MATH 1210 Techniques of Classical and Linear Algebra Solutions to Assignment 2

- 1. Let $P(x) = 2x^5 9x^4 + 12x^3 4x^2 8x + 4$.
 - (a) Show that (1+i) is a zero of P(x).

Solution: We can compute that $(1+i)^2 = 1 + 2i + i^2 = 2i$, $(1+i)^3 = (1+i)^2(1+i) = 2i(1+i) = -2+2i$, $(1+i)^4 = ((1+i)^2)^2 = (2i)^2 = -4$, and $(1+i)^5 = (1+i)^4(1+i) = -4-4i$.

Alternatively, one can use the polar form $(1+i) = 2\left(\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)i\right)$ or the exponential form $(1+i) = 2e^{\frac{\pi}{4}i}$ to find the above powers.

In any case, we have that

$$P(1+i) = 2(1+i)^5 - 9(1+i)^4 + 12(1+i)^3 - 4(1+i)^2 - 8(1+i) + 4$$

= 2(-4-4i) - 9(-4) + 12(-2+2i) - 4(2i) - 8(1+i) + 4
= -8 - 8i + 36 - 24 + 24i - 8i - 8 - 8i + 4 = 0,

and so (1+i) is a root of P(x).

(b) Find all zeros of P(x).

Solution: Since P(x) has real coefficients and $x_1 = (1+i)$ is a zero of P(x), we have that $x_2 = \overline{1+i} = 1-i$ is also a zero of P(x). Therefore both (x - (1+i)) and (x - (1-i)) must be factors of P(x), which implies that P(x) is divisible by

$$(x - (1 + i))(x - (1 - i)) = (x - 1 - i)(x - 1 + i) = (x - 1)^2 - i^2 = x^2 - 2x + 2.$$

Using either long or synthetic division, we find that $P(x) = (x^2 - 2x + 2)(2x^3 - 5x^2 - 2x + 2)$. So in order to find the remaining zeros of P(x), we need to find the zeros of $Q(x) = 2x^3 - 5x^2 - 2x + 2$. Possible rational zeros are $\pm 1, \pm 2, \pm \frac{1}{2}$. Trial and error shows that $x_3 = \frac{1}{2}$ is a zero of $Q(x) \left(Q\left(\frac{1}{2}\right) = \frac{1}{4} - \frac{5}{4} - 1 + 2 = 0\right)$. Using either long or synthetic division, we can express Q(x) as $Q(x) = (2x - 1)(x^2 - 2x - 2)$. We can then find the last 2 zeros of P(x) by solving the quadratic equation $x^2 - 2x - 2 = 0$, which will bring us to $x_{4,5} = 1 \pm \sqrt{3}$. **Answer:** $x_{1,2} = 1 \pm i$, $x_3 = \frac{1}{2}$, $x_{4,5} = 1 \pm \sqrt{3}$.

- 2. Consider the equation $5x^7 9x^3 + 3x^2 + 4 = 4x^6 + 5x^4 4x^3 2$.
 - (a) Find the possible number of positive and the possible number of negative real solutions of this equation.

Solution: We first bring all the terms to the left in order to rewrite the equation as $5x^7 - 4x^6 - 5x^4 - 5x^3 + 3x^2 + 6 = 0$ and denote the polynomial in the left hand side by P(x). We can see that there are 2 sign changes in the coefficients of P(x), hence by the Decartes' Rules of Signs the equation has either 2 or no positive solutions. $P(-x) = -5x^7 - 4x^6 - 5x^4 + 5x^3 + 3x^2 + 6$ and since there is one sign change in the coefficients of P(-x), Decartes' Rules of Signs imply that the equation has exactly one negative solution.

(b) Prove that the above equation has at least four non-real solutions.

Solution: We discovered in part (a) that the equation has at most 2 positive solutions and exactly one negative solution, which means it has at most 3 real solutions. Because the degree of the polynomial P is 7, by the Fundamental Theorem of Algebra, the equation has 7 complex solutions counting multiplicities. If at most 3 of them are real numbers, it means that at least 7 - 3 = 4 of them are non-real numbers.

(c) Show that this equation has no solutions in the interval [-7, -3].

Solution: Using the Bounds Theorem, we find that every root x_0 of P(x) and hence every solution of our equation should satisfy $|x_0| < \frac{6}{5} + 1 = 2.2$. Therefore, there are no solutions to our equation with $|x| \ge 3$ and, in particular, there are no solutions in the interval [-7, -3].

Alternatively, one can use substitution to find that x = -1 is a solution to our equation (P(-1) = -5 - 4 - 5 + 5 + 3 + 6 = 0) and because in part (a) we obtained that there is exactly one negative solution, there are no other negative solutions. In particular, there are no solutions in the interval [-7, -3].

- 3. Let $P(x) = 10x^4 9x^3 + 7x^2 + 3x 2$.
 - (a) Use the Rational Roots Theorem to find all possible rational roots of P(x).

Solution: If $\frac{p}{q}$ is a root of P(x), then according to the Rational Roots Theorem we have that p|(-2) and q|10. Therefore, the possible rational roots are

$$\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{1}{10}$$

(b) Find all roots of P(x).

Solution: Using substitution, we can find that $P\left(-\frac{1}{2}\right) = \frac{10}{16} + \frac{9}{8} + \frac{7}{4} - \frac{3}{2} - 2 = 0$, so that $x_1 = -\frac{1}{2}$ is a root of P(x). Using long or synthetic division, we obtain that $P(x) = (2x+1)(5x^3 - 7x^2 + 7x - 2)$. Substituting into $5x^3 - 7x^2 + 7x - 2$, we find that $x_2 = \frac{2}{5}$ is a root $\left(\frac{8}{25} - \frac{28}{25} + \frac{14}{5} - 2 = 0\right)$, and then using long or synthetic division we obtain that $5x^3 - 7x^2 + 7x - 2 = (5x - 2)(x^2 - x + 1)$. Finally, we find the remaining roots of P(x) by solving the quadratic equation $x^2 - x + 1 = 0$, which yields $x_{3,4} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. **Answer:** $x_1 = -\frac{1}{2}$, $x_2 = \frac{2}{5}$, $x_{3,4} = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.

4. Consider the matrices

$$A = \begin{bmatrix} -1 & 1 & 4 \\ 3 & 2 & -2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 2 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 0 & 1 \\ 1 & -2 & 3 \\ 0 & 1 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$$

In parts (a)-(e) find the specified matrix when possible. If not possible, explain why.

Solution: (a) 3A - 4B is not possible to evaluate since A is a 2×3 matrix and B is a 3×2 matrix, so their sizes are different.

(b)
$$AB + 3D = \begin{bmatrix} -1 & 1 & 4 \\ 3 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 2 & 4 \end{bmatrix} + 3 \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 24 \\ -1 & -7 \end{bmatrix} + \begin{bmatrix} 3 & -3 \\ 9 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 10 & 21 \\ 8 & -7 \end{bmatrix}$$
(c) $BAC = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 1 & 4 \\ 3 & 2 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 1 & -2 & 3 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 & 10 \\ 8 & -6 & 5 \end{bmatrix}$

$$= \begin{bmatrix} -25 & 20 & -5 \\ 40 & -30 & 25 \\ 30 & -20 & 40 \end{bmatrix}$$

(d) CAB is not possible to evaluate since C is a $3 \times \underline{3}$ matrix, and A is a $\underline{2} \times 3$ matrix, which makes CA undefined as the inner dimensions don't match.

(e)
$$2DA - DB^T = D(2A - B^T) = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} \begin{pmatrix} 2 \begin{bmatrix} -1 & 1 & 4 \\ 3 & 2 & -2 \end{bmatrix} - \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ 2 & 4 \end{bmatrix}^T \end{pmatrix}$$

= $\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} -3 & 2 & 6 \\ 9 & -1 & -8 \end{bmatrix} = \begin{bmatrix} -12 & 3 & 14 \\ -9 & 6 & 18 \end{bmatrix}$

(f) Find a matrix X that satisfies the equation $2X^T + I_2 = D^3$.

Solution:
$$2X^{T} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}^{3} = \begin{bmatrix} -2 & -1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ -6 & -3 \end{bmatrix}$$
. Hence
 $X^{T} = \frac{1}{2} \left(\begin{bmatrix} -5 & 2 \\ -6 & -3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} -3 & 1 \\ -3 & -2 \end{bmatrix}$, and so $X = (X^{T})^{T} = \begin{bmatrix} -3 & -3 \\ 1 & -2 \end{bmatrix}$.

(g) Find the dimensions of a matrix Y that would allow for the product $YCA^{T}Y$ to be defined.

Solution: Let Y be an $m \times n$ matrix. Since C is a 3×3 matrix, for YC to be defined we need that n = 3. Note that because A is a 2×3 matrix, A^T is a 3×2 matrix and so CA^T is defined. Finally, for A^TY to be defined, we need that 2 = m, which means that Y should be a 2×3 matrix.

5. Let $\mathbf{u} = \langle 2, 1, 3 \rangle$ and $\mathbf{v} = \langle 2, -5, -3 \rangle$. Find each of the following.

(a) |2u + v|

Solution: $|2\mathbf{u} + \mathbf{v}| = |\langle 6, -3, 3 \rangle| = \sqrt{6^2 + (-3)^2 + 3^2} = \sqrt{54} = 3\sqrt{6}$

(b) the angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$

Solution: $\mathbf{u} + \mathbf{v} = \langle 4, -4, 0 \rangle$, $\mathbf{u} - \mathbf{v} = \langle 0, 6, 6 \rangle$. If θ is the angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$, then $\cos(\theta) = \frac{(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}{|\mathbf{u} + \mathbf{v}| |\mathbf{u} - \mathbf{v}|} = \frac{-24}{4\sqrt{2} \cdot 6\sqrt{2}} = -\frac{1}{2}$. Therefore, $\theta = \frac{2\pi}{3}$.

(c) the vector of length 3 in the direction opposite to \mathbf{v}

Solution: The vector we are looking for is

$$-3\hat{\mathbf{v}} = -3\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{-3}{\sqrt{2^2 + (-5)^2 + (-3)^2}} \langle 2, -5, -3 \rangle = \left\langle -\frac{6}{\sqrt{38}}, \frac{15}{\sqrt{38}}, \frac{9}{\sqrt{38}} \right\rangle.$$

- 6. Consider the plane $\pi : 2x + 3y z = -5$, the line $\ell : x = -1 t$, y = 6 + 4t, z = 1, and the point P(4, -2, 3).
 - (a) Determine whether the plane π intersects with the line ℓ and in case it does, find the point(s) of intersection.

Solution: Common points of the plane π and the line ℓ should satisfy both the equations of π and ℓ . So we need to substitute x = -1 - t, y = 6 + 4t, z = 1 into 2x + 3y - z and find the value(s) of t (if any) for which it is equal to -5.

 $2(-1-t) + 3(6+4t) - 1 = -2 - 2t + 18 + 12t - 1 = -5 \implies 10t = -20 \implies t = -2.$

Therefore, the plane π intersects the line ℓ at the point that corresponds to t = -2.

x = -1 - (-2) = 1, y = 6 + 4(-2) = -2, z = 1,

and so the point of intersection is (1, -2, 1).

(b) Find parametric and, if possible, symmetric equations of the line that is perpendicular to the plane π and passes through the point P.

Solution: If the line is perpendicular to the plane π , then it is parallel to the normal $\mathbf{n} = \langle 2, 3, -1 \rangle$ of π . Because our line should also pass through P(4, -2, 3), its parametric equations are

$$x = 4 + 2t, y = -2 + 3t, z = 3 - t.$$

Since none of the components of \mathbf{n} is zero, we can also find symmetric equations of the line:

$$\frac{x-4}{2} = \frac{y+2}{3} = \frac{z-3}{-1}.$$

(c) Find an equation of the plane that is perpendicular to the plane π , parallel to the line ℓ , and passes through the point P.

Solution: Because our plane should be perpendicular to the plane $\pi : 2x + 3y - z = -5$, its normal \mathbf{n}_1 has to be perpendicular to the normal vector $\mathbf{n} = \langle 2, 3, -1 \rangle$ of π . The condition that the plane is perpendicular to the line $\ell : x = -1 - t$, y = 6 + 4t, z = 1 implies that \mathbf{n}_1 has to be perpendicular to the vector $\mathbf{u} = \langle -1, 4, 0 \rangle$ that parallel to ℓ . Therefore, we can take $\mathbf{n}_1 = \mathbf{n} \times \mathbf{u}$.

$$\mathbf{n}_{1} = \langle 2, 3, -1 \rangle \times \langle -1, 4, 0 \rangle = \begin{vmatrix} \mathbf{\hat{i}} & \mathbf{\hat{j}} & \mathbf{\hat{k}} \\ 2 & 3 & -1 \\ -1 & 4 & 0 \end{vmatrix} = \begin{vmatrix} 3 & -1 \\ 4 & 0 \end{vmatrix} \mathbf{\hat{i}} - \begin{vmatrix} 2 & -1 \\ -1 & 0 \end{vmatrix} \mathbf{\hat{j}} + \begin{vmatrix} 2 & 3 \\ -1 & 4 \end{vmatrix} \mathbf{\hat{k}}$$
$$= (0 - (-4))\mathbf{\hat{i}} - (0 - 1)\mathbf{\hat{j}} + (8 - (-3))\mathbf{\hat{k}} = 4\mathbf{\hat{i}} + \mathbf{\hat{j}} + 11\mathbf{\hat{k}} = \langle 4, 1, 11 \rangle.$$

So our plane should pass through the point P(4, -2, 3) and have a normal $\langle 4, 1, 11 \rangle$ which leads to the following equation:

 $4(x-4) + (y+2) + 11(z-3) = 0 \quad \iff \quad 4x + y + 11z - 47 = 0.$