Attempt all questions and show all your work. Attach to Honesty Declaration Form.

1. Use mathematical induction on integer n to prove each of the following:
(a) $1(4)+2(5)+3(6)+\cdots+n(n+3)=\frac{1}{3}(n)(n+1)(n+5)$ for $n \geq 1$;
(b) $\quad 3^{n+1}(n+2)!\geq 2^{n}(n+3)$! for $n \geq 0$;
(c) $\quad\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{2(n+2)}{3(n+1)}$ for $n \geq 2$;
(d) $2^{3 n+2}+3^{6 n+1}$ is divisible by 7 for $n \geq 1$.

Solution:

(a) Let $P(n)$ be the statement $1(4)+2(5)+3(6)+\cdots+n(n+3)=\frac{1}{3}(n)(n+1)(n+5)$ for $n \geq 1$.
If $n=1$, then $P(1)$ is true because $1(4)=4$ and $\frac{1}{3}(1)(2)(6)=4$.
We assume that for $n=k, P(k)$ is valid, that is

$$
\begin{equation*}
1(4)+2(5)+3(6)+\cdots+k(k+3)=\frac{1}{3}(k)(k+1)(k+5) \tag{1}
\end{equation*}
$$

We need to prove that for $n=k+1, P(k+1)$ is valid that is

$$
\begin{equation*}
1(4)+2(5)+3(6)+\cdots+(k+1)(k+4)=\frac{1}{3}(k+1)(k+2)(k+6) . \tag{*}
\end{equation*}
$$

But

$$
\begin{aligned}
\text { L.H.S. of }(*)= & (4)+2(5)+3(6)+\cdots+(k+1)(k+4) \\
& =[1(4)+2(5)+3(6)+\cdots+k(k+3)]+(k+1)(k+4) \\
& =\frac{1}{3}(k)(k+1)(k+5)+(k+1)(k+4) \quad \text { by }(1) \\
& =\frac{1}{3}(k+1)[k(k+5)+3(k+4)] \\
& =\frac{1}{3}(k+1)\left[k^{2}+8 k+12\right] \\
& =\frac{1}{3}(k+1)[(k+2)(k+6)] \\
& =\text { R.H.S. }
\end{aligned}
$$

Therefore by the principle of mathematical induction $P(n)$ is valid for all $n \geq 1$.
(b) Let $P(n)$ be the statement " $3^{n+1}(n+2)$! $\geq 2^{n}(n+3)$! for $n \geq 0$ ".

If $n=0$, then $P(0)$ is true because $3^{0+1}(0+2)!=3(2)=6$ and $2^{0}(0+3)!=1(6)=6$.
We assume that for $n=k, P(k)$ is valid, that is

$$
\begin{equation*}
3^{k+1}(k+2)!\geq 2^{k}(k+3)! \tag{1}
\end{equation*}
$$

We need to prove that for $n=k+1, P(k+1)$ is valid that is

$$
\begin{equation*}
3^{k+2}(k+3)!\geq 2^{k+1}(k+4)! \tag{*}
\end{equation*}
$$

But

$$
\begin{aligned}
3^{k+2}(k+3)!= & 3\left(3^{k+1}\right)[(k+3)(k+2)!] \\
& =3(k+3)\left[3^{k+1}(k+2)!\right] \\
& \geq 3(k+3)\left[2^{k}(k+3)!\right] \quad \text { by }(1) \\
& \geq 2(k+4)\left[2^{k}(k+3)!\right] \quad \text { because } 3(k+3) \geq 2(k+4) \quad \text { (see below for the reason) } \\
& =2\left(2^{k}\right)[(k+4)(k+3)! \\
& =2^{k+1}(k+4)!
\end{aligned}
$$

Hence $3^{k+2}(k+3)!\geq 2^{k+1}(k+4)$. .
Reason for $3(k+3) \geq 2(k+4)$:

$$
3(k+3) \geq 2(k+4) \Leftrightarrow 3 k+9 \geq 2 k+8 \Leftrightarrow k \geq-1 \text { which is true because } k \geq 0
$$

Therefore by the principle of mathematical induction $P(n)$ is valid for all $n \geq 0$.
(c) Let $P(n)$ be the statement " $\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{2(n+2)}{3(n+1)}$ for $n \geq 2 "$.
If $n=2$, then $P(2)$ is true because $1-\frac{1}{3^{2}}=\frac{8}{9}$ and $\frac{2(2+2)}{3(2+1)}=\frac{8}{9}$.
We assume that for $n=k, P(k)$ is valid, that is

$$
\begin{equation*}
\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)=\frac{2(k+2)}{3(k+1)} \tag{1}
\end{equation*}
$$

We need to prove that for $n=k+1, P(k+1)$ is valid that is

$$
\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(k+2)^{2}}\right)=\frac{2(k+3)}{3(k+2)}
$$

But

$$
\begin{aligned}
& \left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(k+2)^{2}}\right) \\
& =\left[\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{5^{2}}\right) \cdots\left(1-\frac{1}{(k+1)^{2}}\right)\right]\left[1-\frac{1}{(k+2)^{2}}\right] \\
& =\frac{2(k+2)}{3(k+1)}\left[1-\frac{1}{(k+2)^{2}}\right] \quad \text { by }(1) \\
& =\frac{2(k+2)}{3(k+1)}\left[\frac{(k+2)^{2}-1}{(k+2)^{2}}\right] \\
& =\frac{2(k+2)}{3(k+1)}\left[\frac{k^{2}+4 k+3}{(k+2)^{2}}\right] \\
& =\frac{2(k+2)}{3(k+1)}\left[\frac{(k+1)(k+3)}{(k+2)^{2}}\right] \\
& =\frac{2(k+3)}{3(k+2)} .
\end{aligned}
$$

Therefore by the principle of mathematical induction $P(n)$ is valid for all $n \geq 2$.
(d) Let $P(n)$ be the statement " $2^{3 n+2}+3^{6 n+1}$ is divisible by 7 for $n \geq 1$ ".

If $n=1$, then $P(1)$ is true because $2^{5}+3^{7}=32+2187=2219=7(317)$ which is divisible by 7 .
We assume that for $n=k, P(k)$ is valid, that is $2^{3 k+2}+3^{6 k+1}$ is divisible by 7 . We need to prove that for $n=k+1, P(k+1)$ is valid that is $2^{3 k+5}+3^{6 k+7}$ is divisible by 7.

But

$$
\begin{aligned}
2^{3 k+5}+3^{6 k+7} & =2^{3}\left(2^{3 k+2}\right)+3^{6}\left(3^{6 k+1}\right) \\
& =8\left(2^{3 k+2}\right)+729\left(3^{6 k+1}\right) \\
& =\left[8\left(2^{3 k+2}\right)+8\left(3^{6 k+1}\right)\right]+\left[721\left(3^{6 k+1}\right)\right] \\
& =8\left[2^{3 k+2}+3^{6 k+1}\right]+\left[7(103)\left(3^{6 k+1}\right)\right]
\end{aligned}
$$

Now by induction hypothesis $2^{3 k+2}+3^{6 k+1}$ is divisible 7 and also $7(103)\left(3^{6 k+1}\right)$ is divisible by 7 , therefore the right hand side is divisible by 7 , and as a result the left hand side, that is $2^{3 k+5}+3^{6 k+7}$, is divisible by 7 .
Therefore by the principle of mathematical induction $P(n)$ is true for all $n \geq 1$.
2. Simplify as much as possible using properties of sigma notation.

$$
\sum_{n=0}^{1000}(n+1)^{6}-\sum_{n=2}^{1000} 2(n+1)^{6}+\sum_{n=1}^{999}\left[(n+2)^{6}+1\right]
$$

Solution:

First we note that $\sum_{n=0}^{1000}(n+1)^{6}=(0+1)^{6}+(1+1)^{6}+\sum_{n=2}^{1000}(n+1)^{6}=65+\sum_{n=2}^{1000}(n+1)^{6}$ and

$$
\begin{aligned}
\sum_{n=1}^{999}\left[(n+2)^{6}+1\right] & =\sum_{n=2}^{1000}\left[(n+1)^{6}+1\right] \quad(\text { by } n \rightarrow n-1) \\
& =\sum_{n=2}^{1000}(n+1)^{6}+\sum_{n=2}^{1000} 1 \\
& =\sum_{n=2}^{1000}(n+1)^{6}+(1000-2+1) \\
& =\sum_{n=2}^{1000}(n+1)^{6}+999
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{n=0}^{1000}(n+1)^{6}-\sum_{n=2}^{1000} 2(n+1)^{6}+\sum_{n=1}^{999}\left[(n+2)^{6}+1\right] \\
& =65+\sum_{n=2}^{1000}(n+1)^{6}-2 \sum_{n=2}^{1000}(n+1)^{6}+\sum_{n=2}^{1000}(n+1)^{6}+999 \\
& =65+999 \\
& =1064
\end{aligned}
$$

3. Identities $\sum_{k=1}^{m} k=\frac{1}{2}[m(m+1)], \quad \sum_{k=1}^{m} k^{2}=\frac{1}{6}[m(m+1)(2 m+1)]$ and $\sum_{k=1}^{m} k^{3}=\frac{1}{4}\left[m^{2}(m+1)^{2}\right]$ are given. Use the identities to evaluate the sum $\sum_{\ell=100}^{110}\left[(\ell-100)^{3}+(\ell-99)^{2}-4\right]$.

Solution:

$$
\begin{aligned}
& \left.\sum_{\ell=100}^{110}\left[(\ell-100)^{3}+(\ell-99)^{2}-4\right] \quad \text { (replacying } \ell \text { by } \ell+100\right) \\
& =\sum_{\ell=100-100}^{110-100}\left[(\ell+100-100)^{3}+(\ell+100-99)^{2}-4\right] \\
& =\sum_{\ell=0}^{10}\left[\ell^{3}+(\ell+1)^{2}-4\right] \\
& =\sum_{\ell=0}^{10} \ell^{3}+\sum_{\ell=0}^{10}(\ell+1)^{2}-\sum_{\ell=0}^{10} 4 \quad \text { (replacying } \ell \text { by } \ell-1 \text { in the middle sigma) } \\
& =\sum_{\ell=0}^{10} \ell^{3}+\sum_{\ell=0+1}^{10+1} \ell^{2}-\sum_{\ell=0}^{10} 4 \\
& =0^{3}+\sum_{\ell=1}^{10} \ell^{3}+\sum_{\ell=1}^{11} \ell^{2}-4 \sum_{\ell=0}^{10} 1 \\
& =0+\frac{1}{4}\left[(10)^{2}(11)^{2}\right]+\frac{1}{6}[(11)(12)(2(11)+1)]-4(10-0+1) \\
& =0+3025+506-44 \\
& =3487
\end{aligned}
$$

4. Find all solutions of the following equation. Express your answers in polar form.

$$
\left(x^{4}+6 x^{2}+9\right)\left(x^{4}+x^{3}+5 x^{2}+4 x+4\right)=0
$$

Hint: In the right bracket consider $5 x^{2}$ as $x^{2}+4 x^{2}$ and then solve it by factoring.

Solution: $\left(x^{4}+6 x^{2}+9\right)\left(x^{4}+x^{3}+5 x^{2}+4 x+4\right)=0$ implies either $x^{4}+6 x^{2}+9=0$ or $x^{4}+x^{3}+5 x^{2}+4 x+4=0$.
Now if $x^{4}+6 x^{2}+9=0$ then $\left(x^{2}+3\right)^{2}=0$, so $x^{2}+3=0$ which means $x= \pm \sqrt{3} i$.
If $x^{4}+x^{3}+5 x^{2}+4 x+4=0$ then $x^{4}+x^{3}+x^{2}+4 x^{2}+4 x+4=0$ and by factoring we get $x^{2}\left(x^{2}+x+1\right)+4\left(x^{2}+x+1\right)=0$ and again by factoring we get $\left(x^{2}+x+1\right)\left(x^{2}+4\right)=0$.
Therefore either $x^{2}+x+1=0$, which means $x=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1}{2} \pm \frac{\sqrt{3}}{2} i$; or $x^{2}+4=0$ which means $x= \pm 2 i$.
Hence all solutions, in polar form, are:
$\sqrt{3} i=\sqrt{3}\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right),-\sqrt{3} i=\sqrt{3}\left(\cos \frac{-\pi}{2}+i \sin \frac{-\pi}{2}\right)\left(\right.$ or $\left.\sqrt{3}\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)\right)$, $\frac{-1}{2}+\frac{\sqrt{3}}{2} i=1\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right), \quad \frac{-1}{2}-\frac{\sqrt{3}}{2} i=1\left(\cos \frac{-2 \pi}{3}+i \sin \frac{-2 \pi}{3}\right)\left(\right.$ or $\left.1\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)\right)$,

$$
2 i=2\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right),-2 i=2\left(\cos \frac{-\pi}{2}+i \sin \frac{-\pi}{2}\right)\left(\text { or } 2\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)\right)
$$

5. Express each of the following in simplified Cartesian form.
(a) $\left(\frac{\sqrt[4]{2}}{2}-\frac{\sqrt[4]{18}}{2} i\right)^{10}$;

Solution: There are two options; we can use either polar form or exponential form.
For this one we use polar form. Let $z=\frac{\sqrt[4]{2}}{2}-\frac{\sqrt[4]{18}}{2} i$. Then

$$
|z|=\sqrt{\left(\frac{\sqrt[4]{2}}{2}\right)^{2}+\left(\frac{-\sqrt[4]{18}}{2}\right)^{2}}=\sqrt{\frac{\sqrt{2}+3 \sqrt{2}}{4}}=\sqrt{\sqrt{2}}=\sqrt[4]{2} \text { and }
$$

$$
\tan \theta=\frac{-\sqrt[4]{18}}{\sqrt[4]{2}}=-\sqrt{3} \text { which means } \theta=\tan ^{-1}(-\sqrt{3})=\frac{-\pi}{3} \quad\left(\text { Or } \frac{5 \pi}{3}\right) . \text { Hence }
$$

$$
z=\sqrt[4]{2}\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right] . \text { Now }
$$

$$
z^{10}=\left(\frac{\sqrt[4]{2}}{2}-\frac{\sqrt[4]{18}}{2} i\right)^{10}=(\sqrt[4]{2})^{10}\left[\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right]^{10}
$$

$$
=(2)^{\frac{10}{4}}\left[\cos \left(-\frac{10 \pi}{3}\right)+i \sin \left(-\frac{10 \pi}{3}\right)\right](\text { since } \cos (-\alpha)=\cos \alpha \text { and } \sin (-\alpha)=-\sin \alpha)
$$

$$
=(2)^{\frac{5}{2}}\left[\cos \left(\frac{10 \pi}{3}\right)-i \sin \left(\frac{10 \pi}{3}\right)\right]
$$

$$
=(2)^{\frac{5}{2}}\left[\cos \left(2 \pi+\frac{4 \pi}{3}\right)-i \sin \left(2 \pi+\frac{4 \pi}{3}\right)\right]
$$

$$
=(2)^{\frac{5}{2}}\left[\cos \left(\frac{4 \pi}{3}\right)-i \sin \left(\frac{4 \pi}{3}\right)\right]
$$

$$
=4 \sqrt{2}\left[-\frac{1}{2}-i\left(-\frac{\sqrt{3}}{2}\right)\right]
$$

$$
=-2 \sqrt{2}+2 \sqrt{6} i
$$

(b) $\frac{1}{81}\left(\frac{1}{2 i}\right)^{11}(1-i)^{8}(-\sqrt{3}-3 i)^{8}$.

Solution: There are two options; we can use either polar form or exponential form. For this one we use exponential form. First note that

$$
\left(\frac{1}{2 i}\right)^{11}=\left(\frac{1}{2 i} \cdot \frac{-i}{-i}\right)^{11}=\left(-\frac{i}{2}\right)^{11}=-\frac{1}{2^{11}}(i)^{11}=-\frac{1}{2^{11}}\left(i^{2}\right)^{5} i=-\frac{1}{2^{11}}(-1)^{5} i=\frac{1}{2^{11}} i
$$

Let $z_{1}=1-i$. Then $\left|z_{1}\right|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$ and $\tan \theta_{1}=\frac{-1}{1}=-1$ which means $\theta_{1}=\tan ^{-1}(-1)=\frac{-\pi}{4} \quad\left(\operatorname{Or} \frac{7 \pi}{4}\right)$. Hence $z_{1}=1-i=\sqrt{2} e^{-\frac{\pi}{4} i}$. So then

$$
z_{1}^{8}=(1-i)^{8}=\left[\sqrt{2} e^{-\frac{\pi}{4} i}\right]^{8}=(\sqrt{2})^{8}\left[e^{-\frac{\pi}{4} i}\right]^{8}=2^{4} e^{-\frac{8 \pi}{4} i}=2^{4} e^{-2 \pi i}
$$

Also let $z_{2}=-\sqrt{3}-3 i$. Then $\left|z_{2}\right|=\sqrt{(-\sqrt{3})^{2}+(-3)^{2}}=\sqrt{12}=2 \sqrt{3}$ and $\tan \theta_{2}=\frac{-3}{-\sqrt{3}}=\sqrt{3}$; since both x and y are negative so it is in the third quadrant
and $\theta_{2}=\tan ^{-1}(\sqrt{3})=\frac{4 \pi}{3} \quad\left(\operatorname{Or}-\frac{2 \pi}{3}\right)$. Hence $z_{2}=-\sqrt{3}-3 i=2 \sqrt{3} e^{\frac{4 \pi}{3} i}$. So then

$$
z_{2}^{8}=(-\sqrt{3}-3 i)^{8}=\left[2 \sqrt{3} e^{\frac{4 \pi}{3} i}\right]^{8}=(2 \sqrt{3})^{8}\left[e^{\frac{4 \pi}{3} i}\right]^{8}=2^{8}\left(3^{4}\right) e^{\frac{32 \pi}{3} i}
$$

(Note that since $(-\sqrt{3}-3 i)^{8}=(\sqrt{3}+3 i)^{8}$, so another method is working with $(\sqrt{3}+3 i)^{8}$ instead.)
Now by substitution in the given expression we get:

$$
\begin{aligned}
\frac{1}{81}\left(\frac{1}{2 i}\right)^{11}(1-i)^{8}(-\sqrt{3}-3 i)^{8} & =\frac{1}{81}\left[\frac{1}{2^{11}} i\right]\left[2^{4} e^{-2 \pi i}\right]\left[2^{8}\left(3^{4}\right) e^{\frac{32 \pi}{3} i}\right] \\
& =\frac{1}{81}\left[\frac{1}{2^{11}} i\right]\left[2^{4}\left(2^{8}\right)\left(3^{4}\right)\right]\left[e^{-2 \pi i} e^{\frac{32 \pi}{3} i}\right] \\
& =(2 i)\left[e^{\left(-2 \pi+\frac{32 \pi}{3}\right) i}\right] \\
& =(2 i)\left[e^{\frac{26 \pi}{3} i}\right] \\
& =(2 i)\left[e^{\left(8 \pi+\frac{2 \pi}{3}\right) i}\right] \\
& =(2 i)\left[e^{\frac{2 \pi}{3} i}\right] \\
& =(2 i)\left[\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right] \\
& =(2 i)\left[-\frac{1}{2}+i\left(\frac{\sqrt{3}}{2}\right)\right] \\
& =-i+\sqrt{3} i^{2} \\
& =-\sqrt{3}-i
\end{aligned}
$$

6. Find all solutions of the equation $2 x^{5}+\frac{1}{16}=0$. Express all solutions in polar form, simplified as much as possible.

Solution: $x^{5}=-\frac{1}{32}=\frac{1}{32}(-1)=\frac{1}{32} e^{\pi i}=\frac{1}{32} e^{(2 k \pi+\pi) i}=\frac{1}{32} e^{(2 k+1) \pi i}$. Therefore all fifth roots
are of form $z_{k}=\left(\frac{1}{32} e^{(2 k+1) \pi i}\right)^{\frac{1}{5}}=\left(\frac{1}{32}\right)^{\frac{1}{5}}\left(e^{(2 k+1) \pi i}\right)^{\frac{1}{5}}=\frac{1}{2} e^{\frac{(2 k+1) \pi}{5} i}, \quad$ where $k=0,1,2,3,4$.
If $k=0$ then $z_{0}=\frac{1}{2} e^{\frac{\pi}{5} i}=\frac{1}{2}\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)$.
If $k=1$ then $z_{1}=\frac{1}{2} e^{\frac{3 \pi}{5} i}=\frac{1}{2}\left(\cos \frac{3 \pi}{5}+i \sin \frac{3 \pi}{5}\right)$.
If $k=2$ then $z_{2}=\frac{1}{2} e^{\frac{5 \pi}{5} i}=\frac{1}{2}(\cos \pi+i \sin \pi)=\frac{1}{2}(-1-i(0))=-\frac{1}{2}$.
If $k=3$ then $z_{3}=\frac{1}{2} e^{\frac{7 \pi}{5} i}=\frac{1}{2}\left(\cos \frac{7 \pi}{5}+i \sin \frac{7 \pi}{5}\right)$.
If $k=4$ then $z_{4}=\frac{1}{2} e^{\frac{9 \pi}{5} i}=\frac{1}{2}\left(\cos \frac{9 \pi}{5}+i \sin \frac{9 \pi}{5}\right)$.

