Mathematics MATH1300 Vector Geometry and Linear Algebra Final Examination December 11, 2013, 6:00-8:00pm

Problem 1 (7%) Let

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 4 & 3 & 2 & 0 & 1 \\ 1 & -3 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 3 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Evaluate det(A).

Solution:	Expanding on the first row, $det(A) =$
$-2\det\left(\begin{bmatrix}4&2\\1&2\\1&1\\3&0\end{bmatrix}\right)$	$ \begin{pmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}) = 6 \det \begin{pmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}) = 6(4+2-2) = 24 $

Problem 2 (14%) Let

$$A = \begin{bmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

(i). Compute A^{-1} by putting A in reduced row echelon form.

Solution:	$\begin{bmatrix} 2 & 2 & 2 & & 1 & 0 & 0 \\ 1 & 2 & 1 & & 0 & 1 & 0 \\ 1 & 2 & 2 & & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} R_1 \leftarrow \frac{1}{2}R_1 \\ R_2 \leftarrow R_2 - R_1 \\ R_3 \leftarrow R_3 - R_1 \end{array}$
	$\begin{bmatrix} 1 & 1 & 1 & & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & & -\frac{1}{2} & 1 & 0 \\ 0 & 1 & 1 & & -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{array}{c} R_1 \leftarrow R_1 - R_2 \\ R_3 \leftarrow R_3 - R_2 \end{array}$
	$\begin{bmatrix} 1 & 0 & 1 & & 1 & -1 & 0 \\ 0 & 1 & 0 & & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & & 0 & -1 & 1 \end{bmatrix} R_1 \leftarrow R_1 - R_3$
	$\left[\begin{array}{ccc c} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{array}\right]$

(ii). Compute
$$det(A)$$
 and $det(A^{-1})$.

Solution:
$$\det(A^{-1}) = 1 - \frac{1}{2} = \frac{1}{2}$$
, and $\det(A) = \frac{1}{\frac{1}{2}} = 2$, or $\det(A) = 8 + 2 + 4 - 4 - 4 = 2$.

(iii). Compute A^{-1} using the adjoint of A.

	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	-1	0	1
Solution. The collector matrix is $C =$	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$	$\frac{2}{0}$	$\begin{bmatrix} -2\\2 \end{bmatrix}$	and so
$A^{-1} = \frac{1}{2}C^{T} = \begin{bmatrix} 1 & 0 & -1 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$				

Problem 3 (6%) Let $\mathbf{x} = (1, 2, -1, -2, -1)$, $\mathbf{y} = (0, 1, 1, 0, 1)$ and $\mathbf{z} = (1, 1, 1, 1, 1)$ be vectors in \mathbb{R}^5 .

(i). Compute the lengths: $\|\mathbf{x}\|$, $\|\mathbf{y}\|$ and $\|\mathbf{z}\|$.

Solution:
$$\|\mathbf{x}\| = \sqrt{11}, \|\mathbf{y}\| = \sqrt{3} \text{ and } \|\mathbf{z}\| = \sqrt{5}$$

(ii). Evaluate $\mathbf{x} \cdot \mathbf{y}$ and $\mathbf{x} \cdot \mathbf{z}$ and $\mathbf{y} \cdot \mathbf{z}$.

Solution: $\mathbf{x} \cdot \mathbf{y} = 0, \ \mathbf{x} \cdot \mathbf{z} = -1 \text{ and } \mathbf{y} \cdot \mathbf{z} = 3$	
--	--

(iii). Find two vectors from among \mathbf{x} , \mathbf{y} and \mathbf{z} that are orthogonal.

```
Solution: \mathbf{x} \cdot \mathbf{y} = 0, and so \theta = \frac{\pi}{2}
```

Problem 4 (12%) Let $\mathbf{u} = (4,3)$, $\mathbf{v} = (7,12)$ and $\mathbf{w} = (0,0)$.

(i). Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.

Solution: $\|\mathbf{u}\| = 5$ and $\|\mathbf{v}\| = 13$

(ii). Find $\cos(\theta)$, where θ is the angle between the line joining **u** with **w** and the line joining **v** and **w**.

Solution: $\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{64}{65}$

(iii). Find the projection of ${\bf u}$ onto ${\bf v},$ that is, the vector $\text{proj}_{{\bf v}}{\bf u}.$

Solution: $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{64}{169}(7, 12)$

(iv). Find the area of the triangle with vertices \mathbf{u} , \mathbf{v} and \mathbf{w} .

Solution: The area is $\frac{1}{2} \| (4,3,0) \times (7,12,0) \|$ or $\frac{1}{2} \left| \det \begin{bmatrix} 4 & 3 \\ 7 & 12 \end{bmatrix} \right| = 13\frac{1}{2}$

Problem 5 (10%) Let A and B be square matrices of the same size. Explain why

(i). $(AB)^{-1} = B^{-1}A^{-1}$

Solution: $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$, and so $B^{-1}A^{-1}$ is the inverse of AB, that is $(AB)^{-1} = B^{-1}A^{-1}$.

(ii). $(A^{-1})^{-1} = A$ Solution: $A^{-1}A = I$, and so A is the inverse of A^{-1} , that is $(A^{-1})^{-1} = A$.

Problem 6 (9%) Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(i). Find all of the eigenvalues of A.

Solution: Since det
$$\begin{pmatrix} \begin{bmatrix} 1-\lambda & 1 & 0\\ 1 & 1-\lambda & 0\\ 0 & 0 & 3-\lambda \end{bmatrix} = (3-\lambda)(-2\lambda + \lambda^2) = -\lambda(\lambda-3)(\lambda-2)$$
, the eigenvalues are 3, 2 and 0.

(ii). What is the characteristic polynomial of A?

Solution:
$$p_A(\lambda) = \lambda(\lambda - 2)(\lambda - 3) = \lambda^3 - 5\lambda^2 + 6\lambda$$

(iii). For each eigenvalue of A, give a corresponding eigenvector.

Solution: For $\lambda = 3$, the eigenvector is a multiple of (0, 0, 1). For $\lambda = 2$, the eigenvector is a multiple of (1, 1, 0). For $\lambda = 0$, the eigenvector is a multiple of (1, -1, 0).

Problem 7 (6%) Let a system of linear equations have the following reduced row echelon form:

	[1]	0	1	0]
A =	0	0	0	a
	0	0	0	0

Describe the values of a for which there are

• No solutions: *a* is _

Solution: $a \neq 0$

• One solution: a is _

Solution: It never happens.

• An infinite number of solutions: a is _____

Solution: a = 0

Problem 8 (16%) Let $\mathbf{x} = (2, 1, 1)$, $\mathbf{y} = (1, 2, 1)$, $\mathbf{z} = (1, 1, 2)$, $\mathbf{w} = (3, 3, 3)$ be points in \mathbb{R}^3 . Let Π be the plane through \mathbf{x} , \mathbf{y} , and \mathbf{z}

(i). Find the equation of the line joining \mathbf{z} and \mathbf{w} .

Solution: (x, y, z) = t(1, 1, 2) + (1 - t)(3, 3, 3) = (3, 3, 3) + t(-2, -2, -1). Also $\mathbf{w} - \mathbf{z} = (2, 2, 1)$, so the line also has the equation (x, y, z) = (3, 3, 3) + t(2, 2, 1).

(ii). Find the equation of the plane Π .

Solution: $(\mathbf{z} - \mathbf{x}) \times (\mathbf{z} - \mathbf{y}) = (-1, 0, 1) \times (0, -1, -1) = (1, 1, 1)$ and so the equation of the plane is x + y + x + d = 0. Since (2, 1, 1)is in the plane, the equation is x + y + z - 4 = 0, or x + y + z = 4.

(iii). Find the (shortest) distance from \mathbf{w} to Π .

Solution: The distant	e is $\frac{ ax_0+by_0+cz_0+d }{\sqrt{a^2+b^2+c^2}} = \frac{5}{\sqrt{3}}$
-----------------------	---

(iv). Find the equation of the line L that is within the plane Π that passes through \mathbf{z} and is perpendicular to the line joining $\mathbf{0}$ and \mathbf{x} .

Solution: The equation of a plane perpendicular to $\mathbf{x} = (2, 1, 1)$ has equation 2x + y + z + d = 0. Since this line contains $\mathbf{z} = (1, 1, 2)$, the equation of the plane perpendicular to \mathbf{x} must be 2x + y + z - 5 = 0. The line of intersection of this plane and Π will be a line perpendicular to \mathbf{x} . The desired line is the intersection of these two planes. Solving the two equations gives a line of the form (x, y, z) = (1, t, 3 - t) = (1, 0, 3) + t(0, 1, -1).

- **Problem 9** (10%) In each case, put a check in \boxed{T} if the statement is true or a check in \boxed{F} if the statement is false. The credit given for this problem will be the number of correct answers minus the number of incorrect answers.
- √Т F If $A\mathbf{x} = 0$ then $A(2\mathbf{x}) = 0$ For any \mathbf{x} and \mathbf{y} in \mathbb{R}^3 , $\mathbf{x} \times \mathbf{y} = \mathbf{y} \times \mathbf{x}$. F√ Т For any **x** and **y** in \mathbb{R}^3 , $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$. √Т F If $\mathbf{x} \cdot \mathbf{y} = 0$ and $\mathbf{y} \cdot \mathbf{z} = 0$ then $\mathbf{x} \cdot \mathbf{z} = 0$. Т F√ Т F√ $\det(A+B) = \det(A) + \det(B).$ $\checkmark {\rm T}$ F $\det(AB) = \det(A) \det(B).$ F√ Т $\det(rA) = r\det(A).$ Т F√ If AB = 0 and $A \neq 0$, then B = 0. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, then $T^2(\mathbf{x}) = T(\mathbf{x}^2)$. F√ Т √Т F Let λ be an eigenvalue of the matrix A with **x** as its corresponding eigenvector. Then $A^2(\mathbf{x}) = \lambda^2 \mathbf{x}$.

Problem 10 (10%) Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis of \mathbb{R}^3 , and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation satisfying

- $T(\mathbf{e}_1) = (1, 1, 1)$ $T(\mathbf{e}_2) = (0, 1, 1)$ $T(\mathbf{e}_3) = (0, 0, 1)$
- (i). Find T((1,2,3)).

Solution:
$$(1, 2, 3) = \mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3$$
, and so
 $T((1, 2, 3)) = T(\mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3)$
 $= T(\mathbf{e}_1) + 2T(\mathbf{e}_2) + 3T(\mathbf{e}_3)$
 $= (1, 1, 1) + 2(0, 1, 1) + 3(0, 0, 1)$
 $= (1, 3, 6)$

(ii). Find $T^{-1}((1,2,3))$.

Solution: The matrix	representing T is	$A = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$
Then $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$ $T^{-1}((1,2,3)) = (1,1,1).$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} \text{ and } A^{-1} \begin{bmatrix} 1\\2\\3 \end{bmatrix}$	$= \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$	Hence