MATH 1010 Assignment 1 Winter 2008

1. Solve each of the following equations for x :
(a) $-5(2-x)+3(1-2 x)=12 x+1$
(b) $\frac{3 x}{-4}+2(x-5)=\frac{3(1-2 x)}{2}-x$
(c) $6-7(3-x)+4 x=2(x-7)+9 x-1$
(d) $5-\frac{2-3 x}{2}=1-\frac{6 x+1}{4}$
2. Find all solutions of each of the following inequalities:
(a) $4 x-3-2(1+x) \geq x+12$
(b) $\frac{1}{2}(2-x)-\frac{1}{3}(5+x)<4$
(c) $\frac{3 x}{2}+2 x \leq \frac{8 x}{-3}-1$
3. For the line $5 x-2 y=7$, find each of the following and then draw the line.
(a) x-intercept;
(b) y-intercept;
(c) slope;
(d) the point on the line with y-coordinate equal to 3 .
4. Find in general form the equation of the line through the point $(-1,8)$ that is perpendicular to the line $6 y-5 x=-1$.
5. Find slope-intercept form of the equation of the line through the origin that is parallel to the line $\frac{11-8 x}{8}=-1+y$.
6. Find in general form the equation of the line parallel to the line $-6 x+3 y+1=0$ that passes through the point where the lines $-3 x+2 y=-8$ and $5 x+6 y=4$ meet.
7. Do the lines $7 x-3 y=-1$ and $2 x+4 y=7$ intersect? If yes, find the intersection point.
8. Draw the feasible set and find coordinates of all corner points of the region described by the following system of inequalities
$x+2 y \leq 4$
$x-y \leq 1$
$3 x+2 y \leq 6$
$x \geq 0, \quad y \geq 0$.
