

INTRODUCTION

- The use of perceived gaze direction to shift visual attention is known as gaze cueing. Gaze cueing is thought to rely on the neural mechanisms underlying face and gaze processing.
- Previous studies have reported that non-predictive gaze cues can elicit reflexive attentional orienting^{1,2,3}. Here we sought to further clarify the role of gaze cues in attentional orienting by testing the extent to which the gaze cue effect depends on biologically natural gazes.

GAZE CUEING TASK

Figure 1: General experimental paradigm.

①Trial starts with central fixation-cross presented for 1 sec.

- Pixation-cross was replaced by pre-cue face stimulus (680ms), which was a simple schematic drawing of a face without eye pupils. Subjects were instructed to maintain eye fixation on the nose of the face.
- **B**Cue consisted of presenting the eye pupils looking either left, right, or straight ahead for 105, 300, 600, or 1005ms (cue-target onset asynchrony, CTOA), randomly determined.
- Target (F or T) was presented either to the right or left of the face (target letter and side of face were randomly determined). Subjects identified the letter by a speeded discrimination response.
- Gaze cues directed towards target were valid cues.
- Gaze cues directed away from target were **invalid cues**.
- Gaze cues pointing straight ahead were **neutral cues**.
- All cues were uninformative and subjects were told the direction of gaze did not predict target location.
- Eye position was recorded & analyzed off-line to ensure subjects maintained eye fixation throughout the trial.

Clarifying the role of gaze cues using biologically natural and unnatural faces Steven L. Prime & Jonathan J. Marotta University of Manitoba

- Subjects performed the gaze cueing task in 3 different face conditions.
- **2-Eye condition**: both eyes looked in the same direction.
- **1-Eye condition**: only one eye looked left or right as the other eye looked straight ahead.
- **Cyclops condition**: a face with only one eye.

QUESTIONS:

Will reflexive orienting also be found in the **1-Eye** or **Cyclops** face conditions like in the **2-Eye** condition?

How will overall RT's compare among the 3 face conditions?

- Valid cues elicited significantly faster RT's compared to invalid and neutral cues at the 300 and 600ms CTOA's (p < 0.01 for all comparisons).
- No RT facilitation in response to valid cues at the 105 and 1005ms CTOA's.
- Overall RT decreased as CTOA increased (p < 0.01).
- These results replicated findings from previous studies indicating that biologically natural gaze cues can elicit reflexive attentional orienting.

- Only at the 1005ms CTOA were RT's in response to valid cues faster compared to neutral and invalid cues (p < 0.01 for both comparisons).
- As in the 2-Eye condition, overall RT's decreased as CTOA increased (p < 0.01).

CYCLOPS GAZE CUEING

Figure 5: Results in Cyclops condition (n = 53)

- Faster RT's in response to valid cues compared to neutral and invalid cues were found all at the 600 and 1005ms CTOA's (p < 0.01 for all comparisons).
- As in the other conditions, overall RT's decreased as CTOA increased (p < 0.01).

OVERALL RT'S BETWEEN FACE CONDITIONS

- Analysis of overall RT's revealed significant differences between Face conditions (p < 0.01).
- Overall RTs were slowest in the **Cyclops** condition and fastest in the **2-Eye** condition.

