Mathematics MATH1300
Vector Geometry and Linear Algebra
Final Examination
December 11, 2013, 6:00-8:00pm
Problem 1 (7\%) Let

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
4 & 3 & 2 & 0 & 1 \\
1 & -3 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 & 1 \\
3 & 2 & 0 & 0 & 0
\end{array}\right]
$$

Evaluate $\operatorname{det}(A)$.

$$
\begin{aligned}
& \text { Solution: Expanding on the first row, } \operatorname{det}(A)= \\
& -2 \operatorname{det}\left(\left[\begin{array}{llll}
4 & 2 & 0 & 1 \\
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
3 & 0 & 0 & 0
\end{array}\right]\right)=6 \operatorname{det}\left(\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 2 & 0 \\
1 & 1 & 1
\end{array}\right]\right)=6(4+2-2)=24
\end{aligned}
$$

Problem 2 (14\%) Let

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
1 & 2 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

(i). Compute $A^{-1}$ by putting $A$ in reduced row echelon form.

| Solution: | $\begin{aligned} & {\left[\begin{array}{lll\|lll} 2 & 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 2 & 2 & 0 & 0 & 1 \end{array}\right] \begin{array}{l} R_{1} \leftarrow \frac{1}{2} R_{1} \\ R_{2} \leftarrow R_{2}-R_{1} \\ R_{3} \leftarrow R_{3}-R_{1} \end{array}} \\ & {\left[\begin{array}{lll\|lll} 1 & 1 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & 0 \\ 0 & 1 & 1 & -\frac{1}{2} & 0 & 1 \end{array}\right] \quad \begin{array}{l} R_{1} \leftarrow R_{1}-R_{2} \\ R_{3} \leftarrow R_{3}-R_{2} \\ {\left[\begin{array}{lll\|lll} 1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right]} \\ R_{1} \leftarrow R_{1}-R_{3} \\ {\left[\begin{array}{lll\|ccc} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right]} \end{array}{ }^{2}} \end{aligned}$ |
| :---: | :---: |

(ii). Compute $\operatorname{det}(A)$ and $\operatorname{det}\left(A^{-1}\right)$.

$$
\begin{aligned}
& \text { Solution: } \operatorname{det}\left(A^{-1}\right)=1-\frac{1}{2}=\frac{1}{2} \text {, and } \operatorname{det}(A)=\frac{1}{\frac{1}{2}}=2 \text {, or } \\
& \operatorname{det}(A)=8+2+4-4-4-4=2 \text {. }
\end{aligned}
$$

(iii). Compute $A^{-1}$ using the adjoint of $A$.
Solution: $\quad$ The cofactor matrix is $C=\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & 2 & -2 \\ -2 & 0 & 2\end{array}\right]$ and so
$A^{-1}=\frac{1}{2} C^{T}=\left[\begin{array}{ccc}1 & 0 & -1 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$

Problem $3(6 \%) \quad$ Let $\mathbf{x}=(1,2,-1,-2,-1), \mathbf{y}=(0,1,1,0,1)$ and $\mathbf{z}=(1,1,1,1,1)$ be vectors in $\mathbb{R}^{5}$.
(i). Compute the lengths: $\|\mathbf{x}\|,\|\mathbf{y}\|$ and $\|\mathbf{z}\|$.

$$
\text { Solution: } \quad\|\mathbf{x}\|=\sqrt{11},\|\mathbf{y}\|=\sqrt{3} \text { and }\|\mathbf{z}\|=\sqrt{5}
$$

(ii). Evaluate $\mathbf{x} \cdot \mathbf{y}$ and $\mathbf{x} \cdot \mathbf{z}$ and $\mathbf{y} \cdot \mathbf{z}$.

Solution: $\mathbf{x} \cdot \mathbf{y}=0, \mathbf{x} \cdot \mathbf{z}=-1$ and $\mathbf{y} \cdot \mathbf{z}=3$
(iii). Find two vectors from among $\mathbf{x}, \mathbf{y}$ and $\mathbf{z}$ that are orthogonal.

Solution: $\mathbf{x} \cdot \mathbf{y}=0$, and so $\theta=\frac{\pi}{2}$

Problem $4(12 \%) \quad$ Let $\mathbf{u}=(4,3), \mathbf{v}=(7,12)$ and $\mathbf{w}=(0,0)$.

(i). Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.

Solution: $\|\mathbf{u}\|=5$ and $\|\mathbf{v}\|=13$
(ii). Find $\cos (\theta)$, where $\theta$ is the angle between the line joining $\mathbf{u}$ with $\mathbf{w}$ and the line joining $\mathbf{v}$ and $\mathbf{w}$.

```
Solution: }\operatorname{cos}(0)=\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{64}{65
```

(iii). Find the projection of $\mathbf{u}$ onto $\mathbf{v}$, that is, the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Solution: $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{64}{169}(7,12)$
(iv). Find the area of the triangle with vertices $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$.

Solution: The area is $\frac{1}{2}\|(4,3,0) \times(7,12,0)\|$ or $\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{cc}4 & 3 \\ 7 & 12\end{array}\right]\right|=$ $13 \frac{1}{2}$

Problem 5 (10\%) Let $A$ and $B$ be square matrices of the same size. Explain why
(i). $(A B)^{-1}=B^{-1} A^{-1}$

Solution: $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=$ $I$, and so $B^{-1} A^{-1}$ is the inverse of $A B$, that is $(A B)^{-1}=$ $B^{-1} A^{-1}$.
(ii). $\left(A^{-1}\right)^{-1}=A$

Solution: $\quad A^{-1} A=I$, and so $A$ is the inverse of $A^{-1}$, that is $\left(A^{-1}\right)^{-1}=A$.

Problem 6 (9\%) Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(i). Find all of the eigenvalues of $A$.

$$
\begin{array}{|l}
\text { Solution: } \\
\text { Since } \operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 1-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right]\right)=(3-\lambda)(-2 \lambda+ \\
\left.\lambda^{2}\right)=-\lambda(\lambda-3)(\lambda-2) \text {, the eigenvalues are } 3,2 \text { and } 0 .
\end{array}
$$

(ii). What is the characteristic polynomial of $A$ ?

Solution: $\quad p_{A}(\lambda)=\lambda(\lambda-2)(\lambda-3)=\lambda^{3}-5 \lambda^{2}+6 \lambda$
(iii). For each eigenvalue of $A$, give a corresponding eigenvector.

Solution: For $\lambda=3$, the eigenvector is a multiple of $(0,0,1)$. For $\lambda=2$, the eigenvector is a multiple of $(1,1,0)$. For $\lambda=0$, the eigenvector is a multiple of $(1,-1,0)$.

Problem 7 (6\%) Let a system of linear equations have the following reduced row echelon form:

$$
A=\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & a \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Describe the values of $a$ for which there are

- No solutions: $a$ is

Solution: $a \neq 0$

- One solution: $a$ is

Solution: It never happens.

- An infinite number of solutions: $a$ is

Solution: $a=0$

Problem $8(16 \%) \quad$ Let $\mathbf{x}=(2,1,1), \mathbf{y}=(1,2,1), \mathbf{z}=(1,1,2), \mathbf{w}=(3,3,3)$ be points in $\mathbb{R}^{3}$. Let $\Pi$ be the plane through $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$
(i). Find the equation of the line joining $\mathbf{z}$ and $\mathbf{w}$.

Solution: $\quad(x, y, z)=t(1,1,2)+(1-t)(3,3,3)=(3,3,3)+$ $t(-2,-2,-1)$. Also $\mathbf{w}-\mathbf{z}=(2,2,1)$, so the line also has the equation $(x, y, z)=(3,3,3)+t(2,2,1)$.
(ii). Find the equation of the plane $\Pi$.

Solution: $\quad(\mathbf{z}-\mathbf{x}) \times(\mathbf{z}-\mathbf{y})=(-1,0,1) \times(0,-1,-1)=(1,1,1)$ and so the equation of the plane is $x+y+x+d=0$. Since $(2,1,1)$ is in the plane, the equation is $x+y+z-4=0$, or $x+y+z=4$.
(iii). Find the (shortest) distance from $\mathbf{w}$ to $\Pi$.

Solution: The distance is $\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{5}{\sqrt{3}}$
(iv). Find the equation of the line $L$ that is within the plane $\Pi$ that passes through $\mathbf{z}$ and is perpendicular to the line joining $\mathbf{0}$ and $\mathbf{x}$.

Solution: $\quad$ The equation of a plane perpendicular to $\mathbf{x}=(2,1,1)$ has equation $2 x+y+z+d=0$. Since this line contains $\mathbf{z}=$ $(1,1,2)$, the equation of the plane perpendicular to x must be $2 x+y+z-5=0$. The line of intersection of this plane and $\Pi$ will be a line perpendicular to $\mathbf{x}$. The desired line is the intersection of these two planes. Solving the two equations gives a line of the form $(x, y, z)=(1, t, 3-t)=(1,0,3)+t(0,1,-1)$.

Problem $9(10 \%) \quad$ In each case, put a check in $T$ if the statement is true or a check in F if the statement is false. The credit given for this problem will be the number of correct answers minus the number of incorrect answers.
$\checkmark \mathrm{T} \quad \mathrm{F}$ If $A \mathbf{x}=0$ then $A(2 \mathbf{x})=0$
$\mathrm{T} \quad \mathrm{F} \checkmark \quad$ For any $\mathbf{x}$ and $\mathbf{y}$ in $\mathbb{R}^{3}, \mathbf{x} \times \mathbf{y}=\mathbf{y} \times \mathbf{x}$.

$\mathrm{T} \quad \mathrm{F} \checkmark$ If $\mathbf{x} \cdot \mathbf{y}=0$ and $\mathbf{y} \cdot \mathbf{z}=0$ then $\mathbf{x} \cdot \mathbf{z}=0$.
$\mathrm{T} \quad \mathrm{F} \checkmark \quad \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
$\checkmark \mathrm{T} \quad \mathrm{F} \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
$\mathrm{T} \quad \mathrm{F} \checkmark \quad \operatorname{det}(r A)=r \operatorname{det}(A)$.
$\mathrm{T} \quad \mathrm{F} \checkmark$ If $A B=0$ and $A \neq 0$, then $B=0$.
$\mathrm{T} \quad \mathrm{F} \checkmark$ If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation, then $T^{2}(\mathbf{x})=T\left(\mathbf{x}^{2}\right)$.
$\checkmark \mathrm{T} \quad \mathrm{F} \quad$ Let $\lambda$ be an eigenvalue of the matrix $A$ with $\mathbf{x}$ as its corresponding eigenvector. Then $A^{2}(\mathbf{x})=\lambda^{2} \mathbf{x}$.

Problem $10(10 \%) \quad$ Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis of $\mathbb{R}^{3}$, and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation satisfying

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=(1,1,1) \\
& T\left(\mathbf{e}_{2}\right)=(0,1,1) \\
& T\left(\mathbf{e}_{3}\right)=(0,0,1)
\end{aligned}
$$

(i). Find $T((1,2,3))$.

$$
\text { Solution: } \begin{aligned}
(1,2,3)= & \mathbf{e}_{1}+2 \mathbf{e}_{2}+3 \mathbf{e}_{3}, \text { and so } \\
T((1,2,3)) & =T\left(\mathbf{e}_{1}+2 \mathbf{e}_{2}+3 \mathbf{e}_{3}\right) \\
& =T\left(\mathbf{e}_{1}\right)+2 T\left(\mathbf{e}_{2}\right)+3 T\left(\mathbf{e}_{3}\right) \\
& =(1,1,1)+2(0,1,1)+3(0,0,1) \\
& =(1,3,6)
\end{aligned}
$$

(ii). Find $T^{-1}((1,2,3))$.
Solution: $\quad$ The matrix representing $T$ is $A=\left[\begin{array}{lll|}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right] \cdot$
Then $A^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$ and $A^{-1}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Hence
$T^{-1}((1,2,3))=(1,1,1)$.

