon with twice the energy, and therefore twice the frequency, or half the
wavelength of the initial photons. (© L.Mostaco-Guidolin,2014)

Formally, the equation of the nonlinear polarization is presented in Eq.2.2, showing

a polynomial where second-harmonic generation is defined by the second term,

~P = ✏0(�
(1). ~E + �(2) : ~E ~E + �(3)... ~E ~E ~E + . . . .). (2.2)

When the exciting field is a linearly polarized sine wave, we can re-write the Eq. 2.2

as

P = ✏0(�
(1)E0 sin!t+ �(2)E2

0 sin
2 !t+ �(3)E3

0 sin
3 !t+ . . . .), (2.3)

where �(n) are scalar dielectric susceptibility coe�cients. Using trigonometric identities

we can simplify Eq. 2.3 to get [93],

P = ✏0(�
(1)E0 sin!t+

✏0�(2)

2
E2

0(1� cos 2!t) +
✏0�(3)

4
E3

0(3 sin!t� sin 3!t) + . . . (2.4)

In Eq. 2.4, the cos 2!t term represents the second-harmonic generation and the sin 3!t

term represents the third-harmonic generation. The process can also be described quan-

tum mechanically as the combination of two photons with energy ~! forming a single

photon with energy 2~!, where h is the Planck’s constant.

There are several factors a↵ecting the magnitude of second-harmonic generation. It

depends quadratically on the intensity of the excitation light, and is also a↵ected by the
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polarization and wavelength of the excitation light. SHG signal can be also dependent on

the properties of the material: the nonlinear susceptibility, the phase mismatch between

the SHG and the excitation light, and the distribution and orientation of the SHG sources

within the focal volume.

An important aspect needs to be pointed out is that SHG is polarization sensitive.

For many sources of second-harmonic generation, the amount of signal produced is de-

pendent on the polarization state of the incident laser light., relative to the scattering

molecular structure.

To illustrate this, we shall focus on the polarization sensitivity of SHG from collagen

fibrils, as it is the component that will be imaged during the present study. Most studies

on the polarization sensitivity of collagen have been carried out on tendon which is

composed of highly ordered parallel collagen-type I fibers [94–96]. The intensity of the

second-harmonic signal produced from a collagen sample is dependent on the orientation

of the polarization state of the laser excitation light with respect to the fiber axis. For a

linearly polarized laser beam incident on a collagen fibril, the amount of second-harmonic

signal produced for di↵erent polarization orientations is summarized in Fig. 2.6.

Figure 2.6: Summary of the relationship between orientation of collagen fibers and
SHG signal intensity. The strength of SHG signal is dependent on the collagen
orientation with respect to the polarization of excitation laser beam.(© L.Mostaco-
Guidolin,2014)

For fibrils lying in the plane perpendicular to the direction of laser light propagation,

the amount of SHG produced depends on the angle between the fiber axis and the laser

polarization. If the light is polarized along the fiber axis, the maximum SHG signal will
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be observed. On the other hand, if it is polarized perpendicular to the fiber axis, the

weakest SHG signal will be observed [97]. This means that the polarization dependence

of the SHG signal can be measured to study the orientation of the collagen fibrils within

tissue [97]. The intensity of the SHG signal also depends on the angle between the

collagen fiber and the imaging plane. The intensity of the SHG is maximum when the

collagen fiber is in the imaging plane and very low when the fiber is perpendicular to the

imaging plane.

In SHG microscopy the focal area in which the SHG light is generated has sub-

micron dimensions, which is much smaller than the coherence length in collagen. There-

fore, the SHG signal should not be significantly reduced by destructive interference.

SHG microscopy has been proved to be an ideal tool to analyze the spatial arrangement

of collagen fibers in tissue and quantification. This information can be crucial when

dealing with complex medical problems, such as atherosclerotic plaque development.

An interesting point to be noted is that TPEF photons can be easily distinguished

from SHG photons, since TPEF is an inelastic process compared to the elastic process

of the SHG. Therefore, the TPEF will always be produced with a longer wavelength

than SHG, which will always be at a wavelength exactly half that of the laser excitation

wavelength. The wavelength of the TPEF light is longer than SHG because some of

the excitation energy is lost during the non-radiative decay.

Unlike SHG, TPEF is an incoherent process. This means that we do not have to

consider the phase mismatch between the TPEF and the laser excitation light. TPEF is

generated out of phase and therefore, no e↵ects of constructive or destructive interference

will occur within the focal volume in consideration.

2.2.3 CARS - Coherent anti-Stokes Raman scattering

A number of light-scattering phenomena, which can provide structural information

are now known and understood. The principal ones and those that are most used are

Rayleigh scattering, Raman scattering, hyper-Rayleigh scattering, coherent anti-Stokes

Raman scattering, and stimulated Raman scattering.
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The third nonlinear optical process used in this study is the coherent Anti-stokes

Raman scattering (CARS). This is a process in which the contrast mechanism is relying

on the molecular vibrations of the sample.

CARS enables the extremely weak spontaneous Raman scattering e↵ect to be en-

hanced by resonance. Raman scattering is an inelastic scattering process involving the

vibrational modes of the scattering molecules. Raman spectroscopy has been developed

as an analytical technique, allowing di↵erent molecules to be identified by their specific

vibrational frequencies.

Characteristic peaks occur in the Raman spectra at frequency shifts which correspond

to the energy of specific vibrating bonds [32]. There are two types of Raman scattering:

Stokes Raman scattering (conventional Raman) and anti-Stokes Raman scattering.

In Stokes Raman scattering part of the energy of the scattered photon is transferred

to a vibrating bond of the scattering molecule and the scattered photon consequently

has lower energy and therefore leading to longer wavelength.

In anti-Stokes Raman scattering the scattered photon gains energy from a vibrating

bond of the scattering molecule under a four-wave mixing condition, consequently leading

to shorter wavelength.

TheCARS signal is generated with a frequency !as = 2!p�!s, where !s is the Stokes

and !p is the pump laser beam. If the frequency di↵erence, ⌦, between the frequency

of the Stokes beam and the pump beam (!p � !s) corresponds to the frequency of a

vibration of a molecular bond within the sample, the CARS signal will be strongly

enhanced. The energy level diagram for the CARS process is shown in Fig. 2.7.

Figure 2.7: Energy level diagram for coherent Anti-Stokes Raman scattering. CARS
is a growing microscopy technique where vibrational energy of molecular bonds is used
to visualize the specific molecule in the sample. (© L.Mostaco-Guidolin, 2014)
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The major advantage of CARS microscopy is that it can be used without staining

to image many molecules within the sample which have no intrinsic fluorescence and do

not exhibit second-harmonic generation. To produce contrast for a specific molecule, the

frequencies of the pump and Stokes photons are tuned so that the di↵erence between

them corresponds to a specific vibrational mode which occurs within the molecule (this

would be represented by a peak in the spontaneous Raman spectrum). For example, for

imaging lipids within a sample, the lasers are tuned so that (!p�!s) corresponds to the

vibrational frequency of the CH bonds that exist in large numbers in the hydrocarbon

chains of the lipids.

CARS is a third order non-linear process and is therefore governed by terms of the

third order nonlinear susceptibility tensor �(3) . The intensity of the CARS signal is

quadratically dependent on the intensity of the pump beam, and linearly on the intensity

of the Stokes beam,

ICARS / IsI
2
p

���(3)
��2 . (2.5)

As the CARS intensity is proportional to
���(3)

��2 , it is dependent on the square

of the number of vibrational modes within the excitation volume. This is due to the

coherent nature of the process with all of the vibrational modes oscillating in phase and

interfering constructively. This fact increases the specificity of CARS when imaging

lipids via the CH2 bond vibrations. CH2 bonds exist within most organic molecules,

and the hydrocarbon tails of lipid molecules can be found at very high density.

There are three terms in �(3), being shown in Eq. 2.6,

�(3) =
AR

�–I�R

+ �(3)
NR +

AT

!T–2!p–I�T

. (2.6)

The first term represents the enhanced CARS signal via resonance when (!p � !s)

corresponds to the bond’s vibration. The second term is a non-resonant term �(3)
NR, which

corresponds to the bulk electronic vibrations. Finally, the third term corresponds to the

two-photon enhanced non-resonant contribution.
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In Eq. 2.6, � = !p � !s � ⌦R , with ⌦R corresponding to the central frequency of

the Raman spectral line of vibrational mode being excited with a bandwidth of �R [32].

!T corresponds to the frequency of an electronic transition and �T is the band width of

this transition. AR and AT are constants representing the cross-sections for the Raman

scattering and two-photon absorption respectively [98].

The non-resonant term is largely independent of (!p � !s), whereas the contribution

of the non-resonant term is dependent on the actual laser frequencies. The contribution

of the two-photon enhanced term can be minimized if the laser pump beam is tuned

to wavelengths away from those that can excite electronic transitions via two-photon

excitation and this is generally true when it is tuned to longer wavelengths [99].

In this way, the expansion of the expression for
���(3)

��2 shows that the CARS signal

is dependent on three terms. When !p is tuned away from the two-photon electronic

transitions so that the two-photon enhancement term may be ignored,

ICARS(�) /
����(3)

NR

���
2

+
����(3)

R (�)
���
2

+ 2�(3)
NRRe�(3)

R (�). (2.7)

The first term in this expression represents the non-resonant background. The sec-

ond term represents the resonant contribution, and hence provides information on the

concentration of the resonant scatters within the sample. The last term is a combination

of contributions from the resonant and non-resonant terms.

The non-resonant background limits the imaging contrast in CARS microscopy.

The solvent in which the sample is contained often contributes to the non-resonant

background. For example water produces a strong resonant signal with a broad spectral

range. In order to distinguish the non-resonant background from the resonant CARS

signal images need to be taken at di↵erent values of (!p � !s) or o↵ resonance.

At this point it is worthwhile to compare the advantages and contrast mechanisms

of SHG, THG (third harmonic generation), and CARS microscopy. Multi-harmonic

(SHG and THG) microscopy is advantageous in that it uses one laser beam and it

can be easily incorporated with multiphoton fluorescence microscopy. SHG arises from

samples lacking inversion symmetry. THG and CARS rely on the third-order suscep-
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tibility and require no symmetry breaking. THG arises from symmetry breaking at

interfaces between di↵erent structures and has poor chemical specificity. CARS spectra

provide rich information about molecular vibration, making CARS microscopy often

more informative than SHG and THG microscopy, by allowing vibrational mapping of

unstained living cells and tissues, monitoring processes with chemical selectivity. On the

other hand, SHG and THG can provide structural information about the sample.

2.3 A multimodality imaging approach

By combining TPEF, SHG and CARS into a common imaging microscope system,

multimodal NLOM imaging can provide rapid biochemical maps of arterial tissue dis-

playing information on key biochemical components and structures that are associated

with atherosclerosis. Quantification of atherosclerosis progression then becomes possi-

ble when we combine the visual representation provided by TPEF, SHG and CARS

images, and parameters derived from those images.

All the TPEF, SHG and CARS imaging carried out in this study was performed

on unstained, un-cut tissue samples. Therefore, it is important to understand and iden-

tify the sources of multiphoton contrast in order to properly interpret these images. As

discussed in the introduction, the source of CARS contrast is obtained from intrinsic

molecular vibrations within the samples; the SHG sources are molecules lacking inver-

sion symmetry, and the TPEF is from fluorophores which have an e�cient two-photon

autofluorescence upon excitation at 800nm.

For tissues investigated in this study, collagen fibril is the main source of SHG

contrast. CARS image contrast is primarily originating from the vibrations of the CH2

bonds in lipids. The source of TPEF however is less specific. In the case of healthy

artery, the TPEF signal detected is most likely coming from elastin fibers, which exist

in several vessel layers with di↵erent morphology. However, a number of two-photon

fluorophores from atherosclerotic plaque can also be excited by the wavelength range

used in this work, thus making identification of TPEF signals detected in the plaque
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more challenging. The tables in Appendix A summarize possible NLO signal sources

from biological samples.



Chapter 3

The NLO microscope, samples &

data analysis

3.1 The multimodal NLO microscope

Conventional CARS microscopy uses picosecond (ps) lasers rather than femtosec-

ond (fs) lasers for its narrower pulse-width. Alternatively, CARS microscopy based on a

single femtosecond (fs) laser combined with a photonic crystal fiber (PCF) can achieve

similar performance with important added advantages. By allowing CARS to be com-

bined e�ciently with other multiphoton techniques (e.g. SHG, TPEF), it is possible

to acquire multimodal imaging without changing laser sources. The combination of a

fs oscillator with a PCF leads to a natural extension of the existing technology (e.g.

multiphoton microscope) [38, 100].

Based on this concept, an in-house developed multimodal NLO laser scanning mi-

croscope illustrated in Fig. 3.1 [38,100] was used for TPEF, SHG and CARS imaging

of cardiovascular tissues. The light source for TPEF and SHG imaging is a Ti:Sapphire

oscillator (Tsunami, Spectra-Physics) operating at 800nm with a 100fs pulse duration

and 20nm bandwidth. Average output power was measured to be 1W when the oscillator

was pumped with a 7.25W of green light at 532nm (Millennium Pro, Spectra-Physics).

A Faraday isolator (Newport) was placed close to the emission exit of the Ti:Sapphire
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oscillator to prevent any back-reflections of the femtosecond pulses from re-entering the

laser cavity. Re-compression of the pulses was accomplished using a pair of chirped laser

mirrors (Layertec GmbH, Germany) to compensate for the large positive group velocity

dispersion (GVD) introduced by the Faraday isolator and other microscope optics. The

femtosecond pulses were then split into two beams using a 50 : 50 beam splitter.

Figure 3.1: Schematic illustration of the home-built multimodal nonlinear optical
laser scanning microscope. Light source for TPEF and SHG imaging is a Ti:Sapphire
femto-second oscillator (Tsunami,Spectra-Physics). For CARS imaging, Stokes pulses
are generated in PCF which is pumped by the same Ti:sapphire laser. M1,M2,M3:
mirrors; F-ISO: Faraday isolator; CM: chirp laser mirrors; BS: beam splitter; NIR-
F: near-IR filter; GS: galvo scanner; DM: dichroic mirror; OBJ: objective lens; BF:
bandpass filter; �/4: quarter waveplate; �/2: half waveplate; PMT: photomultiplier
tube.(© L.Mostaço-Guidolin,2014)

The reflected beam of the BS was used as the pump beam for CARS imaging and

also as the light source for TPEF and SHG imaging. Approximately 300 mW of

transmitted power after the beam splitter was coupled into a PCF (NL-1.4-775-945,

NKT Photonics A/S, Denmark) through a 20⇥ objective lens (Newport), generating

a broadband emission both in the visible and in the near infrared (NIR). The NIR
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portion (> 900nm) of this broadband emission was used as the Stokes beam for CARS

imaging. Typically 25mW of pump and 8mW of Stokes (measured after the 20⇥ air

objective lens) were used for imaging.

The pump and Stokes pulses were combined at a beam combiner before proceeding

into the laser scanning microscope assembly co-linearly. An air objective lens focused the

laser pulses on samples, collecting the epi (i.e. backward) or forwardTPEF/SHG/CARS

signals.

The collected NLO signals were transmitted to three non-descanned PMT detectors

(H9656 series, Hamamatsu, Bridgewater, NJ, USA) mounted on the microscope assembly

for simultaneous TPEF, SHG and CARS imaging at 530 ± 20nm, 400 ± 30nm and

630 ± 30nm, respectively. A schematic representation showing more details for the

detection is presented in Fig. 3.2.

Figure 3.2: Illustration showing details of two configurations used in this study.
Most bulk-tissue imaging was accomplished using backscattered (epi-) configuration.
However, an alternative forward-CARS and forward-SHG configuration was used to
image thin-sections of arterial vessel. Additionally, a spectrometer is also coupled to
the system, allowing acquisition of spectra from a specific sample location. M1,M2,M3:
mirrors; GS: galvo scanner; DM: dichroic mirror; OBJ: objective lens; BF: bandpass
filter; PMT: photomultiplier tube. (© L.Mostaço-Guidolin, 2014)

The laser light, after passing through the microscope objective lens, was focused on
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a region of interest by moving the sample using a motorized translation stage (Sutter

Instrument, Novato, CA, USA). This 3-axis stage was controlled by a motor controller

(MP-285, Sutter Instrument, Novato, CA, USA) and had a resolution of 0.2µm. The

translational stage also allowed 3D image stacks to be built up at incrementally moving

the sample at a set distance along the z-axis between each 2D raster scans.

The two objective lenses used for bulk tissue imaging included a 20⇥, 0.75NA infin-

ity corrected air objective lens (Olympus Canada, Markham, ON, Canada) and a 10⇥,

0.40NA infinity corrected air objective lens (Olympus Canada, Markham, ON, Canada)

with the majority of the imaging work done with the 20⇥, 0.75NA infinity corrected air

objective lens, which gave a maximum scan size of approximately 450x450µm. ScanIm-

age (ver.3.5) software [101] was used for image acquisition and laser scanning control.

Typical pixel dwell time for an average of 4 scans for a single frame collection was 21µs.

3.2 Tissue and sample preparation

The animal study was approved by the local Animal Care Committee at National Re-

search Council Canada - Winnipeg. Arterial samples were harvested from 28WHHLMI

rabbits aged from 0 to 27 month-old. This sampling provides good representation of

atherosclerotic disease progression, with the 27 months rabbit being considered to be

nearing the end of its life cycle (it died of natural cause).

During the harvest, segments of tissue starting from the ascending aorta to the ex-

ternal iliac artery were excised from all specimens and then rinsed in heparinized saline.

The exterior surfaces of these aorta sections were delicately cleaned of connective tissue

prior to being subdivided into four tissue pieces. Each of these segments represents a

specific location along the artery: aorta arch (AA), thoracic artery (TA), abdominal

artery (AbA), and external iliac artery (EIA), as shown in Fig. 3.3.
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Figure 3.3: Main aorta segments used in this study. The first segment is called
aorta arch (AA); the second one is the thoracic artery (TA); the third and the fourth
segments were named as abdominal artery (AbA) and external iliac artery (EIA),
respectively. (© L.Mostaço-Guidolin, 2014)

Additionally, short segments from each piece were set aside for histology and IHC.

Each artery segment was cut open longitudinally exposing the luminal surface. A

schematic illustration of this procedure is shown in Fig. 3.4.

Figure 3.4: General view of sample cutting . The aorta is divided in four segments
(as mentioned earlier); each segment is further divided in smaller pieces to be used for
imaging (IHC) experiments. Some artery subsegments are also stored and prepared
for histology. (© L.Mostaço-Guidolin, 2014)

The samples were placed in petri-dishes with the luminal surface facing up on a moist

surface. Hydration was maintained throughout the measurements by periodically apply-

ing phosphate bu↵ered saline (PBS) solution onto sample surface. Digital photographs

were acquired and regions of interest were identified prior to measurements.
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3.3 NLO imaging and histology of artery

For histology, the artery was cross-sectioned on a cryotome into sections while em-

bedded in Optical Cutting Temperature medium. The tissue sections prepared for NLO

imaging received no further treatment after cutting while those prepared for histology

were immersion-fixed in either 95% methanol or 10% bu↵ered formalin based on individ-

ual staining protocols. Artery sections used in multimodal NLO imaging were compared

to adjacent H&E (hematoxylin and eosin) stained sections which revealed general tissue

morphology, picro-sirius red stained sections highlighting collagen and elastin fibers un-

der cross-handed circularly-polarized condition [102], and oil red O staining accenting

high-lipid structures. Histology images were obtained using a 10x air objective lens on a

Zeiss Axio Observer Z1 system equipped with AxioCam ICc3 CCD camera (Carl Zeiss

Canada, Toronto, ON, Canada).

NLO images from sections of the aorta vessel were characterized through a visual

comparison with histological images from matched sections, and an example is shown in

Fig. 3.5.

Figure 3.5: Atherosclerotic plaque features and its major components visualized by
(A) NLO microscopy, where the elastin fiber is color-coded in green (TPEF), collagen
fibrils in blue (SHG) and lipids in red (CARS). Both SHG and CARS signals
are collected in the forward-direction while TPEF is collected in the backscattered
(epi-direction). Histological images of adjacent artery sections stained with (B) H&E
(bright field), and (C) oil red O (bright field). The section in (D) and (E) is double
stained with picro-sirius red (collagen) and Verhoe↵’s (elastin). (D) was imaged using
circular polarized light to detect the collagen fiber stained by picro-sirius red and, in
(E) the bright field image captures the elastin fibers stained black by the Verhoe↵’s.
Reproduced with the permission from IOP Publishing Ltd (2011) [16]
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The good correspondence between the histological sections and the multimodal NLO

images validates our understanding of what gives rise to imaging contrast in the multi-

modal NLO images of the vessel wall.

3.4 Immunohistochemistry: locating inflammation

sites within the artery

Antibodies (also called immunoglobulins, or IgG molecules) are used by the immune

system to attack foreign substances, called antigens, that enter the body. This property

can be used to generate antibodies of clinical interest. For example, if an antigen from

human cells is injected into a rabbit, the rabbit’s immune system will produce specific

antibodies against that antigen. The resulting rabbit antibodies can then be withdrawn,

purified, and applied to human tissue specimens to identify the location of the antigen

within a cell.

Antigens are typically proteins or polysaccharides within or on the surface of cells.

Antibodies bind specifically to the antigen that triggered the antibody’s production and,

as a result, immunohistochemical reactions can be very precise.

To identify the location of the bound antibody, and thus the location of the antigen,

we can use a procedure called the direct method. In this method, the antibody is

attached (or conjugated) to an indicator molecule. Di↵erent indicators include biotin,

horseradish peroxidase (HRP), or in this case, fluorescent molecules, as shown in the

diagram presented in Fig. 3.6. In the direct method, the purified conjugated antibody

is applied to the tissue and allowed to react with the antigen. Unbound antibody is

washed away. In the case of atherosclerosis, certain types of cellular adhesion molecules

are identified as indicating antigen.



3.4 Immunohistochemistry: locating inflammation sites within the artery35

Figure 3.6: Simplified diagram showing the basic idea behind immunohistochemistry
experiments. Antigens are typically on the surface of cells. Antibodies bind specifically
to the antigen that triggered the antibody’s production and, by attaching a fluorescent
molecule it is possible to located precisely sites of interest. (© L.Mostaço-Guidolin,
2014)

Binding and recruitment of circulating leukocytes to the vascular endothelium and

further migration into the sub-endothelial spaces are major processes in the develop-

ment of atherosclerosis and are mediated through a diverse family of cellular adhesion

molecules that are expressed on the surface of vascular endothelial cells [103].

Among all identified adhesion molecules, the expression and biological properties of

intercellular adhesion molecule 1 (ICAM-1) are well characterized [104–106]. ICAM-

1 concentration is elevated during inflammatory conditions in which detailed pathology

studies have documented increased expression of cellular adhesion molecules on endothe-

lial cells and other tissue types [107,108].

Bulk tissue IHC tests based on near-IR fluorescence imaging of ICAM-1 were carried

out in order to confirm and quantify the plaque severity at various locations along the

aorta. These experiments were important to validate the results obtained by our in-house

developed index for quantifying plaque burden.

The protocol adopted can be found elsewhere [106]. In summary, frozen arterial

tissue samples were cut into smaller segments and then fixed for 10 minutes at room tem-

perature in methanol (MeOH). Samples were then washed three times with phosphate-

bu↵ered saline (PBS) followed by incubation in a 10% normal goat serum solution

(in PBS with 0.03% Triton) at room temperature for 1 hour and then washed once

with PBS. Samples were then incubated overnight with 1:250 solution of Cy5.5 labelled

ICAM-1.
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Samples were washed again with PBS and kept in PBS until imaging. After imaging,

samples were stored in the -80°C freezer. The Cy5.5 dye present in ICAM-1 was stim-

ulated with an array of light emitting diodes emitting at 675 nm. The fluorescence was

obtained at 700 nm and the images were acquired using a Photometrics CCD camera at

1 second acquisition time, defined after testing the signal-to-noise ratio for each sample.

The CCD camera was equipped with a 700 nm bandpass filter.

All of the fluorescence data collected were analyzed using Matlab. The region contain-

ing the sample in each image was segmented, in order to consider only the pixels which

were carrying information regarding the sample itself. In other words, the background

area where no sample was present was not counted. The mean fluorescent intensity for

each image was computed by averaging over all pixels carrying the sample’s fluorescence

information.

3.5 Data analysis: an overview

The data analysis comprised of two parts and can be summarized in Fig. 3.7. The

post image processing, feature extraction, statistical analysis, and classification were

performed in ImageJ ver1.42b, Fiji, [R], Origin 8.0, and Matlab.

The first part, related to the general characterization of atherosclerotic plaques and

its progression, was mostly based on signal intensity 1 of images acquired from each

modality. The intensity-based information acquired through each NLO technique was

combined, and formed the basis of a new optical index for quantifying plaque burden

(denominated OIPB). Detailed methodology and results will be discussed in Chapter 4.

Additionally, texture analysis of images acquired from all three modalities was also

performed. The goal is to test if such analyses of NLO images can extract additional

information relevant to the understanding of atherosclerosis progression in rabbit model.

The results are presented in Chapter 5.

1Although some textural parameters are not simply intensity-based, most of the results presented
in the first part of this thesis are, and were used to better characterize atherosclerotic lesions.
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Figure 3.7: Simplified chart of data analysis performed in each part of this thesis.
NLO images were analyzed using two approaches: the calculations of the OIPB
index and the extraction of individual parameters from NLO images acquired by each
modality. (© L.Mostaço-Guidolin, 2014)

The second part of this study investigated specific methods that can be used to extract

morphological information presented in those NLO images acquired in each imaging

modality. In addition to texture analysis, an other two imaging analysis methods, particle

and fractal dimension, were tested for their potential in decoding these images. Details

are provided in sections 3.5.1, 3.5.2, and 3.5.3. Image classification was also attempted

using SVM methods, which is to be discussed in detail in section 3.5.5.

3.5.1 Texture analysis: an e�cient way to look at all NLO

images

Ten texture parameters were determined using the histogram or gray level co-occurrence

matrix (GLCM) of the image. The “co-occurrence matrix” represents the probability

of occurrence of a pixel pair, with a given gray-tone di↵erence, separated by predefined

distance taken in a predefined direction. In comparison, the image “histogram” is the

frequency of occurrence of a gray tone in an investigated region.
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Image first-order statistics are not textural features because only the intensities of

individual pixels are considered independently from their neighboring pixels. These

first-order statistics merely describe the gray levels of the histogram corresponding to an

image. Among these parameters, five were selected for further analyses (the mean, stan-

dard deviation, integrated density, skewness, and kurtosis), as they have demonstrated

better correlation in preliminary tests.

The mean and integrated density provide measures of the overall lightness/darkness

of the image, while the standard deviation describes its overall contrast. The skewness

quantitatively evaluates the asymmetry of the shape of the distribution of pixel intensities

around mean value of the histogram while the kurtosis measures the peakedness of the

distribution relative to the length and size of the histogram tails.

On the other hand, image second order statistics measures the spatial arrangement

of the gray levels present in the region of interest and provide textural information for

that region. Co-occurrence matrices are commonly used to describe the second order

statistics of an image. This method is based on the estimation of the second order joint

conditional probability density functions Pd,✓(i, j), where Pd,✓(i, j)is the probability of

going from a grey level i to a gray level j in a given direction ✓ at a given inter-sample

spacing d.

The co-occurrence matrix Pd,✓(i, j) is a representation of the estimated values. It is a

square matrix of dimension Ng (Ng is the number of gray levels in the image). A number

of texture features can be defined based on the co-occurence matrix P .

A set of fourteen features, defined by Haralick et al. [109], were studied for their

potential in relating multimodal NLO images to vessel wall morphology. These were

the angular second moment, inertia, correlation, variance, inverse di↵erence moment,

sum average, sum variance, di↵erence variance, sum entropy, entropy, di↵erence entropy,

information measures of correlation one, information measures of correlation two, and

maximum probability. However, in a preliminary study, only five of them were found

to be useful in the context of characterizing structures in the NLO images of the vessel

wall. Therefore, only the results obtained using the energy, inertia, correlation, inverse
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di↵erence moment, and entropy texture features are reported. The mathematical ex-

pressions defining the FOS and the GLCM parameters to be used in thesis are given

in table 3.1.

Category Textural Feature Expression

FOS Mean
N�1P
i=0

i
N�1P
j=0

Pi,j =
N�1P
j=0

j
N�1P
i=0

Pi,j

FOS Standard deviation
PN�1

i=0 (i� µ)2
PN�1

j=0 Pi,j

FOS Integrated density
PN�1

i=0 n(Ni)
FOS Skewness ��3

PN�1
i=0 (i� µ)3Pi

FOS Kurtosis ��4
PN�1

i=0 (i� µ)4Pi � 3
GLCM Energy

PN�1
i,j=0 P

2
i,j

GLCM Correlation �
PN�1

i,j=0 Pi,j

h
(i�µ)(j�µ)

�2

i

GLCM Inertia
PN�1

i,j=0(i� j)2Pi,j

GLCM Inverse Di↵erence Moment
PN�1

i,j=0

P 2
i,j

1+(i�j)2

GLCM Entropy �
PN�1

i,j=0 Pi,j logPi,j

Table 3.1: General description of each image feature used in this thesis. FOS:
first order statistics; GLCM: gray level co-occurrence matrix; � corresponds to the
standard deviation. (© L.Mostaço-Guidolin, 2014)

The co-occurrence matrix was calculated in four orientations: horizontal, vertical,

and the two diagonals (directions defined by four angles: 0�, 45�, 90�, and 135�), and

then the average value was obtained. A window size with eight pixels was adopted to

extract features from 16 bit images.

Extraction of textural features were obtained by using a custom-built texture analysis

toolkit. This toolkit contains some of the texture analysis functions available in the

Matlab image processing toolbox as well as ImageJ’s histogram analysis toolbox .

3.5.2 Particle-specific features

Particle-specific features were determined to be a better method to evaluate lipid-rich

structures due to their common round/oval shapes. The aspect ratio, Feret diameter,

density and number of particles were calculated for all CARS images and then used as

additional parameters to help classifying the images. A short description of each feature

is presented below.



3.5 Data analysis: an overview 40

Object identification

The number of particles (or, in this case, lipid-rich structures) was defined by setting

a threshold on the image; subsequently, all pixels which intensity is above the threshold

are be considered as object’s pixels whilst other pixels are considered as background

[110].

On the first pass, the image will be scanned from its top left corner to its lower right

corner. When the first object’s pixel is found, a tag is given to it. The tag is a unique

number which will be carried by all pixels constitutive of the same object. While the

scan process goes on, each time a new object’s pixel is found, its previous neighbours are

checked for an existing tag. The lowest tag found in the surrounding is then attributed

to this current pixel. Fig. 3.8 illustrates the connexity analysis process.

Figure 3.8: Summary of the process of object identification: (a) original image; (b)
binarized image; (c) a tag is given to the first object’s pixel found; (d) tagging of the
first line; (e) tagging of the second line; (f) tagging of the third line; (g) tagging of the
forth line; (h) tags’ map. (© L.Mostaço-Guidolin, 2014)

On the second pass, ambiguities are resolved. For instance, when a U-shaped object

is found, its two branches are tagged separately during the first pass as the two branches

are only connected by their bottom parts. The same object is therefore considered as

two. During this regulation process, two adjacent pixels carrying two di↵erent tags are

detected and the higher tag is replaced on the full image by the lower tag.

Once objects are defined, the density is calculated by dividing the total number of

identified objects by the total number of pixels in each image.
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Feret diameter

The Feret Diameter is the longest (maximum diameter) or the shortest (minimum

diameter) distance between any two points along the selection boundary, also known as

maximum caliper. It is deducted from the projected area of the particles using a slide

gauge. In general, it is defined as the distance between two parallel tangents of the

particle at an arbitrary angle. Figure 3.9 illustrates the possible definitions of Feret

diameters.

Figure 3.9: Schematic illustrates the definitions of Feret diameters. (© L.Mostaço-
Guidolin, 2014)

The possible values that can be obtained are the minimum xF,min and maximum

Feret diameter xF,max; the mean Feret diameter and the Feret diameters obtained at

90 degrees to the direction of the minimum or maximum Feret diameters (defined as

xF,max90). The minimum Feret diameter is often used as the diameter equivalent to a

sieve analysis.

Aspect ratio (AR)

Finally, the aspect ratio (AR) (0 < AR  1) is defined by the ratio of the minimum

to the maximum Feret diameter,

AR =
xFeretMin

xFeretMax

. (3.1)

It gives an indication for the elongation of the particle. Some literature also uses
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1/AR as the definition of sphericity. A value of 1.0 indicates a perfect circle. As the

value approaches 0.0, it indicates an increasingly elongated shape [111].

3.5.3 Fractal dimension

The structure of the fibers in biological tissues, such as elastin and collagen, are com-

monly disrupted or damaged during injury, aging, and pathological processes. Quantifi-

cation of these changes is traditionally a laborious and subjective task. However, fractal

dimension analysis can be applied to quantify the organization of fibers in a very e�cient

way.

The word “fractal” describes a pattern that repeats as it gets smaller. Figure 3.10

shows examples of this repeating self-similarity. One well-known is the Koch Curve (also

known as the Koch Snowflake), in which four lines of equal length are arranged so that

they are the length of only three segments and then four of the line groups are treated

the same way (Fig. 3.10b).

There are many well-known fractals occurring in multiple dimensions, including the

Sierpinski Triangle (Fig. 3.10c), and the more complex Julius and Mandelbrot Sets.

Fractals are also commonly seen in nature: snowflakes, cloud shapes, trees [112, 113],

artery branching [114], and respiratory structures [115]. Each of these fractal patterns

has a degree of self-similarity that can be measured using a fractal number.

Figure 3.10: Examples of fractals with dimensions. a) A line is one-dimensional
[Fractal Dimension = 1.0000]; b) the Koch Curve is somewhere between one and two
dimensions [D = 1.2619]; c) The Sierpinski triangle is closer to two dimensions than
the Koch Curve [Fractal Dimension = 1.5849]; d) a solid rectangle is two-dimensional
[Fractal Dimension = 2.0000]. (© L.Mostaço-Guidolin, 2014)

A fractal number describes the amount of space and self-similarity of the structure.

For example, a line exists in a single dimension, therefore it has a fractal dimension of
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1 (Fig. 3.10a), while a square exists in two dimensions and has a fractal number of

2 (Fig. 3.10b). A simple fractal like the Koch Curve has more “dimension” and self-

similarity than a line but not as much as a square, so its fractal dimension is 1.26, and

the Sierpinski Triangle, which is closer to a square than the Koch Curve has a greater

fractal dimension of 1.58. Fractal analysis has been applied in several di↵erent biological

and medical applications, such as tumour characterization, cellular deposition, among

others, and it serves as a good descriptor to evaluate elastin and collagen fibers [116].

Box counting dimension

Several approaches have been developed to estimate the fractal dimension of an image.

Of the wide variety of methods, the box-counting method is one of the most widely used

[113], as it can be applied to patterns with or without self-similarity.

The box counting method partitions the image space into square boxes of equal size.

The box covers the image space of the function or pattern of interest and the number of

boxes that contain at least one pixel of the function is counted. The process is repeated

with di↵erent box sizes.

The fractal dimension is obtained from the slope of the best fitting straight line to the

graph plotting the log of the number of boxes counted versus the log of the magnification

index for every stage of partitioning. For example, an image measuring size MxM pixels

in size is scaled down to sxs, where 1 < s < M/2, and s is an integer. Then, r = sM .

Fractal dimension D is given by,

D =
log(Nr)

log(1/r)
, (3.2)

One possible limitation of this method is that di↵erent textures may have the same

fractal dimension. This may be due to combined di↵erences in coarseness and direction-

ality i.e. dominant orientation and degree of anisotropy. For the specific case illustrated

here, fractal dimension showed favorable results, as they will be presented and discussed

in the following sections. However, if needed, the combination of methods (e.g. texture

analysis, directionality, etc) can be helpful to achieve better accuracy in other applica-
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tions of evaluating TPEF objects.

3.5.4 Fiber directionality

In the past, directional filters have been developed in the frequency domain using the

Fourier transform (FT) to extract linear pattern information from an image. Using the

linearity and rotation properties of FT, an image can be decomposed into components

lying in di↵erent directions. Extracting components in an angle band from the Fourier

transformed image is equivalent to extracting, from the original image, the components

lying in the corresponding orthogonal angle band. In an e↵ort to develop methods for

the analysis of collagen alignment in ligaments, Liu [117] developed directional filters

in the Fourier domain for processing of images composed of linear patterns or linear

segments oriented in di↵erent directions.

In his work, Liu Q.-Z. introduced a new method for linear pattern extraction and

directional analysis. This method is based on Fourier spectrum analysis. For a square

image, structures with a preferred orientation generate a periodic pattern at +90 degrees

orientation in the Fourier transform of the image, compared to the direction of the objects

in the input image.

Then the image is chopped into square pieces and their Fourier power spectra are

computed. The later are analyzed in polar coordinates, and the power is measured for

each angle using the spatial filters proposed in [117].

Based on his method, it is possible to capture linear patterns defined by their physical

boundaries (edges) obtained over various scales. Also, it is possible to quantitatively

analyze the directional distribution of patterns.

3.5.5 Classification - support vector machine (SVM)

Support Vector Machine (SVM) methods have been shown to be powerful tools for

supervised classification [118]. SVM was first introduced by Boser, Guyon, and Vapnik

at COLT-92 [119]. SVMs are a set of related supervised learning methods used for

classification and regression. They belong to a family of generalized linear classifiers. In
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another terms, SVM is a classification and regression prediction tool that uses machine

learning theory to maximize predictive accuracy while automatically avoiding over-fit to

the data.

When compared to other classes of classifiers, the main advantages of SVMs are

that they are easy to use, often have good generalization performance, and the same

algorithm solves a variety of problems with little tuning [120]. For example, K-nearest

neighbors [121] are the simplest classifiers to implement; they are often e↵ective but slow

and requires lots of memory. On the other extreme, neural networks [122] are usually

slow to train but very fast to run.

After evaluating many of the available classifiers, the decision to use SVMs was made

due to the nature of this application. Aiming to build a robust package for classifying non-

linear optical images originated from several applications, the simplicity, computational

cost and capability of dealing e↵ectively with multigroup classifications (and eventually

non-linear decision boundaries) were factors heavily weighted towards the employment

of SVMs.

In general words, SVMs start from the goal of separating the data with a hyperplane,

and extend this to non-linear decision boundaries using the Kernel trick, which will be

discussed below. The equation of a general hyperplane is

w0x+ b = 0, (3.3)

with x being the point (a vector), w the weights (also a vector). The hyperplane should

separate the data, so that w0xk+ b > 0 for all the xk of one class, and w0xj + b < 0 for all

the xj of the other class. If the data are in fact separable in this way, there is probably

more than one way to do it.

Among the possible hyperplanes, SVMs select the one where the distance of the

hyperplane from the closest data points (the “margin”) is as large as possible (Fig. 3.11).



3.5 Data analysis: an overview 46

Figure 3.11: Linear separating hyperplanes for the separable case. The support
vectors are circled. (© L.Mostaço-Guidolin, 2014)

Suppose the training data are good, in a sense that every possible test vector is within

some radius r of a training vector. Then, if the chosen hyperplane is at least r from any

training vector it will correctly separate all the test data. By making the hyperplane

as far as possible from any data, r is allowed to be correspondingly large. The desired

hyperplane (that maximizes the margin) is also the bisector of the line between the

closest points on the convex hulls of the two data sets.

In most real world problems, it is not likely to obtain a clear straight line dividing

the data within the space, and a curved decision boundary could be possible. At times

a hyperplane which clearly separates the data may not be desirable if the data has noise

in it. In this type of classification, smooth boundary is more desirable than corners or

loops around the outliers, even when it means to ignore few data points.

This can be handled in a di↵erent way: by introducing a term ”slack variables”. This

allows a point to be at a small distance on the wrong side of the hyperplane without

violating the constraint. Some extra calculations are introduced in order to penalize

the large slacks; otherwise, we might end up having huge slack variables which allow

any line to separate the data. More details about SVM can be found in the literature
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[119,120,123,124].

One aspect relevant to this study is what is called the Kernel trick [123,124]. If data

is linear, a separating hyperplane may be used to divide the data. However it is often

the case that the data is far from linear and the datasets are inseparable. To allow for

this, kernels are used to non-linearly map the input data to a higher-dimensional space.

The new mapping is then linearly separable. A very simple illustration of this is shown

below in Fig. 3.12).

Figure 3.12: With an appropriate mapping function � we could map these data from
the <2 to the <n where a linear separation is possible. (© L.Mostaço-Guidolin, 2014)

The idea of the kernel function is to enable operations to be performed in the input

space rather than the potentially high dimensional feature space. We want the function

to perform mapping of the attributes of the input space to the feature space [125–128].

The kernel function plays a critical role in SVM and its performance. More information

about the most commonly available kernels for SVMs can be found in the Appendix C.

A nonlinear classification based on SVM (ksvm in the R package kernlab) was used

to classify NLO images in this thesis [129]. Using the built-in rbfdot kernel function in

the package, a training set and a validation set were randomly created from the ensemble

of NLO images.

A classification task usually involves training and testing data which consist of some

data instances. Each instance in the training set contains target values and several

attributes. The goal of SVM is to produce a model which predicts target value of data

instances in the testing set which are given only the attributes.

For all analysis in which image classification was performed, the training set consisted

of 2/3 of the whole data set, while the test set consisted of the 1/3 of the remaining
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images. The SVM nonlinear classifier was trained and validated using k-fold cross-

validation. For experiments involving two groups, k was equal to 3 and for experiments

with 4 or more groups the used k was 5.

A grid search was performed aiming to best define the cost and gamma parameters.

The grid search was done on k-fold cross-validation of the training set, and after reaching

the maximum possibly accuracy, these parameters were then applied to classify the

test set. The procedure of defining the cost and gamma parameters was independently

repeated for each data set.



Part I

Nonlinear optical imaging for

decoding atherosclerosis



Chapter 4

From the qualitative to quantitative:

development of a novel optical index

(OIPB) for plaque burden

di↵erentiation

Multimodal epi-NLO images were acquired from smooth/healthy luminal surface

and atherosclerotic plaques of WHHLMI rabbits of di↵erent ages. Some examples of

NLO images of arterial lumen are presented in Fig. 4.1.

Observing these images, they show several morphological di↵erences among healthy

and plaque regions. Composed by a more complex distribution of compounds than the

healthy arterial lumen, an example of a region dominated by atherosclerotic plaque is

shown in Fig. 4.1a.

Atherosclerotic plaque is a structure containing a fibrous cap that covers a necrotic

core. The fibrous cap is composed largely of SMC, which produce collagen and small

amounts of elastin. The necrotic core is filled mainly by lipid-filled macrophages and

necrotic smooth muscle cells debris.
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Figure 4.1: Images acquired with 20⇥ air objective (0.75NA) lens from WHHLMI
rabbit’s aorta. NLO microscopy from (a) plaque region with (b) oxi-LDL parti-
cles color-coded in green (TPEF), (c) lipids in red (CARS), and collagen fibrils in
blue (SHG). (e) Healthy region where (f) the elastin fibers are color-coded in green
(TPEF), (g) lipids in red (CARS) and (h) collagen fibrils in blue (SHG). Both SHG
andCARS signals were collected in the forward-direction whileTPEF was collected in
the backscattered (epi-) direction. Reprinted with permission from Mostaço-Guidolin,
Leila B., et al.”Quantitative nonlinear optical assessment of atherosclerosis progression
in rabbits.”, Analytical Chemistry (2014) [17]. Copyright 2014 American Chemical So-
ciety.

Figure 4.1b shows an image acquired from the TPEF modality, the signal of which

can be associated mainly with the presence of oxidized low-density lipoprotein cholesterol

(oxi-LDL) particles. Meanwhile, the CARS modality, when tuned to image the CH

stretching vibrations, can visualize lipid-rich structures located at the necrotic core, as

shown in Fig. 4.1c.

The fibrous cap can be identified by a network of collagen fibrils. SHG microscopy

was used to probe collagen fibrils as presented in Fig. 4.1d. Since collagen fibrils give

rise to a very strong second-harmonic signal, they can be imaged without using any

exogenous dye thus not altering the proteins structure, as discussed in Chapter 2. In

Fig. 4.1d it can be seen that the collagen molecules do not appear centre-symmetrical,

and are organized in helicoidally oriented structures.

Healthy lumen (Fig. 4.1e) is mainly characterized by the presence of distinctively

defined elastic fibers. Elastic fibers are composed of elastin, which generates strong

TPEF signal (Fig. 4.1f). These biological tissues contain several chemical compounds

which are detected through the CARS modality (Fig. 4.1g).
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Although less frequently detected in healthy tissue than in regions dominated by

plaque, it is also possible to observe sparse collagen fibrils in the SHGmodality (Fig. 4.1h).

Besides the clear di↵erences between images acquired from plaque and healthy arterial

lumen, it is important to highlight morphological and biochemical alterations noted

during the disease progression. Fig. 4.2a and b were acquired at a healthy region of

the arterial lumen of a newborn and a 4 month-old rabbit, while Fig. 4.2C and D were

acquired from healthy lumen of the 16 and 24 month-old rabbits, respectively. The

images in Fig. 4.2e, f, g, and h were acquired from atherosclerotic plaques found in the

2, 4, 16, and 24 month-old rabbits, respectively.

Figure 4.2: Representative multimodal epi-NLO images acquired from
smooth/healthy luminal surface of the WHHLMI rabbit artery, that was (a) new-
born, (b) 4 month-old, (c) 16 month-old, (d) 24 month-old, and atherosclerotic plaques
found on the WHHLMI rabbit arteries that were (e) 2 month-old, (f) 4 month-old,
(g) 16 months-old, and (H) 24 month-old. (20⇥ air objective lens, 0.75 NA). Adapted
with permission from Mostaço-Guidolin, Leila B., et al.”Di↵erentiating atherosclerotic
plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlin-
ear optical imaging”, Biomedical Optical Express (2010) [18]. Copyright 2010 Optical
Society of America.

In representative NLO images of a healthy lumen, only the luminal elastic lamina

is clearly visible from the TPEF signal. As the rabbit’s age increases, small lipid-rich

structures become evident (Fig. 4.2d), although with TPEF signal still prevailing.

On the other hand, representative NLO images from the surface of an advanced

arterial plaque, show abundant lipid-rich structures (CARS in red), collagen fibrils

(SHG in blue) along with strongly fluorescent (TPEF in green) macromolecules, as
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shown, for example in Fig. 4.2h.

The diminishing elastin content at the region of plaque is compensated for by an

increasing number of other fluorescent macromolecules detected by TPEF.

The enhanced SHG intensity arising from collagen fibrils and the CARS intensity

arising from lipid-rich structures from regions of plaque are consistent with known plaque

pathology.

Collagen fibril scoring was previously developed using parameters extracted from

SHG images, according to Strupler et al. [130]. In that work the authors used three

phenomenological scores - D, S, and SF - to quantify the distribution of collagen fibrils

in unlabeled fibrotic murine kidney tissue sections.

This study was based on SHG images, where D (density) is the volume density of

pixels exhibiting a significant SHG signal; S (signal) is the average value of the SHG

signal in a corrected SHG image and SF (signal in fibers) is the ratio of the other

two scores: SF = S/D, representing average SHG signal intensity in regions exhibiting

significant SHG signals.

This method was adequate in scoring collagen from sectioned kidney tissue, but may

prove challenging in classifying complex biological structures such as atherosclerotic le-

sions, especially when using multi-dimensional information (collagen, elastin, and lipids).

In order to evaluate the potential of the methods proposed by Strupler and colleagues,

we followed their approach to calculate SF scores from individual and co-registered

SHG, TPEF and CARS images of the same sample.

Parameters D and S were first calculated for all SHG, TPEF and CARS images.

Note that while Strupler et al.defined S/D as a signal in fibers score (SF ), in this study

we were using a more generic term, significant signal score (SS), since not all imaged

biomolecules in our study have fibrous structures. A significant signal score (SS) was

calculated for each image using the equation SS = S/D.

Each individual image (SHG, TPEF and CARS) was first corrected for PMT

dark signal counts and for the PMT amplification level used in di↵erent modalities by

normalizing the whole image to a pre-determined PMT amplification curve.
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Three SS scores (SSSHG, SSCARS and SSTPEF ) were calculated using the corrected

SHG, TPEF and CARS images collected over the same sampling location.

In order to better illustrate the change in SS scores with respect to plaque progression

represented by the age of the rabbit, the average SS scores obtained from the images of

four rabbits are presented in Fig. 4.3. Data from animals aged 4, 16, 18, and 24 months

is presented as a representation of SS score behavior.

The average SS scores and their standard deviations were obtained by averaging over

all SS scores extracted from all of the measurements performed in all samples, including

healthy and atherosclerotic luminal surfaces, along the artery of the same animal. A

total of 820 di↵erent points were measured, with an average of 55 measured points per

animal.
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Figure 4.3: Comparison of the SS scores extracted from SHG, CARS and TPEF
images acquired from the arterial lumen of four WHHLMI rabbits: 4 month-old,
16 month-old, 18 month-old and 24 month-old. Reproduced with permission from
Mostaço-Guidolin, Leila B., et al.”Di↵erentiating atherosclerotic plaque burden in ar-
terial tissues using femtosecond CARS-based multimodal nonlinear optical imaging”,
Biomedical Optical Express (2010) [18]. Copyright 2010 Optical Society of America.

According to the data presented in Fig. 4.3, it is clear that it is not possible to

di↵erentiate atherosclerotic plaque burden using SS scores from any of three modalities.

Generally, atherosclerotic progression should lead to an increase in SHG and CARS
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signals as both collagen and lipids content increase; however, SSSHG and SSCARS scores

are not increasing proportionally to plaque development.

Considering the score sets obtained for each animal, we can conclude that these values

are not statistically di↵erent according to the Mann–Whitney test. Therefore, SS scores

alone are not good indicator to di↵erentiate plaque burden.

4.1 Disease progression: plaque burden versus ani-

mal age

Although SS scores are well correlated in scoring collagen in sectioned fibrotic kidney

tissue [130], but they are not reliable indicators for distinguishing atherosclerotic plaques.

In order to address the complexity and the dynamic nature of atherosclerotic disease

progression, we developed a new parameter that can better track plaque burden in the

vessel using biochemical data collected through combined elastin, collagen and lipid

imaging. We named this parameter Optical Index for Plaque Burden, or OIPB.

Considering the images presented in Fig. 4.4, which are organized based on the level

of plaque burden, it is possible to define some patterns of changes in all three NLO

signal modalities while fig. 4.4A-C show examples of healthy arterial lumen, Fig. 4.4D

shows an early atherosclerotic lesion found in a young rabbit, and in Fig. 4.4E we can

see some collagen fibers formation (shown in blue) within an atherosclerotic plaque.

Finally, Fig. 4.4F is an atherosclerotic plaque with higher lipid (shown in red) content;

Fig. 4.4G is an atherosclerotic plaque containing a high density of collagen fibers and

lipids, and finally Fig. 4.4H is a very advanced lesion.
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Figure 4.4: Representative multi-modal epi-NLO images acquired with 20⇥ air ob-
jective lens, 0.75 NA, from the luminal surface of WHHLMI rabbit arteries, with
(A)-(C) healthy lumen; (D) early atherosclerotic plaque found in young rabbit; (E)
atherosclerotic plaque (with dense collagen fibers shown in blue); (F) atherosclerotic
plaque with higher lipid content shown in red; (G) atherosclerotic plaque containing
collagen fibers and lipids, and (H) very advanced plaque. Adapted with permission from
Mostaço-Guidolin, Leila B., et al.”Di↵erentiating atherosclerotic plaque burden in ar-
terial tissues using femtosecond CARS-based multimodal nonlinear optical imaging”,
Biomedical Optical Express (2010) [18]. Copyright 2010 Optical Society.

Values of SSSHG, SSTPEF and SSCARS for each image shown in Fig. 4.4 were calcu-

lated and then presented in Fig. 4.5, where the SSSHG and SSCARS scores are associated

with collagen and lipids (both are related to plaque regions), and SSTPEF scores can be

associated with elastin in healthy tissue or with other fluorescent macromolecules in the

region of plaque.

From Fig. 4.5, we clearly observe a pattern for each of the SS scores, which can

be summarized as follows. The healthier the tissue is, the lower are the SSSHG and

the SSCARS, but the higher is the SSTPEF . The opposite is true if the tissue has an

increased plaque burden. In addition, we also observe some correlation in the value

di↵erences between the three SS scores based on the health condition of the tissue. For

instance, the healthier the tissue is, the greater is the di↵erence between the SSSHG and

SSTPEF , with SSTPEF being higher than SSSHG; and also the greater is the di↵erence

between SSCARS and SSTPEF , with SSTPEF higher than SSCARS.
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Figure 4.5: SS scores extracted from SHG (blue squares), CARS (red circles)
and TPEF (green triangles) images acquired from the arterial lumen of WHHLMI
rabbits. Images A-H correspond to those shown in Fig. 4.4. Reproduced with permission
from Mostaço-Guidolin, Leila B., et al.”Di↵erentiating atherosclerotic plaque burden in
arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging”,
Biomedical Optical Express (2010) [18]. Copyright 2010 Optical Society.

Based on these observations, a new plaque burden index (OIPB) is proposed and is

defined as follows:

OIPB = SSSHG + SSCARS +

d(SSSHG, SSTPEF ) +

d(SSCARS, SSTPEF ) +

d(SSCARS, SSSHG), (4.1)

where the terms d(SSx, SSy) are the di↵erences between the two SS scores (SHG,

CARS and TPEF), d(SSx, SSy) = SSx � SSy. Note that SSTPEF score alone was

not included in the calculation of OIPB values because provides no additional con-

trast in discriminating between the atherosclerosis lesions from healthy vessel wall.

The term d(SSCARS, SSSHG) was added in the calculation for its value in discrimi-

nating between a lipid-rich Type-IV atheroma and a Type-V fibrous atheroma. For

instance, d(SSCARS, SSSHG) shows be larger for Type-IV atheroma than for Type-V

fibrous atheroma.
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OIPB values for images shown in Fig. 4.4A-H were calculated and are illustrated in

Fig. 4.6, where a clear correlation between OIPB values and image features is evident.

Fig. 4.6 also indicates that OIPB is a better indicator for atherosclerotic plaque burden.
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Figure 4.6: OIPB values of all images shown in Fig. 4.4. OIPB is a better dis-
criminatory indicator in di↵erentiating plaque burden than SS scores. Reproduced
with permission from Mostaço-Guidolin, Leila B., et al.”Di↵erentiating atherosclerotic
plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlin-
ear optical imaging”, Biomedical Optical Express (2010) [18]. Copyright 2010 Optical
Society.

Based on this result, the correlation between OIPB and plaque burden represented

by rabbit’s age was investigated. Examples of OIPB values and images are illustrated

in Fig. 4.7. Each image in Fig. 4.7 is shown with rabbit’s age and corresponding OIPB

value (highlighted in yellow). Fig. 4.7a-e show relatively healthy lumens with low OIPB

values, while Fig. 4.7f-j show representative images of atherosclerotic lumens captured

with increasing ages that have corresponding higher OIPB. Fig. 4.7f shows an image of

a plaque from a 4-month-old rabbit artery which has an OIPB of 17.3 whereas Fig. 4.7j,

shows an image of a 24-month-old rabbit artery which has an OIPB value of 69.3.
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Figure 4.7: Representative epi-NLO images obtained from the luminal surface of
healthy rabbits aorta (a)-(e), and obtained from the luminal surface of atherosclerotic
plaques (f)-(j). Each image is labeled with the age of the rabbit and its corresponding
OIPB calculated using Eq. 4.1. Images were collected using 20x air objective lens.
Reprinted with permission from Mostaço-Guidolin, Leila B., et al.”Quantitative nonlin-
ear optical assessment of atherosclerosis progression in rabbits.”, Analytical Chemistry
(2014) [17]. Copyright 2014 American Chemical Society.

The averageOIPB values obtained from images of healthy lumen surfaces (OIPBhealthy)

and atherosclerotic (OIPBathero) locations are plotted against rabbit’s age in Fig. 4.8.

Each point shown corresponds to the averaged measurements taken from either plaque

or healthy regions, averaged, representing each individual rabbit. In the majority of these

21 rabbits, the values of OIPBathero are significantly higher than those of OIPBhealthy.

The OIPBhealthy values are distributed between -73 and 5, while most of the OIPBathero

values range from 15 to 70. The high level of OIPBathero values are attributed to the

higher level of collagen re-modeling and higher-density of lipid deposition in plaques,

thus translating into the higher SSSHG and SSCARS terms.

Additionally, an interesting trend can be noticed when looking at data presented

in Fig. 4.8. The current findings indicate that atherosclerosis in WHHLMI rabbits

is characterized by the evolution of progressive intimal lesions, including fatty streaks,

raised foam cell lesions, plaques (atheromas) as well as by medial lipid deposition.
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Figure 4.8: Mean OIPB values for images acquired from plaque (large squares) and
healthy (large circles) regions of each rabbit, plotted against rabbit’s age. The large
symbols represent the mean value of each region. As the rabbit’s age increases, re-
gions dominated by plaque show higher OIPB values, suggesting that the lesions are
advancing with age. The solid line is the mean value, considering all animals, and
the two colored regions are the standard deviation around the mean. Reprinted with
permission from Mostaço-Guidolin, Leila B., et al.”Quantitative nonlinear optical as-
sessment of atherosclerosis progression in rabbits.”, Analytical Chemistry (2014) [17].
Copyright 2014 American Chemical Society.

Disruptions of healthy regions seem to increase until approximately half of the ani-

mal’s life cycle (at around 14-15 month-old), as shown in the green areas of “healthy”

OIPB age groups I-II presented in Fig. 4.8. At the same time, the plaque’s composition

and structure until the age of 14-15 months remains quite stable. At a later age its

development becomes quite aggressive (age group III, red area – Fig. 4.8), reaching a

plateau at the rabbit’s age of approximately 20 months (age group IV).

According to the OIPB values calculated for healthy (green) regions of lumen found

in older animals (age groups III and IV), it is interesting to notice that they also seem

to reach a plateau in their disruption around the same age ( 20 months). This trend

could be useful when trying to test and perform therapies aiming at the recovery and/or

regression of atherosclerotic plaque. Our results suggest that there is a critical threshold

regarding the disease development and progression.

In Fig. 4.9, the mean OIPB values from all rabbits are presented as a function of age.
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In this plot each rabbit was represented by a mean OIPB value, obtained by averaging

data collected from all imaged healthy and atherosclerotic locations.

As the disease progresses, the fraction of luminal area covered by lesions increases;

in this way, a higher number of measurements taken from older rabbits tend to present

features associated with plaque when compared to younger animals. All points where the

images were taken were selected randomly in specific anatomical regions. Since larger

portion of the lumen is covered by plaques at an old age, the number of images acquired

from points that represent plaque regions also increases with age.

Figure 4.9: Mean OIPB values for all rabbits, considering both plaque and healthy
regions. The Greek numbers on top of each graph are associated with age groups pre-
senting similar histopathological patterns (Buja et al. [19]). Reprinted with permission
from Mostaço-Guidolin, Leila B., et al.”Quantitative nonlinear optical assessment of
atherosclerosis progression in rabbits.”, Analytical Chemistry (2014) [17]. Copyright
2014 American Chemical Society.

The index shows a clear correlation with age. Since plaque burden increases with the

age of the rabbit this result implies that the OIPB value is indicative of severity of the

atherosclerotic lesions, or plaque burden. The regions (I), (II), (III), and (IV) indicated

in Fig. 4.8 and Fig. 4.9 represent age groups which present similar histopathological

patterns in the arterial wall. Region (I) contains data from rabbits aged from 0 to 5

months; region (II) presents data collected from 5.5 to 14 months old animals; region
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(III) and (IV) show data acquired from the rabbits within the 14.5 to 20 months and

20.5 to 27 months aged groups, respectively. This categorization was also previously

reported by Buja et al. [19].

Additionally, Kolodgie et al. [131] has published an extensive work showing the pro-

gression and the varying degrees of atherosclerotic plaques, using WHHLMI rabbits

as a model. One of the conclusions reached by the authors is that rabbits within the

age group ranging from approximately 3 to 5 month-old presented mild lesions along the

aorta. When the age increased from 6 to 9 month-old, these lesions became moderated

and severe plaque accumulation was observed in animals older than 12-14 month-old.

Similar conclusion can be reached, as shown in Fig. 4.9, the di↵erence between the

mean value (black dot shown in each region) is the highest when comparing the OIPB

values of rabbits from regions (II) and (III). When comparing regions (III) and (IV) the

values are statistically comparable, suggesting that after a certain age (between 12 and

16 month-old) the disease reaches its most severe stage.

4.2 Indexing plaque burden at critical locations along

the aorta

During the course of atherosclerosis progression, certain locations along the aorta are

more prone to plaque development than others [132]. These locations include transition

zones such as bends, arches and bifurcations. At these locations the rate and pattern of

blood flow are altered thus a↵ecting local hemodynamics [133,134].

Attempts have been made to assess the role of hemodynamic factors in atheroscle-

rosis by correlating the distribution of intimal lesions, usually in excised collapsed ar-

teries, with presumed changes in blood flow conditions or with flow patterns visualized

in idealized glass or plastic models. Elevations or variations in flow velocity and shear

stress [134, 135], flow separation [136], and turbulence [137–139] have each been pro-

posed as hemodynamic potentiating of lesion formation.

In this context, since we have demonstrated that OIPB was a good indicator for
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assessing plaque burden in a longitudinal study, it was interesting to test if OIPB

was also capable of accurate detection of the higher plaque burden at certain critical

locations along the aorta. NLO images acquired at four pre-defined points per segment

(i.e., arterial arch, thoracic artery, abdominal artery and external iliac artery) were

thus analyzed and then compared with immunohistological data based upon ICAM-1

fluorescence imaging. The approximate location of each point is shown in Fig. 4.10.

Figure 4.10: Points along the aorta which were used as a reference. These points
represent possbile interesting locations to be studied with respect to plaque burden
accumulation along the vessel. Reprinted with permission from Mostaço-Guidolin,
Leila B., et al.”Quantitative nonlinear optical assessment of atherosclerosis progression
in rabbits.”, Analytical Chemistry (2014) [17]. Copyright 2014 American Chemical
Society.

The average OIPB value for each point shown in Fig. 4.10, calculated by considering

both healthy and plaque regions, is presented in Fig. 4.11a (black trace, with squared

points). Note that locations 3, 8 and 10 are characterized by the highest OIPB values,

hence the highest plaque burden along the entire aorta tree. When compared with

the OIPB data, immunohistological data (blue trace) based on ICAM-1 fluorescence

intensity showed marked similarity. In addition, Fig. 4.11b and Fig. 4.11c illustrate

representative ICAM-1 fluorescence images and white-light video images of the 4 pre-

defined arterial segments.
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Figure 4.11: a) OIPB values for each point along the aorta; (b) Average fluorescence
intensity values related to ICAM-1 distribution in arterial samples from WHHLMI
rabbits. In both cases the highest values can be associated to more severe plaque
accumulation. Those values were obtained mainly at branch and vessel bifurcations,
confirming the capability of this index to also track/highlight the plaque burden de-
velopment along the aorta. AA: aortic arch; TA: thoracic artery; AbA: abdominal
aorta; EIA: external iliac aorta. Reprinted with permission from Mostaço-Guidolin,
Leila B., et al.”Quantitative nonlinear optical assessment of atherosclerosis progression
in rabbits.”, Analytical Chemistry (2014) [17]. Copyright 2014 American Chemical So-
ciety.

Matching results in Fig. 4.11a with location maps in Fig. 4.10, it becomes clear that

the 3 locations with the highest OIPB values and ICAM-1 fluorescence intensities

correspond to the aortic arch, and regions close to the two kidneys’ artery branches,

respectively.

In the aortic arch, the pattern of blood flow is more complex than in the other regions

along the descending abdominal aorta, with constant helical and extensive reversal flow

resulting from the curvature of the arch and the strong pulsatility of flow [140–142].

As a result, this turbulence of blood flow and change in arterial wall shear stress leads

to elevated probability of plaque development within the vessel [141]. Similarly, re-
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gions which are close to kidneys’ artery branches also experience non-laminar blood flow

due to arterial bifurcation. This too, significantly enhances the early development of

atherosclerosis lesions [143].

Although similar patterns were observed, the ICAM-1 data does look slightly dif-

ferent from the OIPB data. From Fig. 4.11a one can see that the drop and rise in

OIPB values around these critical locations are much steeper than those presented in

the ICAM-1 fluorescence data. This can be explained by the di↵erent sampling size of

these two very di↵erent optical techniques. While each NLO imaged area was 200x200

µm2 in size (with 20x objective lens), ICAM-1 fluorescence was typically evaluated over

an area of 1x1cm2.

The smaller sampling size in NLOM gives a more localized snapshot, whereas the

ICAM-1 data present a picture with information averaged over a larger area. This

characteristic of NLOM makes it a more sensitive tool in detecting local changes thus

generating a sharper contrast between di↵erent locations. Nonetheless, regions with a

greater tendency to be a↵ected by atherosclerotic lesions were successfully tracked by

both the OIPB and the ICAM-1.

The relation between vessel’s wall shear stress and the development and progression

of atherosclerosis has been well established [143, 144, 144, 145]. Low and oscillating

wall shear stress seems to favor the development of atherosclerosis as determined by the

inverse relation between the wall shear stress and arterial wall thickness. Wall shear

stress also seems to depend on age, blood pressure, and body mass index. The value of

wall shear stress is subject-specific and vessel-specific. Wall shear stress varies along the

same vessel and around the vessel’s circumference.

Another interesting observation is that as the rabbit’s age increases, all four studied

aorta regions (AA, TA, AbA, EIA) show increasing OIPB values, suggesting that the

lesions are also advancing with age and are successfully tracked by the OIPB.



Chapter 5

Looking inside the plaque: texture

analysis to extract biochemical and

morphological details

Visual investigation of the NLO images not only shows the formation of collagen

fibrils and lipid-rich structures on the lumen surface of progressive plaques, but also

permits the di↵erentiation of those structures, based on their texture. For example, an

image acquired from an early lesion shows only thin sparse collagen fibrils (Fig. 5.1) but

in advanced lesions the collagen fibrils are thicker and more directional.

Another change is observed in the lipid accumulation. It starts as droplets and then

becomes bigger (as shown in Fig. 5.1) and is more homogeneously distributed in the

tissue.

TPEF images can be useful to track changes that occur in healthy tissue (Fig. 5.1).

Elastin fibers can be imaged and the observed changes can be quantified by applying

several methodologies. TPEF images from plaque regions show the accumulation of

unkown fluorescent particles.

All results presented in this chapter are related to the analysis of NLO images ac-

quired only at plaque regions. The analysis of changes observed in healthy tissue are

presented in Chapter 9.
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Figure 5.1: Images from NLO channels using a 20x air lens. Each NLO channel is
shown separately (at a focal position around 25�30µm below the sample surface for the
old specimen, and around 10�20µm below the sample surface for the young specimen).
Blue: SHG (collagen fibrils); red: CARS (lipids); green: TPEF (elastin from healthy
tissue and fluorescent particles from plaques). Images for the early plaque and healthy
region were acquired from a sample harvested from a 4 month-old WHHLMI rabbit
and images of the developed plaque were acquired from a sample collected from an
18 month-old WHHLMI rabbit. Adapted with permission from Mostaço-Guidolin,
Leila B., et al.”Evaluation of texture parameters for the quantitative description of
multimodal nonlinear optical images from atherosclerotic rabbit arteries.” Physics in
Medicine and Biology (2011) [16]. Copyright 2011 IOP Publishing Ltd

Based on the observed di↵erences in tissue morphology, we believe that image texture

analysis can provide additional objective measures to evaluate plaque development.

5.1 Evaluation of plaque depth

Atherosclerotic lesions develop progressively through a series of events leading to the

development of mature lesions named atheromatous plaques. Figure 5.2A is a sketch

representing a mature lesion consisting of a fibrous cap (I), (II) a necrotic core, and (III)

the media layer. The fibrous cap is composed largely of smooth muscle cells (SMC),

which produce collagen, small amounts of elastin, and glycosaminogycans; the necrotic

core is composed mainly of lipid-filled macrophages and necrotic smooth muscle cells

debris, and finally, the media layer consists mainly of smooth muscle cells.

Figure 5.2B compares a sequence of NLO images acquired from arterial samples,

with the lumen exposed to the incoming probe beam. An image is obtained by raster
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scanning of the focused laser beam across a plane located at a particular depth within

the sample. By changing the focal plane, images were acquired at di↵erent depths within

the artery. The first column of images is an example of the optical sectioning obtained

by recording the TPEF, SHG and CARS intensities at various depths within the aorta

of a 4 month-old rabbit (labeled young). This set of images represents an early lesion.

The second column of images shows the optical sectioning of an older plaque (labeled

old), a specimen obtained from a 24 month-old rabbit.

These optical sections (generated by a combination of TPEF, SHG, and CARS im-

ages) resolve many of the classic histological features associated with plaque development

and provide the depth dependence of these features.

Figure 5.2: (A) The atherosclerotic plaque is composed of three major layers: (I)
fibrous cap, consisting mainly of smooth muscle cells (SMC), which produce collagen,
small amounts of elastin, and glycosaminogycans; (II) necrotic core (NC) consisting of
lipid-filled macrophages, necrotic smooth muscle and cellular debris; and (III) the me-
dia layer, consisting of smooth muscle cells (B) Examples of multimodal NLO images
acquired with a 20x air lens at various depths within atheromatous plaques. The first
image set shows plaque from a 4 month-old rabbit, while the second image set is from
the aorta harvested from a 24 month-old rabbit. Blue: SHG (collagen fibrils). Red:
CARS (lipids). Green: TPEF (fluorescent macromolecules). Adapted with permis-
sion from Mostaço-Guidolin, Leila B., et al.”Evaluation of texture parameters for the
quantitative description of multimodal nonlinear optical images from atherosclerotic
rabbit arteries.” Physics in Medicine and Biology (2011) [16]. Copyright 2011 IOP
Publishing Ltd
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Aiming to track changes that occur during plaque development inside of the vascular

wall, image texture analysis was performed. Information regarding the morphologi-

cal alterations could be quantitatively obtained for images acquired by using all three

modalities.

Comparing values of the mean gray level and its standard deviation, it is possible to

verify significant changes occurring to the SHG signal as deeper regions of the samples

are probed, as shown in Fig. 5.3A and Fig. 5.3B. In these figures, the reading on x-axis

represents the position of the imaging focal point in relation to the lumen surface.

In a healthy artery, the collagen fibers are mostly located within the tunica media,

delimited by an internal elastic membrane. In contrast, in diseased arteries, common

among the older specimens, collagen fibers are found to extend beyond an interrupted

internal elastic layer. Plaques observed in old animals present a mean gray level value

around 4 times more intense than the ones associated with plaques in younger animals.

This di↵erence reflects the well-known feature that fibrous caps of plaques from old

animals are denser than those found in young animals. These histological characteristics

of atherosclerosis correlate well with our experimental measurements where higher SHG

intensities are observed at depths between 15 � 30µm in the samples coming from the

older specimens, whereas the maximum SHG intensities are observed at depths of around

5µm in samples harvested from younger animals.

Observing the variation of the CARS signal, its maximum intensity in older animals

appeared approximately 5 � 7µm deeper than observed in young animals. Consistent

with histology, the CARS signal, which highlights lipids, shows that lipid accumulation

occurs in the intermediate portion of the plaque. For example, in the case of young

animals, the lipid pool appears approximately 5µm deeper than collagen fibrils signaled

by the SHG channel and can be explained with fibrous cap formation over the surface

of lipid pools.
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Figure 5.3: First order statistics: (A) mean, (B) standard deviation and (C) inte-
grated density. Features were individually calculated for each NLO imaging modality
(TPEF, CARS, and SHG) and analyzed as a function of imaging depth within the
aorta wall. In most cases, distinct di↵erences were observed in the first order statis-
tics between young and old animals and with imaging depth. The analysis was done
starting from the sample surface (i.e., the lumen) to the depths of almost 40µm. The
intensity recorded for each of the NLO channels depends on both the depth and spec-
imen age. The old group includes specimens that were 18 and 24 month-old while
the young group contains specimens from 4 and 10 month-old animals. Adapted with
permission from Mostaço-Guidolin, Leila B., et al.”Evaluation of texture parameters
for the quantitative description of multimodal nonlinear optical images from atheroscle-
rotic rabbit arteries.” Physics in Medicine and Biology (2011) [16]. Copyright 2011
IOP Publishing Ltd

Proliferation of collagen fibrils and lipid accumulation play key roles in the develop-

ment and vulnerability of atherosclerotic plaques where a thin fibrous cap coupled with

a large lipid filled core represent a high risk lesion. Old animals present a more complex

necrotic core, due to the extended lipid pools and higher concentration of both collagen

fibrils and lipid-rich cells in the same region, near the arterial lumen.

In fact, the strongest CARS and SHG signals are observed to be almost overlapped

in the plaques from older animals. On the other hand, the maximum CARS and SHG

signals are observed at di↵erent depths for the less fully developed plaques in the young

specimens.

A significant TPEF signal starts at depths of about 10µm and extends throughout

the rest of the optical section of the plaque. The origin of the TPEF signal could be

either from elastin fibers or several types of macromolecules associated with plaque for-

mation. It is not trivial to establish what generates the TPEF signal without histological
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correlation.

We observe fluorescent objects within fibrous caps and lipid cores whose origin has

not been determined yet. The TPEF signal that we observed clustering in small

groups among the collagen fibers , has been identified as coming from the foam cells

(macrophages with intracellular lipid droplets) [35, 38, 146]. As the lipid core is mainly

necrotic cells, and the fluorescent objects appear as di↵erent sizes, the corresponding

TPEF signal could be also related to extracellular lipid droplets.

A study conducted by Blankenhorn et al. has reported a strong, green, one-photon

autofluorescence generated from the lipid core of atherosclerotic plaques [147]. This has

been associated with carotenoids, which are known to be lipophilic. Another study found

one-photon autofluorescence from various biochemical components, which are known to

be present in atherosclerotic plaques (e.g., oxidized lipoproteins and cholesterol esters).

Further studies have been supporting the hypothesis that the TPEF signal is related to

the lipid-rich substances in the plaques [148].

The kurtosis and the skewness of the gray level intensity histograms were calculated

and the results are shown in Fig. 5.4. The skewness value is a first order texture feature

that measures the extent to which the pixel intensity values are not distributed in a

Gaussian manner. In other words, the skewness of a set of intensity values indicates the

imbalance between extents of areas (or number of pixels) that are darker or lighter than

the mean.

On the other hand, even-order statistics (e.g. variance and kurtosis) are always the

same for an image and its negative, so that they are blind to any asymmetries in light

and dark (such as those that occur with highlights and shadows). The kurtosis is a

measure of the spread of gray tones about the mean.
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Figure 5.4: First order statistics: (A) skewness and (B) kurtosis. Features were
individually calculated for each NLO imaging modality (TPEF, CARS, and SHG)
and were analyzed as a function of depth and specimen age, where the old and young
groups correspond to 18 and 24 month-old, and 4 and 10 month-old specimens, respec-
tively. Adapted with permission from Mostaço-Guidolin, Leila B., et al.”Evaluation of
texture parameters for the quantitative description of multimodal nonlinear optical im-
ages from atherosclerotic rabbit arteries.” Physics in Medicine and Biology (2011) [16].
Copyright 2011 IOP Publishing Ltd

According to data presented in Fig. 5.4, due to the formation of fibrous caps, the

SHG signal from the old rabbits presents an asymmetrical pattern more superficially

localized than the SHG pattern observed in plaques of younger animals. The maximum

value of the asymmetry is located approximately 4µm deeper in young animals than in

the old specimens.

The CARS images show a bimodal variation in skewness and kurtosis as a function

of depth into the vessel’s wall. In the more fully developed plaques, high values of

skewness and kurtosis extend deeper into the wall of the aorta (approx. 10µm to 25µm).

Considering that the CARS signal is associated with lipid deposits and that the old

plaques characteristically have deeper and more extensive accumulation of lipids than

the plaques in young animals, the skewness and kurtosis measures are consistent with

the lipid profiles observed in these plaques.

The TPEF images show similar depth dependence for both texture features. Young

plaques present a maximum in skewness and kurtosis at around 20 � 25µm below the

surface; on the other hand, the maximum of these parameters for the old plaques occur
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around 25 � 35µm below the surface. Glossy structures in the images (Fig. 5.1)can be

observed 10µm shallower in young plaques compared to the old ones.

Five texture parameters extracted from the co-occurrence gray level matrix (GLCM)

were selected from the 14 defined by Haralick et al.: inverse di↵erence moment (IDM ),

energy, inertia, entropy, and correlation. In Fig. 5.5, data related to the IDM , energy

and contrast are presented. Considering that the IDM (also called local homogeneity)

quantifies the local similarities inside the computational window, it is expected to be

larger for GLCMs with elements concentrated near the diagonal. These GLCMs cor-

respond to textures of organized and poorly contrasted features, with only a few gray

levels at the same distance d from one another. This parameter quantifies the degree of

homogeneity in the region of interest.
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Figure 5.5: Second order parameters extracted from the GLCM: (A) Inverse di↵er-
ence moment (IDM ); (B) Energy; (C) Inertia. Features were individually calculated
for each NLO modality (TPEF, CARS, and SHG). Adapted with permission from
Mostaço-Guidolin, Leila B., et al.”Evaluation of texture parameters for the quanti-
tative description of multimodal nonlinear optical images from atherosclerotic rabbit
arteries.” Physics in Medicine and Biology (2011) [16]. Copyright 2011 IOP Publish-
ing Ltd

In CARS, we observe that lipid accumulation in older plaques is more homogeneous

than in the plaques of young animals (Fig. 5.5A). At approximately 25µm into the wall of

the aorta, it is noted that fluorescent structures (TPEF channel) detected in old plaques

tend to be more homogeneous than those identified in young plaques. However, this

texture feature for the collagen fibril distribution (SHG channel) showed no significant
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statistical di↵erence between the young and old plaques.

The energy feature, shown in Fig. 5.5B, is sometimes referred to as the second angular

moment or uniformity of the GLCM. The lowest value of the energy is attained when

all the Pd, ✓(i, j) are equal, and there are no dominant gray levels. Most gray levels are

equally probable.

The energy parameter associated with the TPEF channel has a constant and low

value over the depth of the optical scan; energy values for the SHG channel show some

variations, but they are not statistically significant. On the other hand, the energy

parameter calculated for the CARS images shows a distinctly di↵erent depth profile

between the younger and older plaques.

The high energy values observed in the CARS signal from older plaques at a depth

centered around 18µm show that only a few gray levels dominate the image at this

depth. The region inside the computational window is more homogeneous or exhibits

some regular structures. In this case, regular structures are concentrated only at the

region between depths of 10µm and 30µm from the surface of the plaque developed by

the old animals. Based on this observation of energy variation it is possible to locate the

depth and size of the lipid core. They are significant histological features of a plaque,

where the amount of thrombogenic (lipid) material is related to its potential to cause a

significant ischemic event.

The inertia texture feature, presented in Fig. 5.5C (also called second di↵erence

moment), is very sensitive to large di↵erences occurring inside the co-occurrence matrix.

Highly contrasted regions will have a high inertia, whereas more homogeneous regions

will have a low inertia.

Inertia data from SHG and TPEF present similar contrast level in both old and

young plaques. Meanwhile the inertia from the CARS signal shows some fluctuation

concentrated at the intermediate portion of the plaque (around 10µm and 30µm). It can

be related to the lipid accumulation inside the necrotic core, being more homogeneous

in the plaques developed by old animals.

Finally, additional information can be acquired by analyzing the entropy and the
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correlation of the NLO images. The correlation quantifies the dependence of gray levels

between two pixels separated by a distance d. Low correlation means that the gray

levels are generally independent from one another, i.e., there is no regular structure in

the image. However, if correlation is high, there is a high probability that one or several

patterns repeat themselves inside the computational window. The entropy measures the

lack of spatial organization inside the computational window.

The entropy is high when all Pd, ✓(i, j) are equal, which corresponds to a rough tex-

ture, and low when the texture is more homogeneous or smoother. Collagen fibers in

young plaques tend to be spatially more randomly distributed compared to the colla-

gen network observed in older plaques. Therefore, this denser and more homogeneous

distributed collagen network in older plaques can be identified by the entropy and cor-

relation of the SHG images, as shown in Fig. 5.6.
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Figure 5.6: Second order parameters extracted from the GLCM: (A) correlation and
(B) entropy. Features were individually calculated for each NLO modality (TPEF,
CARS, and SHG), being analyzed as a function of plaque depth. Adapted with per-
mission from Mostaço-Guidolin, Leila B., et al.”Evaluation of texture parameters for
the quantitative description of multimodal nonlinear optical images from atheroscle-
rotic rabbit arteries.” Physics in Medicine and Biology (2011) [16]. Copyright 2011
IOP Publishing Ltd

The entropy of the CARS images could also be useful for tracking the randomness of

lipid accumulation in young plaques. Entropy values from CARS images increase with

depth in young rabbits and they are consistent with the observation that older, more
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developed plaques tend to have larger lipid pools filled by homogeneously distributed

lipid structures, therefore presenting lower entropy values.

5.2 Evaluation of plaque and healthy regions

Texture features were sensitive to the changes occurring in the vessel wall, related to

plaque development. In Fig. 5.7, several morphological di↵erences among healthy and

plaque regions can be observed. Healthy vessel wall (Fig. 5.7a) are mainly characterized

by the presence of distinctively defined elastic fibers, which generates strong TPEF

signal. It looks distinguishably di↵erent from atherosclerotic lumen, shown in Fig. 5.7b.

Figure 5.7: Images acquired with 20x dry lens from WHHLMI rabbit’s aorta.
NLO microscopy from plaque region with oxi-LDL particles color-coded in green
(TPEF), lipids in red (CARS), and collagen fibrils in blue (SHG). Healthy region
where the elastin fibers are color-coded in green (TPEF). Both SHG and CARS
signals are collected in the forward-direction while TPEF is collected in the backscat-
tered (epi-) direction. Reprinted with permission from Mostaço-Guidolin, Leila B.,
et al.”Quantitative nonlinear optical assessment of atherosclerosis progression in rab-
bits.”, Analytical Chemistry (2014) [17]. Copyright 2014 American Chemical Society.

Five first order statistical parameters (mean, standard deviation, integrated density,

kurtosis, and skewness) and five texture parameters extracted from the co-occurrence

gray level matrix (GLCM): inverse di↵erence moment (IDM ), energy, inertia, entropy,

and correlation were calculated for both plaque and healthy regions. They are presented

in Fig. 5.8 and Fig. 5.9, respectively.

Using the non-parametric Kruskal-Wallis statistical test (considering p < 0.05), it
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was determined that mean, standard deviation, and the integrated deviation were able to

better distinguish and quantify changes that occur in healthy arterial vessel as function

of the plaque development. With exception of the integrated density, all others were

sensitive to changes occurred with SHG signal, as SHG signal is significantly high in

plaque regions.

As the source of TPEF signal is di↵erent when comparing plaque and healthy re-

gions, no significant information could be extracted from the analysis of the first order

parameters.
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Figure 5.8: First order statistics: (A) mean, (B) standard deviation, (C) integrated
density, (D) skewness, and (E) kurtosis. Features were individually calculated for each
set of images acquired with all three NLO techniques (TPEF, CARS, and SHG).
Gray bars: plaque region; White bars: healthy regions. (© L.Mostaço-Guidolin, 2014)

Integrated density, contrary to what its name suggests, is not directly related to the

images’ intensity since, images containing spatially well defined structures (e.g. collagen

and elastin fibers) tend to have low integrated density values.

As it can be seen, in both TPEF and CARS exhibit higher value in integrated

density due to more homogeneous distribution of particles and/or structures. In SHG

however, shows the reverse because of formation of well-defined fiber structure.
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The kurtosis and the skewness of the gray level intensity histograms were also cal-

culated and the results are shown in the Fig. 5.8D and Fig. 5.8E. According with data

presented in Fig. 5.8D, they are statistically compatible according to the Kruskal-Wallis

test; however, skewness is only useful in SHG images.

Similarly, in kurtosis data shown in the Fig. 5.8E it is only useful in di↵erentiating

SHG images acquired from healthy or atherosclerotic regions. Images from plaque re-

gions are characterized by a narrow distribution with short tails around the mean value

of gray levels. SHG images from healthy regions have a broad gray level distribution

with long tails around the mean value. Since it is possible to detect sparse collagen fibrils

in healthy regions, the detected signal contains many gray level values, characterized by

a more spread distribution, presenting histograms with gray levels from 0 to 255.

Five GLCM texture parameters obtained from healthy and plaque regions are shown

in Fig. 5.9.
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Figure 5.9: Second order parameters extracted from the GLCM: (A) angular second
moment (ASM ); (B) inertia; (C) correlation; (D) inverse di↵erence moment (IDM )
and (E) entropy. Features were individually calculated for each set of images acquired
with all threeNLO techniques (TPEF ,CARS, and SHG). Gray bars: plaque region;
White bars: healthy regions. (© L.Mostaço-Guidolin, 2014)
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Although the ASM, IDM, and entropy did not present significant di↵erence, the

inertia, presented in Fig. 5.9B, was very sensitive to highly contrasted regions. Infor-

mation acquired from TPEF present similar contrast level in both plaque and healthy

regions. Meanwhile the inertia from the CARS images shows better contrast, with the

atherosclerotic plaques regions displaying lower value than healthy regions. For example,

it can be related to the lipid accumulation inside the necrotic core, where shows a more

homogeneous distribution of CARS-contrasted structures.

The correlation parameter quantifies the di↵erence in the recorded gray levels between

two pixels separated by distance a d. Healthy regions are characterized by the presence

of elastin fibers, detected by the TPEF channel. As these fibers are regular structures,

the correlation values of TPEF images in healthy regions are high (Fig. 5.9C).

The same principle also apply in SHG images from plaque regions, as those images

are dominated by well-defined collagen network, leading to high correlation values in

plaque. In CARS images the presence of lipids droplets, gives a higher correlation value

compared to the tissue background dominating the healthy vessel wall.

As a general conclusion for this chapter, it is clear that the texture analysis emerges

as an important tool to be considered in the analysis of images acquired through NLO

microscopy. Due to the biological complexity of this problem, we need to consider several

parameters to characterize images acquired through all three modalities in order to bet-

ter quantify those alterations. However, by combining several texture parameters, the

process of correlating the results with the biological meaning of the problem can become

challenging.



Chapter 6

Classification of atherosclerotic

plaques

Until now we have demonstrated that the texture parameters are capable of providing

certain power in di↵erentiating plaque burden. The next step is to test if we can correlate

these imaging statistics with clinical classification of atherosclerosis. This would enable

a better description of atherosclerotic lesions using clinical standards.

6.1 ACC/AHA definitions for plaque classification

Currently, the 1995 ACC/AHA (American College of Cardiology/American Heart

Association) definition for atherosclerotic lesions is the most widely used classification

system, defining six lesion categories based on their histological features. This definition

are summarized in Table 6.1.
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Description

Type I Initial lesion Isolated, scattered macrophage foam cells at
the luminal proximity with adaptive intima
thickening.

Type II Fatty streak Layers of foam cells closely spaced in the
thickened region of the intima. The term ”in-
timal xanthoma” has been proposed for this
alteration.

Type III Intermediate lesion Pathological intimal thickening with aggre-
gates of lipid-laden cells and scattered extra-
cellular lipid droplets with no necrotic lipid
core.

Type IV Atheroma Confluent accumulation of extracellular lipid
and debris forming a necrotic core.

Type V (Va) Fibrous atheroma Plaque with a well-formed necrotic core cov-
ered by a fibrous cap.

Type VI Complex lesion Surface defect, hematoma, or thrombosis.
Type VII (Vb) Calcific atheroma Collagen-rich atheroma with large mineral-

ized area dominating the core region.
Type VIII (Vc) Fibrotic lesion Fibrous tissue predominates.

Table 6.1: Classification of atherosclerosis lesions according to theAHA’s Committee
and authorities [1].

The initial Type I lesion contains isolated macrophage foam cells and exists already

early in life. Type II lesions are macroscopically visible as small fatty streaks and present

in over 65% of 12-14 year old children [69].

Ongoing lipid accumulation and the presence of extracellular lipids form the inter-

mediate Type III plaque. In Type IV lesions these small lipid deposits have transformed

into a larger central lipid pool, and the deposition of fibrous material characterizes Type

V plaques. With the migration of SMCs into the intima, their phenotype is altered and

the subsequent ECM accumulation gives rise to fibroatheromatous or Type Va lesions.

In Type Vb lesions are partly calcified and Type Vc lesions have a relatively small lipid

component, but fibrous tissue predominates.

The Type VI lesions may give rise to plaque rupture (VIa), intraplaque hemorrhage

(VIb) or thrombosis on a non-ruptured plaque (VIc), which consists in a sequence of

events that eventually may lead to arterial occlusion and critical ischemia of end organs.

Alternatively, in 2000, Virmani et al.proposed a classification to describe advanced
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atherosclerotic lesions more adequately with regard to plaque stability [149]. Fibrous

lesions (Type 1) and atheromatous plaques (Type 2) are considered stable, while thin

cap fibroatheroma (TCFA, Type 3) with a relatively large necrotic core (> 40%) and

thin fibrous cap (< 65µm) are perceived as unstable.

Healed cap ruptures (Type 4) and acute plaque disruption or intraplaque hemorrhage

(Type 5) is a distinct sign of plaque destabilization. In this classification, Type 6 lesions

are described as plaque erosion which is defined as vascular thrombosis without any sign

of fibrous cap discontinuity.

This classification system was used as reference, to validate the proposed methodolo-

gies, the OIPB and texture analysis, for plaque burden classification.

6.2 Plaque classification based on its features and

NLO images

The images used for this part of the study were acquired directly from the lumen

of the atherosclerotic arterial segments (unsectioned bulk). However, to better select

regions that could be reliably linked to specific plaque levels, images acquired from

tissue sections were examined and were used as guides.

Figure 6.1 shows how NLO images can be correlated with the description defined by

AHA Committee, for classifying atherosclerotic lesions.

A total of 160 NLO images acquired from 28 rabbits were used in the classification.

The age of the rabbits ranged from 0 to 27 months. Based on characteristics such as

the presence of collagen, lipid-rich cells, shape, size and layers organization, the images

were first visually examined and then manually divided into 4 distinct groups, as shown

in Fig. 6.1. Images were assembled into groups A,B,C,D composed of 45, 31, 48, and 36

images, respectively.

Group A mainly represent healthy artery; group B present features seen in lesions

Type I and II, which still considered initial. Group C is composed by images taken

from more advanced lesions (Types IV and V), containing well-formed necrotic core
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and fibrous cap. Finally, group D present features observed in most advanced lesions,

classified as Types VI and VII plaques.

Type I 
Initial lesion

Healthy

Type II 
Fatty streak

Type IV 
Atheroma

Type V 
Fibrous 

atheroma

Type VII (Vb) 
Calcific 

atheroma

Type VI 
Complex 

lesion

Isolated, scattered macrophage foam 
cells at the luminal proximity with 

adaptive intima thickening

Layers of foam cells closely spaced in 
the thickened region of the intima. The 

term  “intimal xanthoma” has been 
proposed for this alteration.

Group B

Group A

Group C

Group D

Confluent accumulation of extracellular 
lipid and debris forming a necrotic core

Plaque with a well-formed necrotic core 
covered by a fibrous cap

Surface defect, hematoma, or 
thrombosis

Collagen-rich atheroma with large 
mineralized area dominating the core 

region

Absence of lipids, collagen and/or 
calcification within the intima and 

intermediate layers.

Description

Figure 6.1: Simplified scheme for classifying atherosclerotic lesions modified from
the current AHA recommendation. Examples of how each lesion looks like under the
NLO microscope are shown in the first column. The groups used to classify all images
are also presented(A-D). Images presented in the first column are color coded as:
blue represents collagen (SHG); red represents lipid-rich structures (CARS); green
(TPEF) represents either elastin (healthy) or fluorescent particles (plaque).

The OIPB was obtained for each image. Healthy regions tend to have negative

OIPB values while most advanced lesions show values above 60.

The distribution of values obtained for each group of images is shown in Fig. 6.2. The
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average OIPB obtained for group A, which was composed by images taken from healthy

region, is -56. As we move towards more advanced lesions, the OIPB value increases;

the average for group B is 23; groups C and D presented higher values, at 51 and 87

respectively.
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Figure 6.2: Correlation between OIPB distribution and lesion types. The features
used to classify all images are based on the current AHA recommendation. Group
A corresponds to OIPBs obtained from images acquired at healthy regions; groups
B and C shows the OIPB distribution for initial and intermediate/advanced lesions,
respectively. Group D is represented by severe lesions. (© L.Mostaço-Guidolin, 2014)

It is clear from Fig. 6.2 that these groups are reasonably well separated from each

other, in particular group A and D. Some significant overlap is observed between group

B and C, as they both represent intermediate stage of atherosclerotic plaque. In this

sense, the OIPB alone could be a good parameter to di↵erentiate early, intermediate,

and severe plaque.

Additionally to the OIPB values, textural features were also extracted from these

same images. FOS and GLCM parameters were calculated for each image from each

group, and are summarized in Table 6.2.
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Parameter Group A Group B Group C Group D

Mean 12.5(6) 14.3(3) 14.9(10) 18.2(4)
Standard Deviation 18.3(3) 20.0(11) 26.6(8) 34.1(2)
Integrated Density 4.0⇥ 106(4) 4.1⇥ 106(6) 3.6⇥ 106(3) 4.8⇥ 106(2)
Skewness 0.93(2) 0.87(4) 0.96 (7) 0.94(1)
Kurtosis 0.97(4) 0.93(5) 0.74(5) 0.96(8)
Inverse Di↵erence Moment 0.42(6) 0.47(10) 0.58(4) 0.60(7)
Energy 0.03(12) 0.06(11) 0.04(20) 0.11(16)
Inertia 0.02(7) 0.02(6) 0.05(6) 0.06(2)
Correlation 0.96(3) 0.93(17) 1.00(5) 0.97(9)
Entropy 0.11(18) 0.46(21) 0.53(9) 0.94(11)

Table 6.2: Average FOS and GLCM texture parameters and their errors, obtained
for each group. Group A is composed from images acquired from healthy regions;
groups B, C and D are composed from images representing progressively advanced
atherosclerotic lesions.

Comparing the values obtained for each group, one can notice that the mean, standard

deviation, inverse di↵erence moment, and the entropy present crescent values, when com-

paring healthy regions (group A) among plaques with increased severity levels (groups

B,C, and D).

With exception of the skewness and kurtosis, all other features showed significant

statistical di↵erence when comparing the most extreme groups (A and D). The interme-

diate plaque levels (groups B and C) presented consistently compatible values for most

of the features extracted.

Di↵erent from what was presented earlier, the texture parameters were extracted

from images generated by the combination of all three channels - or techniques - SHG,

CARS and TPEF. In general, as the lesion advances, more complex structures can be

observed, and consequently, textural features will become distinguishable.

For example, as previously shown in Fig.5.7, healthy regions are mainly characterized

by the absence of collagen and lipid-rich cells. These images show arterial elastic fibers,

distributed along the image. As the plaques start to appear, small lipid droplets are

observed and the overall image pattern starts to change. Finally, when observing more

advanced lesions, images containing complex features are detected.

A classification of these images was then performed based on OIPB, GLCM, and
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FOS. The combination of the OIPB with texture analysis could have the potential to

improve the images classification from all 4 groups, by enhancing accuracy, sensitivity

and specificity.

6.2.1 Atherosclerotic lesions classified by support vector ma-

chine (SVM)

As discussed in the Sec. 3.5.5, SVM is a classification method commonly used in

bioinformatics and it is known for its ability to deal with high-dimensional data and

flexibility for modeling diverse sources of data (refs). SVM performs classification by

constructing an N-dimensional hyperplane that optimally separates the data into di↵er-

ent categories. Using a nonlinear SVM classifier, we tested the ability of the OIPB and

texture parameters to classify distinct groups of atherosclerotic plaques. More informa-

tion regarding the parameters used for classifying NLO images, such as the definition

of training and test sets, were presented in Sec. 3.5.5.

The overall performance of SVM classifier is shown in Table 6.3. The results shown

are referent to image classification performed considering one versus all.

Parameters Accuracy (%) Sensitivity (%) Specificity (%)

OIPB 90 87 88
Texture (FOS) 63 68 59
Texture (GLCM) 70 66 70
OIPB + Texture 98 96 97

Table 6.3: Summary of the SVM classification results obtained considering the
OIPB and textural features. The accuracy, sensitivity and specificity presented were
obtained by comparing images from a specific group against all remaining others.

The nonlinear SVM classifier showed an overall accuracy of 90% when only the

OIPB values were included in the classification model. Accuracy drops to 63% and

70% when only textural features (FOS or GLCM parameters) were used, respectively.

However, when combining the OIPB and texture parameters, the accuracy increase to

98%.

In Chapter 4, it was shown that the OIPB has a great potential for di↵erentiating
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lesions severity based on the NLO images.

However, since the OIPB is an intensity-based parameter, it has di�culties in quan-

tifying features that involve morphological changes.Textural features, on the other hand,

are able to track the spacial pixel distribution, and consequently can expose information

related to the plaque morphology.

Based on the obtained results, FOS showed limited capacity for classifying images

correctly. FOS parameters, similar to the OIPB, are also intensity-based. However, it

shows that the OIPB is a better parameter than FOS for classification.

The reason could be that the OIPB also considers the relationship among all three

biocompounds instead of simply tracking their increase/decrease during the plaque de-

velopment.

When GLCM parameters were tested, one can notice that the overall accuracy

increased when compared to the FOS parameters-only. However, its performance is still

below the one achieved with the OIPB.

The combination of theOIPB with all texture parameters showed a noticeable gain in

accuracy, sensitivity and specificity, reaching more than 95% in all three metrics. It shows

that texture analysis can be used as a complementary data to classify atherosclerotic

lesions, based on NLO images.

While textural features are tracking changes related to the image pixel distribution

(Sec. 3.5.1), and the OIPB is able to successfully distinguish variations regarding plaque

components; when combined, they provide a novel and powerful way to define atheroscle-

rotic lesions based on the NLO images.



Part II

Specific image features &

classification: tools for

characterizing NLO images



Chapter 7

Collagen morphology and texture

analysis: from statistics to

classification

In this chapter we present the application of texture analysis to quantify morpholog-

ical changes in tissue collagen fibril organization caused by pathological conditions.

Similar to the procedure adopted in early chapters of this thesis, features based on

first-order statistics (FOS) and second-order statistics such as gray level co-occurrence

matrix (GLCM) were explored to extract SHG image features that are associated with

the structural and biochemical changes of tissue collagen networks.

A variety of pathological conditions in humans directly or indirectly involve remod-

eling or regenerating the collagenous framework in tissue. Some of these conditions are

characterized by excessive collagen deposition while others present altered collagen or-

ganization (e.g., cirrhosis, scleroderma, keloid, pulmonary fibrosis, diabetes) [150–154].

Abnormal deposition of collagen may impair vital functions, and changes in the ar-

chitecture of the focal collagen network may also lead to disabling conditions [155,156].

The ability to accurately characterize collagen morphology is therefore an essential com-

ponent in the pursuit of ultimate understanding of these pathologies.

Traditionally, tissue collagen organization is inspected using histochemistry, immuno-
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histochemistry as well as in situ hybridization. These standard methods require multiple

steps of tissue processing and such sample preparation can lead to un-desirable morpho-

logical alterations in the extracellular matrix. Several imaging methods, such as MRI

[157, 158], small angle X-rays [159, 160], and electron microscopy [14] were tools devel-

oped in the past for direct imaging of collagen without the need for tissue processing.

However, these imaging modalities often su↵er from low chemical specificity and low spa-

tial resolution. Special experimental conditions are often required for some procedures

that can damage tissue structure permanently.

Despite the success of SHG microscopy in biomedical research, most published work

relied on SHG imaging to describe collagen organization without using quantitative

measures. In most studies, collagen SHG images were presented to describe empirical

observations that were linked to a particular pathological condition. While understanding

these empirical associations between collagen SHG images and pathology is important,

it is equally important to be able to track such correlation using quantifiable measures

for objective comparison. To date, quantitative collagen analysis methods have largely

relied on image pixel-counting applied to histological images of tissue [161,162].

Others have also used X-ray di↵raction, MRI and electron microscopy images for

collagen quantification but with less success [163, 164]. Despite these e↵orts, none of

these methods was able to reliably define distinct collagen patterns based on pre-defined

quantitative parameters and there are no reports in the literature on how to develop

quantitative collagen pattern classification.

Quantitative SHG imaging has not received much attention among researchers until

recently. Several SHG collagen studies have recently proposed new methodologies for

quantifying imagery features [165–171]. These studies, however, either used simple

image pixel intensity-based approaches [165–168], or only analyzed histological tissue

sections, not intact bulk tissues [169–171].

In this chapter we present a methodology capable of quantifying changes in colla-

gen networks caused by various pathological conditions. The method described fills an

existing gap in the literature where empirical interpretation of NLOM images is used
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to classify tissue’s biochemical morphology. We explored the use of texture analysis

tools to extract SHG image features that are related to the structural and biochemi-

cal changes associated with collagen network pathologies in both sectioned and intact

tissues. We also performed multi-group classification of SHG images based on these

extracted quantitative parameters.

Two types of collagenous tissue, infarcted myocardium (heart muscle) of rats and

atherosclerotic arteries of rabbits, were used to develop and to test the proposed method-

ology. In the infarcted myocardium, collagen re-modeling occurs to repair the damage

caused by myocardial infarction [172]. A recent study indicated that treatment of

infarcted hearts using adipose-derived stem cells (ASCs) influenced the collagen re-

modeling process by reducing collagen deposition in the infarcted zone [173]. In this

study, SHG images of collagen type I fibrils of tissue sections from the stem cells-

treated hearts and un-treated hearts were compared using texture analysis. A binary

classification based on images acquired from ASCs-treated and un-treated hearts, was

subsequently performed.

A multi-group classification was tested subsequently to determine accuracy of the

proposed method. The texture analysis method reported in this chapter is not limited

to the conditions highlighted in this thesis. In fact, this method can be easily applied to

a wide range of conditions involving collagen re-modeling.

While others have reported imaging of stem-cell treated infracted rat hearts with

TPEF and SHG microcopy [174], our study was the first to characterize focal collagen

organizational features in an infracted myocardium [20].

7.1 Texture analysis of SHG images of collagen re-

modeling occurred in infarcted rat hearts

A rat model of myocardial infarction was originally developed to study therapeutic

potential of adipose-derived stem cells (ASCs) for treatment of heart failure [173]. His-

tological and MRI studies have both confirmed that ASCs reduced infarct size and im-
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proved cardiac contractile function of the infarct rat hearts. In this section, we examined

the utility of texture analysis of nonlinear optical images (mainly SHG) for quantitative

tracking of the changes related to collagen fibril remodeling in the ASCs-treated and

un-treated infarcted rat hearts.

Representative SHG collagen images from un-treated, ASCs-treated infracted rat

hearts and non-infarcted heart are illustrated in Fig. 7.1a, 7.1b and 7.1c, respectively.

Significant reduction of collagen deposition in theASCs-treated infracted heart is clearly

seen while the lack of collagen is also evident in non-infarcted heart. This observation

is consistent with previous findings [173] in which ASCs demonstrated therapeutic

e↵ect in improving cardiac function via enhancement of cardiomyocyte regeneration and

suppression of collagen fibrillogenesis.

The collagen density in images Fig. 7.1a and 7.1b was calculated using a simple

threshold pixel counting method. The result shows approximately a 50% drop in collagen

density for the ASCs-treated rat hearts compared to the un-treated hearts, which is also

consistent with previous data [173]. More importantly, the SHG microscopic images

reveal a highly–directional and organized collagen fibril morphology in the ASCs-treated

infarct myocardium compared to a less-organized collagen structure characterized by

shorter but denser fibril bundles in the un-treated infarcted myocardium.
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Figure 7.1: Co-localized SHG (shown in white, unlabeled) and TPEF (shown in
blue, labeled with DAPI) images visualize collagen fibril organization and cardiac mus-
cle cell nuclei, respectively, in the histological section of infarcted myocardium of (a) an
untreated infarcted rat heart; (b) an ASCs- treated infarcted rat heart. (c) an image
obtained from a histological section of a non-MI rat heart. Images were acquired using
10⇥0.45NA dry objective lens. Excitation wavelength was at 800 nm. Collagen SHG
signal was collected using a 400±5 nm band-pass filter in the forward direction while
the DAPI -TPEF signal was collected in the backscattered (epi) direction through a
505±50 nm filter. Arrows are pointing to the epicardium region. (d), (e) and (f)
show representative short-axis histopathological sections of untreated, ASCs-treated
infarct rat heart and non-MI heart, respectively. Heart tissue sections were stained
with Masson’s Trichrome to delineate the infarct region, and images were acquired
using 53 objective lens. LV: left-ventricle. Reprinted with permission from Mostaço-
Guidolin, Leila B., et al.”Collagen morphology and texture analysis: from statistics
to classification.”, Scientific reports 3 (2013) [20]. Copyright 2013 Nature Publishing
Group.

Additionally, representative images of histopathological sections obtained fromASCs-

treated, un-treated and control heart are illustrated in Fig. 7.1d- 7.1f. Compared to the

un-treated infarcted heart, ASCs-treated infarcted hearts contain a larger percentage of

viable myocardium in the infarct zone.

Changes in collagen fibril morphology such as fibril length, fibril thickness, fibril

alignment are tracked by texture analysis of SHG images using first-order statistics

(FOS) and second-order statistics such as gray-level co-occurrence matrix (GLCM).
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FOS textures are directly related to the gray tone distribution of pixels intensity and

ignore inter-pixel correlations. In contrast, image second-order statistics depend on the

spatial arrangements of pixels intensities present in the region of interest (ROI). It is a

measure of the probability of a pair of pixel values occurring at selected distances apart

in the image, providing textural information for that region. This probability function is

known as co-occurrence matrix. In other words, FOS are parameters extracted directly

from the original image while second-order statistics are derived from a matrix (e.g.

gray-level co-occurrence matrix) that is built upon inter-pixel correlation of the original

image [175].

Figure 7.2 shows the distribution of values extracted from 90 images for each texture

parameter selected from a set of FOS andGLCM parameters. These texture parameters

provide a means of capturing and quantifying the morphological changes on these images.

Figure 7.2: FOS (mean, standard deviation, integrated density, skewness and kurto-
sis) and GLCM (energy, inertia, correlation, IDM and entropy) texture parameters
extracted from SHG images of the ASCs-treated and un-treated infarcted rat hearts.
The top and bottom of each rectangular box denote the 75th and 25th percentiles, re-
spectively, with the median shown inside the boxes. Vertical bars extending from each
box represent the 90th and 10th percentiles. Reprinted with permission from Mostaço-
Guidolin, Leila B., et al.”Collagen morphology and texture analysis: from statistics
to classification.”, Scientific reports 3 (2013) [20]. Copyright 2013 Nature Publishing
Group.
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From Fig. 7.2 , it is clear that little statistical di↵erence exists in the FOS parameters

between the un-treated andASCs-treated infarcted rat hearts, according to the Kruskal-

Wallis test. GLCM parameters (i.e. IDM, entropy and inertia), on the other hand, show

distinction between these two groups. For example, the group of theASCs-treated hearts

has a statistically higher IDM, lower entropy and lower inertia values when compared

to its non-treated counterpart. The Shapiro-Wilk test was applied for checking the

normality of the data distribution.

7.2 Classification of images of the infarcted rat hearts:

ASCs-treated vs. un-treated

Data classification is a supervised learning strategy that is used to analyze the organi-

zation and categorization of data into distinct classes. A widely used classifier, support

vector machine (SVM), was chosen to test the strength of using FOS and GLCM

parameters to di↵erentiate between ASCs-treated from un-treated infarcted rat hearts.

SVM is a classification method commonly used in bioinformatics and is known for

its ability to deal with high-dimensional data and flexibility for modeling diverse sources

of data [118,176]. Using a nonlinear SVM classifier, we tested the ability of the texture

parameters to classify distinct groups of collagen fibers, based on the first (FOS) and

second (GLCM) order features extracted from SHG images. Figure 7.3 shows the

receiver operating characteristic (ROC) curve obtained by combining all texture features

(both FOS and GLCM), and those obtained from individual group of features (FOS

or GLCM).

The accuracy of the classifier, as represented by the area under the ROC curve

was determined to be 0.95 when combined GLCM and FOS parameters were used for

classification. This value dropped to 0.86 and 0.72 when only the GLCM parameters or

only the FOS parameters were used, respectively, to classify the infarcted tissue. These

values suggest that classification based on combined GLCM and FOS parameters has

an improved predictive power in di↵erentiating ASCs-treated from un-treated rat hearts
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compared using either GLCM or FOS alone.

Figure 7.3: ROC curves for all three texture sets tested: FOS, GLCM and
FOS+GLCM. Values suggest that the classification based on texture analysis has
a good predictive value, as the area under the ROC curve was 0.95 for all texture
parameters (FOS and GLCM), 0.72 for FOS parameters and 0.86 for GLCM pa-
rameters. Reprinted with permission from Mostaço-Guidolin, Leila B., et al.”Collagen
morphology and texture analysis: from statistics to classification.”, Scientific reports 3
(2013) [20]. Copyright 2013 Nature Publishing Group.

In summary, the binary classification of the ASCs-treated and un-treated infarcted

rat hearts, showed that GLCM parameters were able to provide e↵ective classification

with very high accuracy, conveying both high sensitivity and specificity. From Fig. 7.2,

it is very clear that none of the FOS variables were able to reveal significant di↵erences

between theASCs-treated and un-treated infarcted hearts, suggesting that the intensity-

based image features were not sensitive enough to capture the variability of properties

of the collagen deposited in infarcted myocardium.

GLCM parameters, on the other hand, consider every pixel and its neighborhood,

thus generating a map that is able to account for more complex structures in the images.

Three GLCM parameters, IDM, entropy and inertia, all exhibit certain di↵erentiat-

ing power. For IDM, a higher value can be associated with a denser or thicker collagen

fibril structure in the ASCs-treated hearts.

As for entropy, a lower value typically means that the ASCs-treated hearts have
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a more homogeneous local collagen morphology than the non-treated hearts. This in-

terpretation is supported by the presence of thicker and better defined fibers in the

ASCs-treated hearts (see Fig. 7.1).

Inertia is another texture parameter that quantifies the heterogeneous distribution

of collagen in the un-treated hearts. A higher inertia value is often associated with

a greater variability of gray levels inside a computational window. In other words,

structures and/or particles are distributed within a certain area without a preferential

alignment nor orientation, as one would expect in the case of fibrils.

7.3 Texture analysis of collagen fibrils accumulated

in atherosclerotic plaques

In order to evaluate the strength and the limitations of the proposed methodology to

solve more complex problems, we performed texture analysis on collagen SHG images

acquired from bulk atherosclerotic artery tissues.

In previous studies, it has been documented that nonlinear optical imaging mi-

croscopy employing TPEF, SHG and coherent anti-Stokes Raman scattering (CARS)

could be used to visualize extracellular morphology characteristic of atherosclerotic

plaques[54-60]. Collagen remodeling throughout the progression of atherosclerosis is

dynamic, complex and multi-factored.

The complexity of this process makes it a good candidate model to assess the power of

texture analysis in recognizing various morphological features found in collagen networks.

The images used in this study were acquired directly from the lumen of atherosclerotic

arterial segments (un-sectioned bulk) harvested from WHHLMI rabbits. Figure 7.4

shows examples of several collagen patterns captured with SHG images along the aorta

a↵ected by atherosclerotic plaques. Di↵erent patterns in the collagen distribution during

plaque development are clearly evident.

A total of 414 SHG images acquired from 14 rabbits were used in the analysis. The

age of the rabbits ranged from 2 to 24 months. Based on fibril characteristics such as
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shape, size and organization, the images were first visually examined and then manually

divided into 5 distinct groups by two individuals, independently. The origin of the images

was blind to the examiners during this manual classification process.

Figure 7.4: Epi-SHG images acquired from the atherosclerotic plaques in the aorta of
WHHLMI rabbits, showing examples of di↵erent collagen fibril morphology detected
on atherosclerotic artery. SHG images were acquired using 20x 0.75 NA dry objective
lens (Olympus) and 800 nm laser excitation. A 2x digital zoom was used for imaging.
Each image shown has 512 x 512 pixels or approx. 200 x 200 µm. Reprinted with
permission from Mostaço-Guidolin, Leila B., et al.”Collagen morphology and texture
analysis: from statistics to classification.”, Scientific reports 3 (2013) [20]. Copyright
2013 Nature Publishing Group.

Only those images that received the same categorization from both examiners were

used for subsequent texture analysis. Images were segregated into groups A,B,C,D and

E, composed of 87, 72, 68, 79 and 108 images, respectively. Representative images from

each of the five groups are illustrated in Fig. 7.5.

Group A images are characterized by thinner, well-defined curled fibrils with a certain

degree of fibril orientation. Group B images show a higher focal collagen density and

more uniform fibril orientation compared to group A. In contrast, group C and D images

both display a more randomly oriented network with shorter fibril length. Group E
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images are marked by the presence of long, straight and uniformly orientated fibrils.

Some level of correlation between distribution of the age groups and that of the 5 image

groups were observed.

Figure 7.5: All collagen SHG images acquired from the atheriosclerotic aortic seg-
ments of the WHHLMI rabbits were classified into five groups A–E. Each group of
the images has its own characteristic morphological features such as the fibril’s shape,
size and organization. Images are showing the fibrous cap, accumulated closer to the
intima layer. Representative images from each group (A–E) are shown. Reprinted with
permission from Mostaço-Guidolin, Leila B., et al.”Collagen morphology and texture
analysis: from statistics to classification.”, Scientific reports 3 (2013) [20]. Copyright
2013 Nature Publishing Group.

While group A images could be largely correlated with younger rabbits at an age

between 0 and 4 months , collagen features represented in group B-E images were mostly

found in rabbits older than 6 months. Furthermore, features shown in group B and C

were mainly associated with older rabbits at an age > 16 months.

Five FOS parameters (mean, standard deviation, integrated density, kurtosis, and

skewness) were calculated for all 414 images. The distributions of these FOS values

corresponding to each group are illustrated in Fig. 7.6.

In three FOS parameters, mean, standard deviation, and integrated density, images

in group A received low values compared to the other 4 groups, as a result of the thin

and sparse fibrillar organization in this type of plaque. The distribution of skewness and
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the kurtosis values of the gray level intensity histograms are also illustrated in Fig. 7.6.

Figure 7.6: Comparison of texture parameters calculated for each group defined
in Fig. 7.5. The top and bottom of each rectangular box denote the 75th and 25th
percentiles, respectively, with the median shown inside the box. Vertical bars extending
from each box represent the 90th and 10th percentiles. Reprinted with permission from
Mostaço-Guidolin, Leila B., et al.”Collagen morphology and texture analysis: from
statistics to classification.”, Scientific reports 3 (2013) [20]. Copyright 2013 Nature
Publishing Group.

The skewness indicates the imbalance between the extent of areas (or number of

pixels) that are darker or brighter than the mean. Images containing thicker fibrils,

typically from older plaques, present a more asymmetrical left-tailed pattern than that

captured in early plaque images (e.g. group A images). Therefore group A images display

higher skewness than the other groups

While skewness is a measure of asymmetry of a distribution relative to the mean

value, the kurtosis describes whether distribution of gray tones is more spread-out (flat)

or it is more concentrated around the mean (peaked). In advanced plaques, most col-

lagenous networks are better developed, generally thicker and cover larger area therefore

generating stronger SHG signals. This usually leads to a more spread-out distribution

of pixel intensities , thus lower kurtosis values.
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Complementary to the five FOS parameters, five second-order GLCM parameters,

inverse di↵erence moment (IDM), energy, inertia, entropy and correlation were extracted

from the images as well. Their values are presented in Fig. 7.1.

Figure 7.7: Values of GLCM texture parameters calculated from each group. The
top and bottom of each rectangular box denote the 75th and 25th percentiles, respec-
tively, with the median shown inside the box. Vertical bars extending from each box
represent the 90th and 10th percentiles. Reprinted with permission from Mostaço-
Guidolin, Leila B., et al.”Collagen morphology and texture analysis: from statistics
to classification.”, Scientific reports 3 (2013) [20]. Copyright 2013 Nature Publishing
Group.

Kruskal-Wallis test was performed to test for statistical di↵erences between any two

groups. These results indicate insu�cient di↵erentiating power for most of the tested

FOS and GLCM parameters in classifying atherosclerotic collagen fibril development,

when used individually. One exception is with group A, which stands out as the only

group with distinct texture characteristics that can be easily di↵erentiated from the other

groups using any of the GLCM parameters, or some of the FOS parameters.
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7.4 Multi-group classification of SHG images

A nonlinear SVM classifier was trained and applied to classify collagen SHG im-

ages of bulk atherosclerotic arterial tissues using FOS and GLCM texture parameter

descriptors of the images. This time, the performance of SVM classifier was tested for

a 5-group classification. Results are shown in Table 7.1.

Group Test Set Accuracy Sensitivity Specificity

A 6160 100% 100% 98%
B 6520 73% 79% 100%
C 6640 88% 65% 88%
D 6360 90% 86% 94%
E 4480 93% 95% 90%
Overall 30160 90% 91% 92%

Table 7.1: Summary of the nonlinear SVM classification for collagen SHG images
acquired from atherosclerotic arteries based on a 5- group model and combined FOS
and GLCM parameters.

The nonlinear SVM classifier has an overall accuracy of 90% when 10 combined FOS

and GLCM parameters were included in the classification model. Accuracy drops to

84% and 87% when only FOS (Table 7.2) or GLCM (Table 7.3) parameters were used,

respectively. Sensitivity and specificity were, however, statistically una↵ected. This

indicates that FOS and GLCM measures are somewhat complementary to each other

in terms of tracking pattern di↵erence in these SHG images.

Group A was distinguished from other groups as it shows the highest accuracy, sen-

sitivity and specificity, with little dependence upon the selection of textural parameter

(Tables 7.2, 7.3). Classification of other groups, however, is more sensitive to the selection

of classification parameters.
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Group Test Set Accuracy Sensitivity Specificity

A 308000 92% 100% 98%
B 326000 84% 77% 63%
C 332000 83% 64% 88%
D 318000 81% 83% 90%
E 224000 83% 95% 93%
Overall 1508000 84% 81% 82%

Table 7.2: Summary of the results obtained considering FOS texture parameters.

Based on data presented in Table 7.1, it is quite evident that group A is the most

distinct group and can be easily distinguished from the other groups. The collagen

textures detected in group A predominately arise from younger rabbits exhibiting early

stage atherosclerosis.

The collagen fibers visualized in these images can be characterized by curlier aspect

and a sparse distribution without a preferential direction. A closer look at the general

results also reveals that from a pattern-recognition point of view, group A is the only

group that can be separated from the other 4 groups with high confidence. Based on

these observations, we can conclude that the collagen features presented in early stage

atherosclerotic plaques (rabbits younger than 4 months) are distinctly di↵erent from

those found in rabbits older than 6 months. This conclusion is consistent with the

observation that the progression of atherosclerosis in this rabbit model proceeds faster

in the younger animal and then slowly levels o↵ after a certain age.

Group Test Set Accuracy Sensitivity Specificity

A 308000 100% 100% 92%
B 326000 73% 100% 100%
C 332000 79% 86% 72%
D 318000 79% 75% 92%
E 224000 91% 98% 92%
Overall 1508000 87% 92% 91%

Table 7.3: Summary of the results obtained considering GLCM texture parameters.

As for groups B and C, they are mainly characterized by a lack of collagen organiza-

tion. Interestingly, GLCM textures could not identify most of the groups as accurately

as FOS textures (Tables 7.2, 7.3). This was one of the reasons why 5-group classifica-
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tion was more accurate when both FOS and GLCM parameters were included in the

classification analysis. This demonstrated the benefits of using complementary texture

parameters for evaluating more complex collagen morphologies.

Overall, classifiers using the full set of calculated texture parameters (combined FOS

and GLCM) give the best classification accuracy. When comparing GLCM with FOS

parameters, GLCM textures typically give a more accurate classification than classifiers

based on FOS textures.

In contrast to data collected from infarcted hearts, the interpretation of data collected

from atherosclerotic plaques is not so straightforward due to the more complex and

diverse nature of the collagen networks. While it was still possible to link some variations

in the FOS parameters directly to certain visual di↵erences between the images, we found

that it is much harder to do the same kind of comparison with the GLCM parameters.

As a result, we did not attempt to interpret the direct correlation between the GLCM

parameters and the visual presentation of the original images.

Finally, additional tests were also performed to evaluate the e↵ectiveness of the pro-

posed methodology for classification across data sets (atherosclerosis vs. infarcted heart).

All images acquired from the arteries (all five groups) and from infarcted hearts (ASCs-

treated and un-treated) were included for analysis.

Collagen images collected from artery could be confidently di↵erentiated from those

collected from infarcted hearts with 99% accuracy when all texture parameters (FOS+GLCM)

were used for classification. Accuracy dropped to 81% when considering only FOS pa-

rameters, and 96% when considering only GLCM parameters. Figure 7.8 compares

each texture parameters calculated for images acquired from atherosclerotic arteries and

infarcted myocardium. The obtained ROC curve is presented in Fig. 7.9 for each test

set.
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Figure 7.8: Comparison of each texture parameter calculated for images acquired
from atherosclerotic arteries and myocardium infarcted hearts. The top and bottom
of each rectangular box denote the 75th and 25th percentiles,respectively, with the
median shown inside the box. Vertical bars extending from each box represent the
90th and 10th percentiles. Reprinted with permission from Mostaço-Guidolin, Leila
B., et al.”Collagen morphology and texture analysis: from statistics to classification.”,
Scientific reports 3 (2013) [20]. Copyright 2013 Nature Publishing Group.

Although it was cast as a binary classification problem, individual groups in this test

in fact contained much more diversity compared to those presented in the case of the

infarcted hearts.

With such high level of image inhomogeneity, we were able to obtain a very high

classification accuracy using combined FOS/GLCM parameters, or GLCM alone, re-

spectively. However, the FOS texture parameters alone delivered a modest result. Once

again we have shown that our methodology is robust in distinguishing structural varia-

tions present in collagen network, whether it is for intra- or inter-data set comparison.

Secondly, we also proved that this type of collagen feature classification benefits from

using a combined FOS/GLCM model.
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Figure 7.9: - ROC curves for all three texture sets tested: FOS, GLCM and
FOS+GLCM. Values suggest that the classification across data sets has a good pre-
dictive value, as the area under the ROC curve was 0.99 for all texture parameters
(FOS+GLCM), 0.81 for FOS parameters and 0.96 forGLCM parameters. Reprinted
with permission from Mostaço-Guidolin, Leila B., et al.”Collagen morphology and tex-
ture analysis: from statistics to classification.”, Scientific reports 3 (2013) [20]. Copy-
right 2013 Nature Publishing Group.

In summary, using two disease models we have demonstrated the feasibility of per-

forming classification of collagen fibril morphology based on first-order and second-order

texture statistical parameters derived from SHG images. Using a nonlinear SVM classi-

fier, it was shown that in more complex cases, the classification accuracy can be improved

with combined FOS and GLCM texture variables, compared to the case when either

one is used.

In a binary classification of ASCs-treated and un-treated infarcted hearts, one group

of texture parameters was su�cient to generate classification accuracy of better than

90%. However, when comparing collagen morphology observed in two di↵erent data sets

(artery vs. heart), the combined FOS/GLCM model is superior to the model that uses

individual group textures (FOS or GLCM).

Although the results presented in this chapter are only a proof-of-concept with a

limited sample size, its implication is that non-subjective texture based classification of
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SHG images could have practical clinical applications in distinguishing collagen patholo-

gies. In the clinical world where digital pathology is becoming more popular, automatic

classification could be a very helpful tool for the pathologist to increase sample through-

put and to help minimize interpretation errors.



Chapter 8

Statistical, textural and structural

analysis of CARS images to classify

lipid-rich structures

Lipid deposition is commonly present in several pathological conditions and biolog-

ical processes, such as inflammatory responses to stem cell development. In arterial

diseases dysfunctional lipid metabolism plays an important role in the pathogenesis of

atherosclerosis [50, 51].

Recently, CARS microscopy has been established as a promising optical technique in

medicine, mainly due to its specific power in lipid imaging. The detected morphological

changes in tissue lipids could be strongly associated with important biological functions

or disease progressions.

In this study, textural features from images acquired by CARS microscopy were

extracted and then used to di↵erentiate and to classify lipid-rich structures for its mor-

phology and its correlation with the disease stage.

In addition, specific characteristics in lipid-rich objects inherent to particle-like struc-

tures were also defined, calculated and used as complementary features for image clas-

sification. The methodology presented was not only capable of quantifying changes in

lipid accumulation caused by atherosclerosis, but can also be easily applied to other
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pathological evaluations.

8.1 Lipid accumulation within the vessel walls

A total of 508 CARS images acquired from 21 rabbits were used in this analysis.

Based on textural and morphological characteristics such as shape, size and organization,

images were divided into 4 distinct groups defined by age. Group A (or “young”) was

composed from 121 images acquired from rabbits between 2 and 4 month of age. Group B

(or “middle I”) was composed from 110 images from rabbits aged between 6 to 12 month-

old. Finally, groups C and D (or ”old”) were composed from 135 and 142 images acquired

from rabbits aged between 14 to 16 month-old and 18-27 month-old, respectively. Figure

8.1 shows examples of lipids images seen in each of these groups.

Figure 8.1: All CARS images acquired from the arteriosclerotic aortic segments of
the WHHLMI rabbits were classified into four groups A–D, according to the rab-
bits’age. Each group of the images has its own characteristic morphological features
such as shape, size and organization. Images are showing lipid-rich structures, accu-
mulated inside of the necrotic core. (© L.Mostaço-Guidolin, 2014)

Five FOS parameters (mean, standard deviation, integrated density, kurtosis, and

skewness) were calculated for all 508 images. The distributions of these FOS values

corresponding to each group are illustrated in Fig. 8.2.

From group A to D, a general elevating trend is noticeable in three parameters: mean,

standard deviation, and integrated density. With the exception of group A, the values

obtained for groups B, C and D are statistically compatible. The increase in the values

is associated with higher accumulation of lipids as the rabbits age increases. The lesions
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found in middle and old animals are known to be more severe than the ones normally

found in younger subjects.
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Figure 8.2: Values of FOS texture parameters calculated from each group. Group
A: 2-4month-old; group B: 6-12 month-old; group C: 14-16 month-old; group D: 18-27
month-old. (© L.Mostaço-Guidolin, 2014)

The distribution of skewness and kurtosis values of the gray level intensity histograms

are also illustrated in Fig. 8.2. The skewness indicates the imbalance between the extent

of the areas (or number of pixels) that are darker or brighter than the mean.

Group A images display higher skewness than the other groups. While skewness is a

measure of asymmetry of a distribution relative to the mean value, the kurtosis describes

whether gray tones are more distributed (flat) or concentrated around the mean (peaked).

Since the lipid-rich structures observed in images acquired from advanced plaques (group

D, for example) are bigger, cover larger area and generate stronger CARS signal with

a more spread-out pixel intensities distribution, they result in lower kurtosis value.

Additionally, five co-occurrence gray level matrix (GLCM) parameters, were also

extracted from the images. They are: inverse di↵erence moment (IDM), energy, inertia,

entropy and correlation. It is interesting to notice that most of the parameters (with the

exception of the ”energy”) present statistically compatible values when comparing all 4
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groups.

GLCM parameters consider every pixel and its neighborhood, generating a map

that is able to account for more complex structures in the images. Each of these features

bring di↵erent information when used as a base to perform classification analysis. All

GLCM values are presented in Fig. 8.3.
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Figure 8.3: Values of GLCM texture parameters calculated from each group. Group
A: 2-4month-old; group B: 6-12 month-old; group C: 14-16 month-old; group D: 18-27
month-old. (© L.Mostaço-Guidolin, 2014)

In order to improve the classification accuracy, besides texture analysis, all CARS

images were also subjected to additional particle-features analyses to extract information

more specific to the round-shaped observed structures.

Figure 8.4a shows the average values of the number of objects identified per group

of images. Figure 8.4b and Fig. 8.4c show the average Feret diameter and aspect ratio

of the identified particles in all images for each group.
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By di↵erent sets of features, a nonlinear SVM classification was performed on all

CARS images. As expected, when combining all available features (texture parameters

and particle-specific information) the overall accuracy is the highest, at over 80% in

all cases. When comparing the performance of the classification by using only particle-

specific features with that by using textural features, it is noticeable that particle-specific

features edge out slightly. This result is probably due to the fact that these particle-

related features are capturing information specifically related to the shape of most of the

lipid-rich structures.

Although textural features are also able to retrieve information regarding the distri-

bution of certain pixel values and its neighbours; however, as mostly of theCARS images

are showing the presence of round-shaped structures, the diameter and how circular they

are became more important when characterizing such images.

In Table 8.1, classification accuracies were summarized for all tested scenarios. It is

interesting to notice that FOS features generally present a higher overall accuracy when

compared to GLCM and even FOS+GLCM features.
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Parameters Group A Group B Group C Group D Overall

FOS 81% 72% 70% 80% 79%
GLCM 60% 61% 67% 67% 52%
FOS+GLCM 78% 58% 73% 70% 69%
Particles 90% 78% 81% 80% 79%
Particles+Texture 95% 88% 81% 81% 82%

Table 8.1: Summary of the nonlinear SVM classification percentual accuracy for
CARS images acquired from atherosclerotic arteries based on a 4 group model, based
on the age of the rabbits. Group A (young): 2-4month-old; group B (middle I): 6-12
month-old; group C (middle II): 14-16 month-old; group D (old): 18-27 month-old.

Earlier it was demonstrated that GLCM features were more accurate for classifying

SHG images (collagen fibrils) than FOS features. However, in this case, FOS stands

out as the best or even when compared to combined FOS and GLCM.

After analyzing the distribution of all textural features measured fromCARS images,

it is noticeable that they follow a Gaussian distribution. The distributions previously

observed for SHG images were characterized by the lack of symmetry and did not present

a normal behaviour, making the distinction between groups easier than when a Gaussian

distribution is used. In the case of CARS images, the values are approximately equally

distributed around the mean when usingGLCM parameters or a combination ofGLCM

with FOS to classify CARS images, they are therefore contributing to increasing the

errors instead of improving the accuracy.

The ine↵ective classification for particle-like objects provided by glsFOS+GLCM

texture suggests that this type of texture analysis maybe more e�cient in evaluating

fiber-like dimensions, such as the case in collagen imaging.

8.2 Lipid morphology

Besides classification based on age (lesion severity), we are also interested in how

well the classification performs primarily based on lipid morphology only. In Fig. 8.5,

examples show how these CARS images were ensembled in to three di↵erent groups,

with specific morphological features associated with each group.

For this analysis, the groups were defined exclusively based on morphological charac-
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teristics, not the age of the rabbits. Group A is characterized by the presence of primarily

small lipids droplets, characteristic of young plaque developments. Group B include im-

ages acquired from more advanced lesions, showing larger lipid-rich structures. Group C

is composed of images lacking well-defined structures, and with mixed advanced/early

lesions.

Figure 8.5: CARS images, grouped according to morphological characteristics of
lipid-rich structures deposited on the arterial wall. (© L.Mostaço-Guidolin, 2014)

In this test, the classification was also carried out with texture parameters, particle-

specific features and the combination of both. Results are shown in Table 8.2 shows the

classification results using only textural parameters, particle features and a combined

approach. When information regarding the particles dimensions, density, diameter, and

circularity were added, a higher classification accuracy, sensitivity and specificity was

achieved.

Similar to previously reported, lipid morphology classification performed the best

when a combined texture + particles matrix is used.
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Parameters Accuracy Sensitivity Specificity

FOS 70% 73% 77%
GLCM 56% 54% 55%
FOS+GLCM 77% 76% 73%
Particles 82% 79% 83%
Particles+Texture 93% 95% 95%

Table 8.2: Overall classification results obtained for CARS images separated consid-
ering exclusively the morphology of the lipid-rich structures. The age factor was not
included in this analysis. Group A (young): 2-4month-old; group B (middle I): 6-12
month-old; group C (middle II): 14-16 month-old; group D (old): 18-27 month-old.

Considering these results, we believe that similar analysis can enable better objec-

tive extraction, quantification and classification of structural and biochemical changes

associated with di↵erent pathological conditions.



Chapter 9

TPEF images: the challenge of

analyzing the elastic layer disruption

Fluorescence microscopy has been widely used in the characterization of many bio-

logical compounds. It is a popular tool for live-cell imaging, tissue characterization and

in-vivo studies.

In recent years, as the trend in biology has moved more and more towards high-

throughput applications, there has been an explosion in the amount of data being ac-

quired and analyzed using this technique. There is, however, a bottleneck: in most cases,

the analysis is still based on visual inspection. It is time-consuming, subjective, and not

reproducible.

Elastin as a member of the extra-cellular matrix (ECM) protein family is the major

source of elasticity in the vasculature. Elastin has been found in many tissues, such as

the aorta and carotid arteries, lungs, tendons, skin, and microvessels. The quantities of

elastin vary greatly between tissues such as more than 50% in large arteries or as little

as 2-4% of the dry weight of skin [177].

In arteries, elastin contributes to the overall vessel composition and arteriolar disten-

sibility. After longitudinal vessel lengthening, elastin is primarily responsible for bringing

the vessel back to its resting state [178]. Being a highly cross-linked structure, the pro-

tein is insoluble, extremely hydrophobic, long lived, and resilient to stretch.
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While elastin and elastic fibers are not the same, elastin composes 90% of the elastic

fiber with the remaining constituents being fibrillins and microfibrillar-associated gly-

coproteins [179]. An important property of stretch, the elasticity allows for significant

deformation followed by recoil without requiring energy input for recoil.

In healthy individuals, elastin is a stable, insoluble, and resilient protein. How-

ever, there are many pathological states that cause ECM remodeling and degradation of

elastin, such as aging, hypertension, and plaque development [180].

As previously discussed in section 2.1, the wall of blood vessels consists of three

layers: the intima, the media, and the adventitia. Capillaries, which have only an

intimal layer of endothelial cells resting on a basal lamina, are the exception. Regardless

of the organization of layers, one can distinguish four building blocks that make up the

vascular wall: endothelial cells, elastic fibers, collagen fibers, and smooth muscle cells.

Elastic fibers are a rubber-like material that accounts for most of the stretch of

vessels at normal pressures as well as the stretch of other tissues (e.g., lungs). Elastic

fibers have two components: a core of elastin and a covering of microfibrils. The elastin

core consists of a highly insoluble polymer of elastin, a protein rich in non-polar amino

acids (i.e., glycine, alanine, valine, proline).

After being secreted into the extracellular space, the elastin molecules remain in a

random-coil configuration. They covalently cross-link and assemble into a highly elastic

network of fibers, capable of stretching more than 100% under physiological conditions.

The microfibrils, which are composed of glycoproteins and have a diameter of ap-

proximately 10nm, are similar to those found in the extracellular matrix in other tissues.

In arteries, elastic fibers are arranged as concentric, cylindrical lamellae. A network of

elastic fibers is abundant everywhere except in the true capillaries, in the venules, and

in the aforementioned arteriovenous anastomoses.

A healthy artery or very early lesion has a thin intima composed mainly of a single

layer of endothelial cells. Beneath this, the media is composed mostly of elastin, which

has a broad emission band between 450 and 600nm with a peak around 490nm. As

age increases, this layer becomes thicker and the vessel starts to loose its contractile
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properties.

In this section, we tested the tools developed earlier to analyze the TPEF images

acquired from arterial tissue. The objective here is to investigate the potential of fractal

and directional analysis to track changes observed during atherosclerosis development.

9.1 Fractal dimension: quantifying elastic fibers dis-

ruption

Characterization of elastic fibers is a more complex problem, compared to collagen,

due to such irregular surfaces observed in the images. Considering such a challenge,

the fractal dimension turns out to be an interesting alternative to extract objective

parameters from such images.

Di↵erent from the topological dimension, the fractal dimension is a fractionary num-

ber that describes how irregular an object is and how much of the space it occupies. It is

a measure of how fragmented an object is, and it may be understood as a characterization

of its self-similarity.

Before extracting the fractal dimension of each image, the segmentation of fiber-like

structures from TPEF images was performed, using a Hessian-based tubeness filter [26].

This filter determines how ”tube-like” a pixel is by convolving the image with a

spherical Gaussian kernel with standard deviation ↵, computing the Hessian matrix

at each pixel, and computing a ”tubeness” metric from the Hessian eigenvalues The

sensitivity of the ”tubeness” filter to tubular structures of varying radii can be tuned by

varying ↵. The e↵ect of the tubeness filter on TPEF images is shown in Fig. 9.1.
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Figure 9.1: E↵ect of the tubeness filter on the processed TPEF image of elastic
layer on artery. As the value of ↵ increases, only thicker tubes are detected. (©
L.Mostaço-Guidolin, 2014)

The choice of ↵ is important and must be tailored accordingly to the application in

question. Some qualitative tests were performed and ↵=1.0 seems to be the best for

analyzing elastic fibers in the arteries. Using higher values, result in loss of information,

as some minor structures are ignored. On the other hand, smaller values of ↵, leads

to over-definition. More details about the theory behind this filter can be found in

Appendix B.

9.2 Aging and its e↵ect on elastic properties of blood

vessels

In Fig. 9.2, examples of TPEF images are presented showing the aorta internal

elastic layer (IEL) and some smooth muscle cells of rabbits with di↵erent ages. They

were taken from the luminal surface all the way down to the IEL, around 40-45µm).

In total, 115 images were analyzed; 38 from group A, 36 from group B, 23 from

group D, and 18 from group D. Images acquired from a newborn show very thin fiber-

like structures, somehow disorganized. As the rabbit’s age increases, the elastic layer

develops as shown in Fig. 9.2[B1-B5]. The fibers become clearly defined, and thicker

than those at younger ages.
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Figure 9.2: Examples of TPEF images acquired from the healthy lumen along the
aorta of WHHL rabbits. Images were classified into four groups A–D, according to
the rabbits’ age. Each group of the images has its own characteristic morphological
features such as shape, density and organization. Images are showing the external
elastic layer. Scale bar: 50µm (© L.Mostaço-Guidolin, 2014)

With aging, important changes occur in the elastic properties of blood vessels, primar-

ily arteries. The compliance of the aorta first rises during the growth and development

to early adulthood and then falls during a later life. After early adulthood, unfavor-

able changes occur. For example, atherosclerotic changes reduce the vessel’s compliance,

because of the progressive, di↵use fibrosis of vessel walls with age, and because of an

increase in the amount of collagen [181]. Some of these changes can be noticed by

comparing images shown in Fig. 9.2B1-B5 with those shown in C1-C5.

Finally, denser accumulation of structures aligned with the loss of fiber organization

can be noticed in Fig. 9.2D1-D5, where images represent a 27 month-old rabbit.

Changes related to aging can be tracked by fractal dimension analysis of TPEF im-

ages. In the case of healthy artery, the fractal dimension changes as the elastic fibers start

to degrade due to aging. It potentially is also due to the development of atherosclerotic

lesions along the aorta. The results are shown in Fig. 9.3.
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Figure 9.3: Fractal dimension for TPEF images acquired in healthy regions along
the aorta artery. Each bar represents the average fractal dimension value (and its
standard deviation) for rabbits within certain age groups. Group A: 0-4 month-old;
group B: 6-12 month-old; group C: 14-16 month-old; group D: 18-27 month-old. (©
L.Mostaço-Guidolin, 2014)

Group A, in which images are from the young animals (ages ranging from 0 to 4

month-old), was characterized by a fractal dimension higher than that obtained for

group B. Group B (composed by animals aged between 6 and 12 month-old) has shown

the lowest values among all groups.

As shown in Fig. 9.2, images from group B can be associated with regions where

the elastic fbers are fully developed and not a↵ected yet by serious plaque development

nearby. Groups C and D (animals with ages between 14-to 16 month-old and 18 to 27

month-old, respectively) show higher fractal dimensions than group B. This fact might

be correlated with the disruption of elastin as well with more aggressive accumulation

of fibers.

Interestingly, group A presents fractal dimensions almost as high as the ones ob-

tained for group D, considering the significant age di↵erence. Before getting to the stage

where the IEL is mature and presenting well defined fibers, elastin seems to be more

accumulated following a similar pattern to that is observed from older animals.
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9.3 Vascular remodeling and blood flow

Vascular remodeling of elastin content throughout the vessel wall has been shown in

both healthy physiological and pathological states [182]. As flow is gradually increased

in normal, adult rabbit carotid arteries, the lumen diameter increases as well as IEL

fenestra size [180,182].

Examination of the IEL has shown that although the thickness and fenestra density

do not change, fenestra area decreases significantly [183]. Both IEL thickness and

fenestra area variations could be attributed to changes in the mechanical environment

and cellular function. Decreases in IEL thickness and fenestra area are often associated

with elastin reorganization and elastin degradation.

As discussed previously in section 2.1.2, certain locations along the aorta are more

prone to plaque development than others. At these locations the rate and pattern of

blood flow are altered thus a↵ecting local hemodymanics. As a result, changes in plaque

development were observed. As presented in Fig. 9.4, the elastic layer su↵ers from

changes in blood flow.

When combiningTPEF and fractal dimension analysis, it is possible to track the IEL

di↵erences along the aorta. As shown in Fig. 9.4, images acquired along the aorta arch

(AA) region show that vessel is elastic layer presents distinct pattern. This observation

was also reveled by earlier analysis (section 4.2).



9.3 Vascular remodeling and blood flow 123

Figure 9.4: Examples of TPEF images from di↵erent locations along the aorta.
The corresponding aorta segment is illustrated on top of each column. Images from
di↵erent age groups show degradation of the vessel’s elastic layer. Group A: 0-4 month-
old; group B: 6-12 month-old; group C: 14-16 month-old; group D: 18-27 month-old.
Scale bar: 50µm (© L.Mostaço-Guidolin, 2014)

From Fig. 9.5 we can see that fractal dimension values were the highest in AA,

followed by the abdominal artery region (AbA). This region has also been targeted as

critical location regarding plaque development (section 4.2).

The thoracic and external iliac arteries (TA and EIA, respectively) have shown lower

fractal dimensions. Such di↵erence in fractal dimension can be explained by the fact that

these regions present less turbulent blood flow, even when plaque starts to develop. The

original shape of the elastic layer present less alteration in these regions than in the AA

and AbA locations.
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Figure 9.5: Fractal dimension values obtained from TPEF images acquired from
di↵erent locations along the aorta. The big green circles represent the overall average
value (and its standard deviation) for each region. The smaller gray squares represent
the average fractal dimension values obtained for each individual rabbit. The standard
deviation for individual values were omitted to enhance the graphic clarity. AA: aorta
arch; TA: thoracic artery; AbA: abdominal artery; EIA: external iliac artery. (©
L.Mostaço-Guidolin, 2014)

From these results we can conclude that fractal dimension analysis is good at tracking

disruptions observed along the aorta IEL. Even more importantly, it might also be a

good image parameter to track changes in collagen fibers.

9.4 Fibers directionality

Another aspect of fibers that can be evaluated is its orientation. Oriented linear

patterns are common phenomena in nature and are an important class in image analysis.

The method used in this section to analyze TPEF images aimed to infer the preferred

orientation of structures present in the input image. It computes a histogram indicating

the amount of structures in a given direction. Images with completely isotropic content

are expected to give a flat histogram, whereas images in which there is a preferred

orientation are expected to give a histogram with a peak for that orientation.

For example, in the Fig. 9.6 two images containing di↵erent arrangements are shown.

In Fig. 9.6(a), the structures observed in a banana leaf closeup are very well oriented
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and the vast majority of structures are concentrated at about 50 degrees (depending on

imaging orientation).

Figure 9.6: (a) Closeup showing details of a banana tree leaf. Very well oriented
structures can be seen; (b) Multiple and well oriented leaves are characterized by the
presence of two peaks, as shown in the histogram. The statistics generated is based on
the highest peak found.

On the other hand, the leaf shown in Fig. 9.6(b), demonstrates 2 major orientation

populations, one with a preferred orientation at about 40 degrees, and another one with

preferred orientation at around -40 degrees. This is well detected by the method, which

reports two main peaks in directionality histogram. In addition, a minor peak can also

be seen around 0 degrees, reporting the orientation of the main branch.

Angles are reported in their common mathematical sense. That is: 0 degree is the

East direction, and the orientation is counterclockwise.

In Fig. 9.7 some of the TPEF images are shown along with their directionality

histograms. One can notice that as the fiber structure changes, the orientation of the

fibers also changes.
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Figure 9.7: TPEF images of healthy arterial regions from rabbits. Image (a) is from
a newborn rabbit; (b) from a 6 month-old; (c) from a 16 month-old; and (d) from a 27
month old. As the fibers are remodeled, their orientation changes. Scale bar: 50µm

Table 9.1 shows the average directionality values obtained for all TPEF images

assembled according to rabbit’s age.

Young healthy arteries are characterized by the presence of fibers which still under

development and maturation. The distribution of elastic fibers is centered around 25

degrees, with approximately 13 degrees of dispersion. Almost 90% of the total amount

of elastic fibers identifies in TPEF images are oriented in that direction.
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Group A Group B Group C Group D

Direction (�) 25.64 80.91 78.01 6.54
Dispersion (�) 13.26 7.83 16.67 4.40
Amount (%) 89.92 39.67 48.93 87.33

Table 9.1: Overall directional distribution of fibers, according to the rabbit’s age.
Groups A and D were characterized by the presence of one central peak; groups B
and C show the presence of two main peaks, with almost 50% of all fibers oriented in
certain angles.

As the rabbits’ age increases, significant change in the fiber orientation was detected.

When more prominent horizontal structures appear, a delimiting of the fibre also begins

to appear. Vertical small fibrils can be found filling the spaces in between the horizontal

main fibers. The distribution of these small fibrils is detected and shown as two main

peaks located closer to the extremities of the histogram scale. This is shown, for example,

in Fig. 9.7(b) and (c). One interesting observation is that older animals present segments

with a narrower and well centered directional distribution when compared to younger

groups.

This section of analysis suggests that the directional analysis of fiber distribution can

bring another aspect of information to the task of characterizing biological samples. In

same cases, it can be a simple approach, but enough to reveal significant changes. When

it is combined with other methods, directional analysis can be a powerful tool to classify

images from di↵erent sources.
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Conclusions & future work

The studies of this research thesis have involved a novel biomedical application of

nonlinear optical microscopy, as well as the development of a novel set of tools to interpret

captured information. Multimodal NLO microscopy is a powerful imaging technique that

can be used to visualize extracellular components such as collagen, elastin, and lipids; all

of which are the major biochemical constituents in atherosclerotic plaque development.

Atherosclerotic plaques are complex systems, and the composition and structure of

them vary greatly with respect to age, location along and within the vessel. Rapid

determination of the spatial distribution of these components and in a manner that is

consistent with conventional microscopy makes NLO microscopy a potential adjunct or

even a substitute to routine histopathology.

One, among several other attractive features of NLO microscopy, is the ability to use

optical sectioning to examine bulk tissue without the need for sectioning and staining of

the tissue.

We have shown that by using the wealth of knowledge gained from important em-

pirical image-based studies, we can use multimodal NLO microscopy to characterize

complex tissue assemblies such as regions stricken by atherosclerotic plaques. We have

observed that healthy and plaque regions can be easily distinguished byNLOmicroscopy,

as they are marked by di↵erent features arising from the accumulation and reassembling

of specific biological compounds.
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The challenge of this thesis’ research was to determine whether NLO microscopy

can be used to distinguish among plaque’s severity levels. In addition, key aspects of

this study were the development, application, and testing of quantitative tools able to

extract unique features from NLO images. As a result, this research helped to extend

NLO microscopy beyond the use only as a qualitative tool for simple visualization of

biological tissue and cells.

In this thesis I have presented my in-house developed intensity-based parameter for

plaque burden. This new optical index for plaque burden (NLO OIPB) was defined using

NLO images acquired from ex-vivo samples of un-sectioned bulk rabbit arterial tissue.

The OIPB index showed a strong correlation with the age of the studied WHHLMI

rabbits and the severity of the atherosclerotic lesions in the rabbits. Through this index

I could also confirm critical locations for plaque accumulation along the vessel.

In order to validate the results obtained by the OIPB, experiments based on immuno-

histochemistry (IHC) were also performed. As the atherosclerosis development can be

accurately associated to the increasing inflammatory receptors. A specific antibody type

(ICAM-1) was used as a marker to track regions where plaques accumulated along the

aorta.

Results from OIPB and IHC showed a good correlation, validating the OIPB’s

strength for tracking plaque development solely based on NLO images.

Besides the OIPB, results based on the analysis of textural parameters extracted

from the NLO images were also presented. Texture parameters provided quantitative

descriptors that could be linked to specific structural and compositional motifs that

characterize di↵erent stages of atherosclerotic plaques.

Up to this point, the use of objective and quantitative tools to extract information

from NLO images was still in its early stages, and our work was one of the pioneers in

exploring this new avenue.

As a conclusion of the first part of this thesis, promising results related to the potential

of using the OIPB and texture analysis for plaque classification were presented. These

results suggest that the methods developed in this study could be very valuable for
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assessing the disease progression, once NLO microscopy becomes available for in-vivo

applications.

Considering that the success of plaque burden assessment achieved by using the

OIPB and texture analysis, some other questions may arise from this study. For exam-

ple, can we develop a set of parameters which are able to extract reliable quantitative

information from images acquired by each NLO technique? Are these methods ro-

bust enough to be used in applications other than the characterization of atherosclerotic

plaques?

We tried to answer these questions in the second half of this thesis. Keeping in mind

that changes collagen distribution, elastin disruption and lipid accumulation are very

important aspects to be analyzed in several biomedical studies, the idea of extracting

specific information fromTPEF,CARS and SHG images represented a challenge worth

of trying.

The second part of this thesis was dedicated to discussion of methods that were

applied for the first time to the characterization of the NLO images.

Sets of images acquired from arterial samples were used once again for evaluation of

these methods; however, the main focus of each chapter presented in the second pat of

this thesis was to test the capability of each method for classifying NLO images, based

on several pre-defined objective parameters.

Changes in collagen fiber orientation and lipid accumulation in the aorta wall, as well

as changes in their spatial distribution and patterning were quantified by textural fea-

tures. Most notably, many of the first and second order tonal-texture parameters showed

distinctly di↵erent depth profiles between the images from young and older specimens

that can be rationalized in terms of the di↵erences in the composition and structure of

the lesions along their developmental path.

These results show that tonal-texture parameters o↵er objective and useful metrics to

quantify vessel wall pathology associated with plaque development. Texture parameters

were shown to be particularly powerful for classifying SHG images, or collagen changes.

In addition to texture parameters, several other features were extracted from CARS
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images. Most of the lipid-rich structures found in arteries are round-shaped objects.

Parameters such as the Feret diameter, density of objects found in each image and the

aspect ratio of each structure were quantified and used as additional features in the

classification of CARS images.

Finally, TPEF images - or elastin changes from healthy arterial regions - were suc-

cessfully characterized by texture analysis and some other parameters. Fractal analysis

and the directionality of the elastic fibers were shown to be very useful in characteriz-

ing elastin layer degradation. These two parameters might also be useful in evaluating

collagen as they can successful track changes related to fiber-like structures.

In conclusion, we have presented a multidisciplinary approach to tissue characteriza-

tion and a new perspective of the multimodal nonlinear optical microscopy to investigate

pathological conditions. With a better understanding of the specific signatures imaged

by each NLO technique, we proposed several imaging analysis tools to extract objective

image parameters that have high potential for disease diagnosis. These studies are the

dawning of a new era for the applications of NLO microscopy, and more importantly,

the bridging of the wealth of knowledge in the various disciplines of optics, imaging

processing, biochemistry and medicine.

10.1 Future work

NLO microscopy is already established as a powerful tool for rapid imaging of bio-

logical tissue. The main outcome of this study was a sound methodology to accurately

extract diagnostically relevant information from those images. Progress to that end has

helped to propel this technique toward future clinical adoption in critical care, by corre-

lating the disease burden to image features. This thesis research is also a stepping stone

toward broader applications of NLO microscopy in the clinical environment.

However, NLO microscopy is still a bit far from becoming a ”viable tool” for biomed-

ical applications. Several aspects can be improved in order to achieve more specific and

even more complete results. Some suggestions of possible future work are presented in the
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following sections: hardware & instrumentation, data analysis, and biomedical-specific

aspects.

10.1.1 Hardware & instrumentation

Three-dimensional volume imaging is now an essential tool in biological and other

areas. Multiphoton scanning microscopy accomplishes this by scanning a point source

through the sample volume, collecting the resulting signal, and re-creating the image.

The resolution has a high dependence on the point-spread function (PSF) of the scanned

point source.

Refractive-index mismatches between the immersion media of high-NA objectives and

the sample, the usually non-uniform samples themselves, o↵-axis transmission through

optical component, such as the objective and scan lenses while scanning, and imper-

fections in the optical elements throughout the optical path impart aberrations to the

wavefront and contribute to a deterioration of the PSF.

Incorporation and testing of an adaptive optics system is a very important improve-

ment that can be performed, aiming to increase the image quality, and consequently, the

power in tracking smaller and earlier changes in biological samples.

Another important improvement that could be considered, more specifically inCARS,

is the addition of pulse chirping to the current system. In order to achieve variable pulse

length, it is necessary to make use of a technique known as spectral focussing. Starting

with short femtosecond (fs) pulses, the pulses are streched in time (or, in other words,

chirp the pulses).

By carefully choosing the dispersion in both the pump and Stokes beams, the com-

bined beams behave like transform-limited (i.e. unchirped) pulses with a di↵erent e↵ec-

tive pulse length.

Chirped fs pulses are spread out in time which leads to a change of frequency as a

function of time. If the pump and Stokes are chirped the same way (i.e. they have the

same slope), the di↵erence between them is a constant as a function of time and hence

the CARS resonance is a constant (CARS depends on !P - !S = !R).
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By varying the slope of pump and Stokes, the e↵ective pulse length is changed and

allows us to easily tune for optimal performance. An advantage of this approach is that

by changing the temporal overlap between the pump and Stokes pulses, we can change

the frequency di↵erence (i.e. we change from ⌦1 to ⌦2). This would allow us to tune

to the di↵erent Raman resonances and probe di↵erent molecules. For the specific case

of cardiovascular diseases, it would become possible to identify di↵erent types of lipids

within the vessel wall.

10.1.2 Data analysis

The methods presented in this thesis represent a big step towards making NLO

microscopy a quantitative tool for a broad number of applications in biomedical sciences.

However, many more aspects can be explored.

As previously discussed, texture analysis refers to the branch of imaging science

that is concerned with the description of characteristic image properties by textural

features. There is no universally agreed-upon definition of what image texture is and in

general di↵erent researchers use di↵erent definitions depending upon the particular area

of application. In this thesis, first order statistics (FOS) and features extracted from

gray level co-occurence matrix (GLCM) were tested and proved to be useful. However,

many other textural-based features can be extracted from images. Future plans regarding

image analysis must include exploring new methods, striving to expand the ensemble of

features that can be e↵ectively extracted from NLO images.

For example, the grey-level run length method (GLRLM) which is based on the

analysis of higher-order statistical information is on the top of my list for future testing.

GLRLMs contain information on the run of a particular grey-level, or grey-level range,

in a particular direction. The number of pixels contained within the run is the run-

length. A coarse texture will therefore be dominated by relatively long runs whereas

a fine texture will be populated by much shorter runs. Especially when dealing with

fiber-like structures, the specific information that can be obtained through GLRLM is

a useful set for classifying several conditions.
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Another possible path to be followed in future works is related to fractal texture

analysis. The application of fractal dimension from box-counting was discussed and

presented in this thesis research, showing promising results. As previously discussed,

the box-counting dimension is closely related to the concept of self-similarity where a

structure is sub-divided into smaller elements, each a smaller replica of the original

structure. This sub-division characterizes the structure by a self-similarity, or fractal,

dimension and is a useful tool for characterizing apparently random structures.

Extracting textural features based on fractal analysis seems to be very promising

objective analysis of NLO images obtained from several applications. The fractal di-

mension describes the disorder of an object numerically, which can be an important

information for studying with biological tissues, macromolecules and its composition.

10.1.3 Bio-specific aspects

As extensively discussed in this thesis research, collagen is one of the main biological

compounds of many biological systems. Detection and characterization of changes in

collagen play a key role in the diagnosis of several conditions, and these changes can also

be linked to the severity and type of lesions. We have developed and tested methods

that are able to track general changes in collagen deposition; however, another important

aspect must be addressed: the di↵erentiation between collagen types.

Collagen is a structural protein which provides the extracellular framework for all

multi-cellular organisms. The most commonly present fibrillar collagen subtypes are

collagen type I and III with specific physiological and structural functions. For instance,

the collagen type I plays a key role as supporting elements for high tensile strength and

the modulus, while collagen type III forms unique highly elastic network storing kinetic

energy. Therefore, an unbalanced production of collagen subtypes is expected to result

in altered physical and biomechanical properties of tissues.

In general, providing label-free, highly specific discrimination between di↵ering col-

lagen isoforms could be a powerful means to study the underlying biological changes in

several conditions, as well as provide a new diagnostic tool.
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By studying changes regarding the signal polarization, the ratio between forward

and backward detected SHG signal as well as developing new specific tools to di↵eren-

tiate signal coming from di↵erent structures, can represent the first steps towards the

di↵erentiation of collagen fibers.
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Some sources of NLO signal in

biological samples

Two-photon fluorophore Excitation wavelength [nm] Cross-section [GM ]

NAD(P)H 690� 730 9⇥ 10�2

Flavoproteins (flavins) 700� 730 0.1� 0.8
Lipofuscin 700� 850 High
Retinol 700� 830 7⇥ 10�2

Pyridoxine (vitamin B6) 690� 710 8⇥ 10�3

Folic Acid 700� 770 7⇥ 10�3

Cholecalciferol  700 6⇥ 10�4

NFT (neurofibrillary tangles) 700� 780 Unknown
Collagen  750 Unknown
Keratin ⇡ 720 2.5⇥ 10�3

Elastin 700� 740 Unknown
Fluorescein (dye) 780 38 (at 780nm)

Table A.1: Some examples of two-photon fluorophores detected in biological samples
[2–4].

SHG source Structure description Biological compound

Fibrillae collagen Protein molecules (triple helix structure) Extracellular matrix
Tubulin Rod shaped protein molecules Cytoskeleton
Microtubules Rod shaped protein molecules Cytoskeleton
Actin/myosin Rod shaped protein molecules Muscle fibers
Starch Strings of polysaccharides chiral structure Food store in plants

Table A.2: Sources that can be used for SHG in biological samples [5–10].
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Bond vibration (!p � !s) [cm�1] Provides contrast for:

CH2 ⌫sym. 2845 and 2840 Lipids, polystyrene beads, starch grains
Aliphatic CH ⌫sym. 2870 Lipids (lysomes, mitochondria, nucleus)
PO2 ⌫sym. 1090 DNA (chromosomes)
Amide I 1650 Proteins
H2O ⌫sym. 3200 Water

Table A.3: Vibrational modes used for CARS microscopy in biological tissues. ⌫sym.:
symmetric stretching vibration. [11–15].
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Tubeness

This appendix contains text excerpts from Sato, Yoshinobu, Shin Nakajima, Nobuyuki

Shiraga, Hideki Atsumi, Shigeyuki Yoshida, Thomas Koller, Guido Gerig, and Ron

Kikinis. ”Three-dimensional multi-scale line filter for segmentation and visualization

of curvilinear structures in medical images.” Medical image analysis 2, no. 2 (1998):

143-168. Reproduced with permission from Elsevier.

The tubeness filter is nothing more than a method for the enhancement of curvilinear

structures such as vessels and bronchi in three-dimensional (3-D) medical images. A 3-D

line enhancement filter is developed with the aim of discriminating line structures from

other structures and recovering line structures of various widths.

The 3-D line filter is based on a combination of the eigenvalues of the 3-D Hessian

matrix. Multi-scale integration is formulated by taking the maximum among single-scale

filter responses, and its characteristics are examined to derive criteria for the selection

of parameters in the formulation.

The resultant multi-scale line-filtered images provide significantly improved segmen-

tation and visualization of curvilinear structures. In this way, Sato, Yoshinobu, et al. has

developed a practical and general-purpose approach to 3-D line enhancement filtering,

by accomplish the following:

1. recovery of line structures of various widths (especially thin structures);



B.1 3-D line filter based on Hessian Matrix 139

2. removal of the e↵ects of structures other than line structures;

3. removal of the e↵ects of nonuniformity of contrast material; and

4. removal of noise and artifacts.

B.1 3-D line filter based on Hessian Matrix

The second derivative has typically been used for line enhancement filtering. The

Gaussian convolution is combined with the second derivative in order to tune the filter

response to the specific widths of lines as well as to reduce the e↵ect of noise. In the

one-dimensional (1-D) case, the response of the line filter is given by

R(x; �f ) =

⇢
� d2

dx2
G(x; �f )

�
⇤ I(x) (B.1)

where * denotes the convolution, I(x) is an input profile function, and G(x; �f ) is the

Gaussian function with the standard deviation �f , defined as (1/
p

2⇡�f )exp(�x2/2�f
2).

The sign of the Gaussian derivative has been inverted so the responses have positive

values for the bright line. The profile was considered having the Gaussian shape given

by

L(x; �f ) = exp

✓
� x2

2�2
x

◆
, (B.2)

where �x is the standard deviation of the profile. The height of the profile is constant

for any �x. Let the filter response to L(x; �x) be RL(x; �f , �x), that is,

RL(x; �f , �x) =

⇢
� d2

dx2
G(x; �f )

�
⇤ L(x; �x) (B.3)

RL(x; �f , �x) is maximum at �x = �f/
p
2 and x = 0 when �f is fixed. The filter with

standard deviation � is considered to be tuned to the Gaussian profile with �x = �f/
p
2.

The above discussion can also be applied to other line-like profiles such as a box shape.

The 1-D line filter can be extended to multi-dimensional line filters using the Hessian

matrix, which describes the second-order structures of local intensity variations around
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each point of a multi-dimensional image [184–186]. The Hessian matrix of a 3-D image

I(x) (where x = (x, y, z)) is given by

r2I(x) =

2

66664

Ixx(x) Ixy(x) Ixz(x)

Iyx(x) Iyy(x) Iyz(x)

Izx(x) Izy(x) Izz(x)

3

77775
(B.4)

where partial second derivatives of the image I(x) are represented by expressions like

Ixx(x) =
@2

@x2 I(x), Iyz(x) =
@2

@y@z
I(x), and so on.

Let the eigenvalues of r2I(x) be �1(x), �2(x) and �3(x) as(�1(x) > �2(x) > �1(x),

and their corresponding eigenvectors be e1(x), e2(x) and e3(x) respectively. The eigen-

vector e1(x), corresponding to the largest eigenvalue �1(x), represents the direction along

which the second derivative is maximum, and �1(x) gives the maximum second derivative

value. The partial second derivatives of I(x) in Equation B.4 can be replaced by the

partial second derivatives of Gaussian, for example,

Ixx(x; �f ) =

⇢
� @2

@x2
G(x; �f )

�
⇤ I(x) (B.5)

where G(x; �f ) is an isotropic Gaussian function with standard deviation �. Using

the Hessian matrix r2I(x; �f ) based on the second derivatives of Gaussian with �f , the

eigenvalues �1(x; �f ), �2(x; �f ) and �3(x; �f ) as filter responses can be tuned to a specific

width of 3-D line.

Let us consider an ideal bright 3-D line image with Gaussian cross-sectional images

given by

L(x; �r) = exp

✓
�x2 + y2

2�2
r

◆
, (B.6)

where �r is the standard deviation that controls the width of the line, and the height

is constant for any �r. Let r2L(x; �r, �f ) be the Hessian matrix combined with the

Gaussian convolution with �f for the ideal line L(x; �r). Among the eigenvalues of

r2L(x; �r, �f ), both �2(x) and �3(x) have the same minimum at x = y = 0 (the center



B.1 3-D line filter based on Hessian Matrix 141

of the line) and �r = �f when �f is fixed. When �2(x) and �3(x) are minimum, �1(x) is

zero. Therefore, the conditions of a bright line can be regarded as

�1 ⇡ 0 and �2 ⇡ �3 ⌧ 0 (B.7)

Based on the condition �2 ⇡ �3 ⌧ 0, the following has been suggested as similarity

measures to a line structure [185,186]:

�min23 =

8
>><

>>:

min(��2,��3) = ��2, �3 < �2 < 0;

0, otherwise

and

�g�mean23 =

8
>><

>>:

p
�2�3, �3 < �2 < 0;

0, otherwise

For the cases �2 ⌧ 0 and �3  0, �min23 can be rewritten as

�min23 = ��2 = |�3|
✓
�2

�3

◆
(B.8)

and �g�mean23 as

�g�mean23 =
p

�2�3 = |�3|
✓
�2

�3

◆0.5

(B.9)

Now, we generalize these two measures and introduce a new measure defined as

�23 =

8
>><

>>:

|�3|w23(�2,�3; ), �3 < �2 < 0;

0, otherwise

in which

w23(�2,�3; ) =

✓
�2

�3

◆�23

, (B.10)
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where �23 (�23  0) controls the sharpness of the selectivity for the cross-section

isotropy. In the definition of �23, |�23| is multiplied by the weight function w23 (�2;�3 )

which decreases with the deviation from the condition �3 = �2.

�23 is equivalent to �min23 and �g�mean23 when �23 = 1 and �23 = 0.5 respectively.

When |�3| � |�2| ⇡ 0, the structure should be regarded as sheet-like rather than line-like

and |�23| should not be large.

It is important to be able to discriminate line structures from sheet-like structures

because 3-D medical images often contain strong sheet-like structures such as the skin

or the skull.

The condition �1 ⇡ 0 should be combined with the similarity measure to a line. As

in the definition of �23 , we introduce a weight function that decreases with the deviation

from the condition �1 = 0. The line measure is defined as

�123 =

8
>>>>>><

>>>>>>:

�23w12(�1;�2), �3 < �2 < 0;

0, otherwise

in which w12(�1;�2) is a weight function written as

w12(�1;�2) =

8
>><

>>:

⇣
1 + �1

|�2|

⌘�12
�1  0;

0, otherwise

where �12 � 0 and 0 < ↵  1.0. ↵ is introduced in order to give w12(�1;�2) an

asymmetrical characteristic in the negative and the positive regions of �1. When �1

is negative and |�1| ⇡ |�2| � 0, the structure should be regarded as blob-like rather

than line-like. Because noise components typically have blob-like shapes, it is important

that the system possesses the ability to discriminate between lines and blobs. Thus,

for negative �1, the weight function should decrease with deviation from �1 = 0 in the

same manner as in the case of the discrimination between sheets and lines. When �1 is

positive, the structure involves concavity in the estimated line direction.
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Support Vector Machine classifiers

Kernel Functions are used in many applications to provide a simple bridge between

linearity and non-linearity for algorithms. In pattern recognition, we want our algorithms

to analyze and classify data e�ciently. If the boundary between two sets of points is too

crooked, the algorithm will require a long processing times to converge. Even when it

converges, it might not be the most optimal boundary.

The main characteristic of Kernel Functions in machine learning is their distinct

approach: instead of classifying the data in lower dimension by putting a really curvy

line, Kernel Functions map the data into higher dimensional spaces in the hope that the

data is more easily separated there. There are also no constraints on the form of this

mapping, which could even lead to infinite-dimensional spaces. The advantage about

this mapping function is that it hardly needs to be computed because of a tool called

the Kernel Trick.

The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963

was a linear classifier [119]. However, in 1992, Bernhard Boser, Isabelle Guyon and

Vapnik suggested a way to create non-linear classifiers by applying the kernel trick to

maximum-margin hyperplanes [187].

The kernel trick is a mathematical tool which can be applied to any algorithm which

solely depends on the dot product between two vectors. There is a need to transform

data into higher dimensions, but it cannot be just randomly projected. It is not practical



144

to compute the mapping explicitly either. Hence, only those algorithms which use dot

products of vectors in the higher dimension are used to determine the boundary.

This dot product corresponds to the mathematical processing step. To compute the

dot products of vectors in the higher dimension, there is no need to project the data into

higher dimensions. A kernel function can be used to compute the dot product directly

using the lower dimension vectors.

Choosing the most appropriate kernel highly depends on the problem at hand. Most

of the times, fine tuning its parameters becomes a crucial task. For example, a polynomial

kernel allows us to model feature conjunctions up to the order of the polynomial. Feature

conjunction refers to the process of fusing two or more features together. Radial basis

functions allows to put circular boundaries (or hyperspheres in higher dimensions). This

is useful where the data is distributed in a loop-like shape. This is in contrast with

the Linear kernel, which allows only to put linear boundaries (or hyperplanes in higher

dimensions). The motivation behind the choice of a particular kernel can be very intuitive

and straightforward depending on what kind of information we are expecting to extract

about the data.

Some popular kernels:

• Linear Kernel: it is one of the simplest kernel functions. It is just the inner

product ¡x,y¿ plus a constant c.

• Polynomial Kernel: these kernels are useful for problems where all the training

data is normalized. It is possible to use polynomial of any order depending on the

case at hand.

• Gaussian Kernel: this comes in the category of radial basis functions. Fine-

tuning of the � parameter plays a major role in the performance of this kernel.

If it is overestimated, the exponential will behave almost linearly and the higher-

dimensional projection will start to lose its non-linear power. On the other hand,

if it is underestimated, the decision boundary will be highly sensitive to noise

in training data. There are a few more radial basis functions like Exponential,

Laplacian, ANOVA etc.
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There are many more kernel functions such as Spherical, Wavelet, Bayesian, Cauchy,

Bessel. Depending on the problem at hand, the appropriate kernel function must be

defined. Di↵erent kernels have di↵erent advantages and disadvantages.
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Peer-reviewed Journal Papers &

Conference Proceedings

Parts of this thesis have appeared in peer reviewed conferences and papers. These

parts have involved collaborations between myself, and members of the spectroscopy

group based at the National Research Council Canada, in Winnipeg-MB.

Most of the published papers explicitly contain the contribution of each author; how-

ever, in general lines, I conceived all methods presented in this thesis (and published

works), performed imaging measurements and all data analyses.

Other authors contributed by establishing the rabbit colony, co-ordinating animal ser-

vice and imaging works, providing expertise on setting up and maintaining NLO imaging

microscope as well as providing some guidance during the process of image classification.

Peer-reviewed Journal Papers

1. Mostaço-Guidolin L.B., Ko A.C-T., A. Ridsdale, Pegoraro A. F., Smith M.S.D.,

Hewko M.D., Kohlenberg E.K., Schattka B.J., Shiomi M., Stolow A., Sowa M.G.,

Di↵erentiating atherosclerotic plaque burden in arterial tissues using femtosecond

CARS-based multimodal nonlinear optical imaging, Biomedical Optics Express,

Vol. 1, Issue 1, pp. 59 (2010)
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2. Ko A.C-T, Ridsdale A., Smith M.S.D., Mostaço-Guidolin L.B., Hewko M.D.,

Pegoraro A.F., Kohlenberg E.M., Schattka B., Shiomi M., Stolow A., and Sowa

M.G., Multimodal nonlinear optical imaging of atherosclerotic plaque development
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(2010)

3. Mostaço-Guidolin L.B., Ko A.C-T, Popescu D.P., Smith M.S.D., Kohlen-
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ters for the quantitative description of multimodal nonlinear optical images from
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M.G., Nonlinear optical microscopy in decoding arterial diseases, Biophysical Re-
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