MATH 1210 Techniques of Classical and Linear Algebra

Solutions to Assignment 2

1. Let $P(x)=2 x^{5}-9 x^{4}+12 x^{3}-4 x^{2}-8 x+4$.
(a) Show that $(1+i)$ is a zero of $P(x)$.

Solution: We can compute that $(1+i)^{2}=1+2 i+i^{2}=2 i,(1+i)^{3}=(1+i)^{2}(1+i)=$ $2 i(1+i)=-2+2 i,(1+i)^{4}=\left((1+i)^{2}\right)^{2}=(2 i)^{2}=-4$, and $(1+i)^{5}=(1+i)^{4}(1+i)=-4-4 i$.

Alternatively, one can use the polar form $(1+i)=2\left(\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right) i\right)$ or the exponential form $(1+i)=2 e^{\frac{\pi}{4} i}$ to find the above powers.

In any case, we have that

$$
\begin{aligned}
P(1+i) & =2(1+i)^{5}-9(1+i)^{4}+12(1+i)^{3}-4(1+i)^{2}-8(1+i)+4 \\
& =2(-4-4 i)-9(-4)+12(-2+2 i)-4(2 i)-8(1+i)+4 \\
& =-8-8 i+36-24+24 i-8 i-8-8 i+4=0
\end{aligned}
$$

and so $(1+i)$ is a root of $P(x)$.
(b) Find all zeros of $P(x)$.

Solution: Since $P(x)$ has real coefficients and $x_{1}=(1+i)$ is a zero of $P(x)$, we have that $x_{2}=\overline{1+i}=1-i$ is also a zero of $P(x)$. Therefore both $(x-(1+i))$ and $(x-(1-i))$ must be factors of $P(x)$, which implies that $P(x)$ is divisible by

$$
(x-(1+i))(x-(1-i))=(x-1-i)(x-1+i)=(x-1)^{2}-i^{2}=x^{2}-2 x+2 .
$$

Using either long or synthetic division, we find that $P(x)=\left(x^{2}-2 x+2\right)\left(2 x^{3}-5 x^{2}-2 x+2\right)$. So in order to find the remaining zeros of $P(x)$, we need to find the zeros of $Q(x)=2 x^{3}-5 x^{2}-2 x+2$. Possible rational zeros are $\pm 1, \pm 2, \pm \frac{1}{2}$. Trial and error shows that $x_{3}=\frac{1}{2}$ is a zero of $Q(x)\left(Q\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{5}{4}-1+2=0\right)$. Using either long or synthetic division, we can express $Q(x)$ as $Q(x)=(2 x-1)\left(x^{2}-2 x-2\right)$. We can then find the last 2 zeros of $P(x)$ by solving the quadratic equation $x^{2}-2 x-2=0$, which will bring us to $x_{4,5}=1 \pm \sqrt{3}$.
Answer: $x_{1,2}=1 \pm i, x_{3}=\frac{1}{2}, x_{4,5}=1 \pm \sqrt{3}$.
2. Consider the equation $5 x^{7}-9 x^{3}+3 x^{2}+4=4 x^{6}+5 x^{4}-4 x^{3}-2$.
(a) Find the possible number of positive and the possible number of negative real solutions of this equation.

Solution: We first bring all the terms to the left in order to rewrite the equation as $5 x^{7}-4 x^{6}-5 x^{4}-5 x^{3}+3 x^{2}+6=0$ and denote the polynomial in the left hand side by $P(x)$. We can see that there are 2 sign changes in the coefficients of $P(x)$, hence by the Decartes' Rules of Signs the equation has either 2 or no positive solutions.
$P(-x)=-5 x^{7}-4 x^{6}-5 x^{4}+5 x^{3}+3 x^{2}+6$ and since there is one sign change in the coefficients of $P(-x)$, Decartes' Rules of Signs imply that the equation has exactly one negative solution.
(b) Prove that the above equation has at least four non-real solutions.

Solution: We discovered in part (a) that the equation has at most 2 positive solutions and exactly one negative solution, which means it has at most 3 real solutions. Because the degree of the polynomial P is 7 , by the Fundamental Theorem of Algebra, the equation has 7 complex solutions counting multiplicities. If at most 3 of them are real numbers, it means that at least $7-3=4$ of them are non-real numbers.
(c) Show that this equation has no solutions in the interval $[-7,-3]$.

Solution: Using the Bounds Theorem, we find that every root x_{0} of $P(x)$ and hence every solution of our equation should satisfy $\left|x_{0}\right|<\frac{6}{5}+1=2.2$. Therefore, there are no solutions to our equation with $|x| \geq 3$ and, in particular, there are no solutions in the interval $[-7,-3]$.

Alternatively, one can use substitution to find that $x=-1$ is a solution to our equation $(P(-1)=-5-4-5+5+3+6=0)$ and because in part (a) we obtained that there is exactly one negative solution, there are no other negative solutions. In particular, there are no solutions in the interval $[-7,-3]$.
3. Let $P(x)=10 x^{4}-9 x^{3}+7 x^{2}+3 x-2$.
(a) Use the Rational Roots Theorem to find all possible rational roots of $P(x)$.

Solution: If $\frac{p}{q}$ is a root of $P(x)$, then according to the Rational Roots Theorem we have that $p \mid(-2)$ and $q \mid 10$. Therefore, the possible rational roots are

$$
\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{5}, \pm \frac{2}{5}, \pm \frac{1}{10}
$$

(b) Find all roots of $P(x)$.

Solution: Using substitution, we can find that $P\left(-\frac{1}{2}\right)=\frac{10}{16}+\frac{9}{8}+\frac{7}{4}-\frac{3}{2}-2=0$, so that $x_{1}=-\frac{1}{2}$ is a root of $P(x)$. Using long or synthetic division, we obtain that $P(x)=(2 x+1)\left(5 x^{3}-7 x^{2}+7 x-2\right)$. Substituting into $5 x^{3}-7 x^{2}+7 x-2$, we find that $x_{2}=\frac{2}{5}$ is a root $\left(\frac{8}{25}-\frac{28}{25}+\frac{14}{5}-2=0\right)$, and then using long or synthetic division we obtain that $5 x^{3}-7 x^{2}+7 x-2=(5 x-2)\left(x^{2}-x+1\right)$. Finally, we find the remaining roots of $P(x)$ by solving the quadratic equation $x^{2}-x+1=0$, which yields $x_{3,4}=\frac{1 \pm \sqrt{-3}}{2}=$ $\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$.
Answer: $x_{1}=-\frac{1}{2}, x_{2}=\frac{2}{5}, x_{3,4}=\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$.
4. Consider the matrices

$$
A=\left[\begin{array}{crr}
-1 & 1 & 4 \\
3 & 2 & -2
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & -3 \\
0 & 5 \\
2 & 4
\end{array}\right], \quad C=\left[\begin{array}{rrr}
2 & 0 & 1 \\
1 & -2 & 3 \\
0 & 1 & 2
\end{array}\right], \quad D=\left[\begin{array}{rr}
1 & -1 \\
3 & 0
\end{array}\right] .
$$

In parts (a)-(e) find the specified matrix when possible. If not possible, explain why.

Solution: (a) $3 A-4 B$ is not possible to evaluate since A is a 2×3 matrix and B is a 3×2 matrix, so their sizes are different.
(b) $A B+3 D=\left[\begin{array}{ccc}-1 & 1 & 4 \\ 3 & 2 & -2\end{array}\right]\left[\begin{array}{rr}1 & -3 \\ 0 & 5 \\ 2 & 4\end{array}\right]+3\left[\begin{array}{cr}1 & -1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}7 & 24 \\ -1 & -7\end{array}\right]+\left[\begin{array}{rr}3 & -3 \\ 9 & 0\end{array}\right]$ $=\left[\begin{array}{cc}10 & 21 \\ 8 & -7\end{array}\right]$
(c) $B A C=\left[\begin{array}{rr}1 & -3 \\ 0 & 5 \\ 2 & 4\end{array}\right]\left[\begin{array}{ccc}-1 & 1 & 4 \\ 3 & 2 & -2\end{array}\right]\left[\begin{array}{rrr}2 & 0 & 1 \\ 1 & -2 & 3 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ 0 & 5 \\ 2 & 4\end{array}\right]\left[\begin{array}{ccr}-1 & 2 & 10 \\ 8 & -6 & 5\end{array}\right]$
$=\left[\begin{array}{ccc}-25 & 20 & -5 \\ 40 & -30 & 25 \\ 30 & -20 & 40\end{array}\right]$
(d) $C A B$ is not possible to evaluate since C is a $3 \times \underline{3}$ matrix, and A is a $\underline{2} \times 3$ matrix, which makes $C A$ undefined as the inner dimensions don't match.
(e) $2 D A-D B^{T}=D\left(2 A-B^{T}\right)=\left[\begin{array}{rr}1 & -1 \\ 3 & 0\end{array}\right]\left(2\left[\begin{array}{ccc}-1 & 1 & 4 \\ 3 & 2 & -2\end{array}\right]-\left[\begin{array}{rr}1 & -3 \\ 0 & 5 \\ 2 & 4\end{array}\right]^{T}\right)$
$=\left[\begin{array}{rr}1 & -1 \\ 3 & 0\end{array}\right]\left[\begin{array}{ccc}-3 & 2 & 6 \\ 9 & -1 & -8\end{array}\right]=\left[\begin{array}{ccc}-12 & 3 & 14 \\ -9 & 6 & 18\end{array}\right]$
(f) Find a matrix X that satisfies the equation $2 X^{T}+I_{2}=D^{3}$.

Solution: $2 X^{T}+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}1 & -1 \\ 3 & 0\end{array}\right]^{3}=\left[\begin{array}{cc}-2 & -1 \\ 3 & -3\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 3 & 0\end{array}\right]=\left[\begin{array}{rr}-5 & 2 \\ -6 & -3\end{array}\right]$. Hence $X^{T}=\frac{1}{2}\left(\left[\begin{array}{rr}-5 & 2 \\ -6 & -3\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=\left[\begin{array}{rr}-3 & 1 \\ -3 & -2\end{array}\right]$, and so $X=\left(X^{T}\right)^{T}=\left[\begin{array}{cc}-3 & -3 \\ 1 & -2\end{array}\right]$.
(g) Find the dimensions of a matrix Y that would allow for the product $Y C A^{T} Y$ to be defined.

Solution: Let Y be an $m \times n$ matrix. Since C is a 3×3 matrix, for $Y C$ to be defined we need that $n=3$. Note that because A is a 2×3 matrix, A^{T} is a 3×2 matrix and so $C A^{T}$ is defined. Finally, for $A^{T} Y$ to be defined, we need that $2=m$, which means that Y should be a 2×3 matrix.
5. Let $\mathbf{u}=\langle 2,1,3\rangle$ and $\mathbf{v}=\langle 2,-5,-3\rangle$. Find each of the following.
(a) $|2 \mathbf{u}+\mathbf{v}|$

Solution: $|2 \mathbf{u}+\mathbf{v}|=|\langle 6,-3,3\rangle|=\sqrt{6^{2}+(-3)^{2}+3^{2}}=\sqrt{54}=3 \sqrt{6}$
(b) the angle between $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$

Solution: $\mathbf{u}+\mathbf{v}=\langle 4,-4,0\rangle, \mathbf{u}-\mathbf{v}=\langle 0,6,6\rangle$. If θ is the angle between $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$, then $\cos (\theta)=\frac{(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})}{|\mathbf{u}+\mathbf{v}||\mathbf{u}-\mathbf{v}|}=\frac{-24}{4 \sqrt{2} \cdot 6 \sqrt{2}}=-\frac{1}{2}$. Therefore, $\theta=\frac{2 \pi}{3}$.
(c) the vector of length 3 in the direction opposite to \mathbf{v}

Solution: The vector we are looking for is

$$
-3 \hat{\mathbf{v}}=-3 \frac{\mathbf{v}}{|\mathbf{v}|}=\frac{-3}{\sqrt{2^{2}+(-5)^{2}+(-3)^{2}}}\langle 2,-5,-3\rangle=\left\langle-\frac{6}{\sqrt{38}}, \frac{15}{\sqrt{38}}, \frac{9}{\sqrt{38}}\right\rangle .
$$

6. Consider the plane $\pi: 2 x+3 y-z=-5$, the line $\ell: x=-1-t, y=6+4 t, z=1$, and the point $P(4,-2,3)$.
(a) Determine whether the plane π intersects with the line ℓ and in case it does, find the point(s) of intersection.

Solution: Common points of the plane π and the line ℓ should satisfy both the equations of π and ℓ. So we need to substitute $x=-1-t, y=6+4 t, z=1$ into $2 x+3 y-z$ and find the value(s) of t (if any) for which it is equal to -5 .

$$
2(-1-t)+3(6+4 t)-1=-2-2 t+18+12 t-1=-5 \Rightarrow 10 t=-20 \Rightarrow t=-2
$$

Therefore, the plane π intersects the line ℓ at the point that corresponds to $t=-2$.

$$
x=-1-(-2)=1, y=6+4(-2)=-2, z=1
$$

and so the point of intersection is $(1,-2,1)$.
(b) Find parametric and, if possible, symmetric equations of the line that is perpendicular to the plane π and passes through the point P.

Solution: If the line is perpendicular to the plane π, then it is parallel to the normal $\mathbf{n}=\langle 2,3,-1\rangle$ of π. Because our line should also pass through $P(4,-2,3)$, its parametric equations are

$$
x=4+2 t, y=-2+3 t, z=3-t .
$$

Since none of the components of \mathbf{n} is zero, we can also find symmetric equations of the line:

$$
\frac{x-4}{2}=\frac{y+2}{3}=\frac{z-3}{-1} .
$$

(c) Find an equation of the plane that is perpendicular to the plane π, parallel to the line ℓ, and passes through the point P.

Solution: Because our plane should be perpendicular to the plane $\pi: 2 x+3 y-z=-5$, its normal \mathbf{n}_{1} has to be perpendicular to the normal vector $\mathbf{n}=\langle 2,3,-1\rangle$ of π. The condition that the plane is perpendicular to the line $\ell: x=-1-t, y=6+4 t, z=1$ implies that $\mathbf{n}_{\mathbf{1}}$ has to be perpendicular to the vector $\mathbf{u}=\langle-1,4,0\rangle$ thatis parallel to ℓ. Therefore, we can take $\mathbf{n}_{\mathbf{1}}=\mathbf{n} \times \mathbf{u}$.

$$
\begin{aligned}
\mathbf{n}_{1} & =\langle 2,3,-1\rangle \times\langle-1,4,0\rangle=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & 3 & -1 \\
-1 & 4 & 0
\end{array}\right|=\left|\begin{array}{cc}
3 & -1 \\
4 & 0
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{cc}
2 & -1 \\
-1 & 0
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{cc}
2 & 3 \\
-1 & 4
\end{array}\right| \hat{\mathbf{k}} \\
& =(0-(-4)) \hat{\mathbf{i}}-(0-1) \hat{\mathbf{j}}+(8-(-3)) \hat{\mathbf{k}}=4 \hat{\mathbf{i}}+\hat{\mathbf{j}}+11 \hat{\mathbf{k}}=\langle 4,1,11\rangle .
\end{aligned}
$$

So our plane should pass through the point $P(4,-2,3)$ and have a normal $\langle 4,1,11\rangle$ which leads to the following equation:

$$
4(x-4)+(y+2)+11(z-3)=0 \quad \Longleftrightarrow \quad 4 x+y+11 z-47=0
$$

