Solution of MATH 1010 Assignment 1 Winter 2008

1. (a)

$$
\begin{aligned}
-10+5 x+3-6 x & =12 x+1 \\
-7-x & =12 x+1 \\
-13 x & =8 \\
x & =-\frac{8}{13}
\end{aligned}
$$

(b)

$$
\begin{aligned}
-3 x+8 x-40 & =6-16 x \\
5 x-40 & =12 x+1 \\
21 x & =46 \\
x & =\frac{46}{21}
\end{aligned}
$$

(c)

$$
\begin{aligned}
6-21+7 x+4 x & =2 x-14+9 x-1 \\
-15+11 x & =11 x-15 \\
0 & =0
\end{aligned}
$$

All real numbers satisfy this equation.
(d)

$$
\begin{aligned}
4\left(5-\frac{2-3 x}{2}\right) & =4\left(1-\frac{6 x+1}{4}\right) \\
20-4+6 x & =4-6 x-1 \\
12 x & =-13 \\
x & =-\frac{13}{12}
\end{aligned}
$$

2. Find all solutions of each of the following inequalities:
(a)

$$
\begin{aligned}
4 x-3-2-2 x & \geq x+12 \\
2 x-5 & \geq x+12 \\
x & \geq 17
\end{aligned}
$$

(b)

$$
\begin{aligned}
6\left(\frac{1}{2}(2-x)-\frac{1}{3}(5+x)\right) & <6(4) \\
3(2-x)-2(5+x) & <24 \\
6-3 x-10-2 x & <24 \\
-5 x & <28 \\
x & >-\frac{28}{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
6\left(\frac{3 x}{2}+2 x\right) & \leq 6\left(\frac{8 x}{-3}-1\right) \\
3(3 x)+6(2 x) & \leq-2(8 x)-6(1) \\
9 x+12 x & \leq-16 x-6 \\
37 x & \leq-6 \\
x & \leq-\frac{6}{37}
\end{aligned}
$$

3. For the line $5 x-2 y=7$, find each of the following and then draw the line.
(a) Set $y=0$ then, $\quad 5 x-2(0)=7 \quad$ so $\quad x=\frac{7}{5}$.
(b) Set $x=0$ then, $\quad 5(0)-2 y=7 \quad$ so $\quad y=-\frac{7}{2}$.
(c) We write the equation in the form

$$
\begin{aligned}
-2 y & =-5 x+7 \\
y & =\frac{5}{2} x-\frac{7}{2}
\end{aligned}
$$

Therefore the slope of the line is $\frac{5}{2}$.
(d) When we set $y=3$,

$$
\begin{aligned}
5 x-2(3) & =7 \\
5 x & =13 \\
x & =\frac{13}{5}
\end{aligned}
$$

Therefore the point is $\left(\frac{13}{5}, 3\right)$.

4. We write the equation $6 y-5 x=-1$ in the form

$$
\begin{aligned}
6 y & =5 x-1 \\
y & =\frac{5}{6} x-\frac{1}{6}
\end{aligned}
$$

Page 2

Therefore the slope of this line is $m_{1}=\frac{5}{6}$. Let m_{2} be the slope of the new line then must $m_{1} m_{2}=-1$ i.e. $\frac{5}{6} m_{2}=-1$ which means $m_{2}=-\frac{6}{5}$; so the equation of the new line is

$$
\begin{array}{r}
y-8=-\frac{6}{5}(x+1) \\
y=-\frac{6}{5} x+\frac{34}{5} \\
{\left[\begin{array}{l}
\text { or } \quad 6 x+5 y=34
\end{array}\right]}
\end{array}
$$

5. We write the equation $\frac{11-8 x}{8}=-1+y$ in the form

$$
\begin{aligned}
\frac{11}{8}-x & =-1+y \\
y & =-x+\frac{19}{8}
\end{aligned}
$$

Therefore the slope of this line is $m_{1}=-1$. Let m_{2} be the slope of the new line then must $m_{1}=m_{2}$ which means $m_{2}=-1$; so the equation of the new line is

$$
\begin{aligned}
y-0 & =-1(x-0) \\
y & =-x
\end{aligned}
$$

6. When we write $-6 x+3 y+1=0$ in the form $y=2 x-\frac{1}{3}$, we see that its slope is 2 . This is also the slope of the required line. i.e. $m=2$. On the other hand in order to find the point of intersection of the two given lines, we multiply the first equation by -3 , so the equations become:

$$
\begin{aligned}
& 9 x-6 y=24 \\
& 5 x+6 y=4
\end{aligned}
$$

When we add these equations,

$$
\begin{aligned}
14 x & =28 \\
x & =2
\end{aligned}
$$

Substitution of $x=2$ into $-3 x+2 y=-8$ gives

$$
\begin{aligned}
-3(2)+2 y & =-8 \\
y & =-1
\end{aligned}
$$

Therefore the point of intersection is $(2,-1)$. Now the equation of the line with slope $m=2$ through the point $(2,-1)$ is

$$
\begin{gathered}
y-(-1)=2(x-2) \\
y=2 x-5 \\
{\left[\begin{array}{c}
\text { or }
\end{array} 2 x-y=5\right]}
\end{gathered}
$$

7. In order to find possible intersection point, we multiply the first equation by 4 and the second equation by3, so the equations become:

$$
\begin{aligned}
28 x-12 y & =-4 \\
6 x+12 y & =21
\end{aligned}
$$

When we add these equations,

$$
\begin{aligned}
34 x & =17 \\
x & =\frac{17}{34}=\frac{1}{2}
\end{aligned}
$$

Page 3

Substitution of $x=\frac{1}{2}$ into $2 x+4 y=7$ gives

$$
\begin{aligned}
2\left(\frac{1}{2}\right)+4 y & =7 \\
y & =\frac{3}{2}
\end{aligned}
$$

Therefore the point of intersection is $\left(\frac{1}{2}, \frac{3}{2}\right)$.
8. We need to find two points on each border lines:

$$
\begin{aligned}
x+2 y=4 & \Rightarrow \quad(4,0),(0,2) \\
x-y=1 & \Rightarrow \quad(1,0),(0,-1) \\
3 x+2 y=6 & \Rightarrow \quad(2,0),(0,3)
\end{aligned}
$$

In order to find the corner point B where the two lines $x-y=1$ and $3 x+2 y=6$ meet, we multiply $x-y=1$ by 2 and add to $3 x+2 y=6$ to get $x=\frac{8}{5}$ and then substitution gives $y=\frac{3}{5}$. Hence the coordinates of B are $\left(\frac{8}{5}, \frac{3}{5}\right)$.

In order to find the corner point C where the two lines $x+2 y=4$ and $3 x+2 y=6$ meet, we multiply $x+2 y=4$ by -1 and add to $3 x+2 y=6$ to get $x=1$ and then substitution gives $y=\frac{3}{2}$. Hence the coordinates of C are $\left(1, \frac{3}{2}\right)$.
Therefore $\left\{(0,0),(1,0),\left(\frac{8}{5}, \frac{3}{5}\right),\left(1, \frac{3}{2}\right),(0,2)\right\}$ are all corner points.

