UNIVERSITY OF MANITOBA

NAME: (Print in ink)	
STUDENT NUMBER:	
SEAT NUMBER:	
SIGNATURE: (in ink) _	
· · · · · ·	(I understand that chapting is a serious offense

(I understand that cheating is a serious offense)

Please place a check mark (\checkmark) for your section.

A01	10:30–11:20 AM	MWF (204 Armes)	Xiangui Zhao
A02	10:00–11:15 AM	TR (208 Armes)	Sasho Kalajdzievski
A03	1:30–2:20 PM	MWF (204 Armes)	G. I. Moghaddam

INSTRUCTIONS TO STUDENTS:

This is a 1 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 7 pages of questions and also 1 blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 70 points.

Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you may continue your work on the reverse side of the page, but CLEARLY INDICATE that your work is continued.

Question	Points	Score
1	10	
2	11	
3	4	
4	6	
5	9	
6	16	
7	6	
8	8	
Total:	70	

UNIVERSITY OF MANITOBA				
DATE: February 26, 2015		MIDTERM		
		PAGE: $1 \text{ of } 7$		
EXAMINATION: Vector Geometry	ry and Linear Algebra	TIME: <u>1 hour</u>		
COURSE: MATH 1300	EXAMINER: Kalajdzievski	Moghaddam, Zhao		

[10] 1. Consider the linear system

(a) Find the augmented matrix of this system.

(b) Find the reduced row echelon form of the augmented matrix.

(c) Write **all** of the solutions, if there are any.

UNIVERSITY OF MANITOBA

DATE: February 26, 2015

MIDTERM PAGE: 2 of 7 TIME: <u>1 hour</u>

EXAMINATION:Vector Geometry and Linear AlgebraTIME: 1 hourCOURSE:MATH 1300EXAMINER:Kalajdzievski, Moghaddam, Zhao

[11] 2. Let
$$A = \begin{bmatrix} 2 & 1 & -1 & 3 \\ 0 & 1 & 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 8 \\ 0 \\ 1 \\ 9 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & -1 \\ 6 & 1 \end{bmatrix}$.

(a) Indicate if the expression is defined or undefined by placing a check mark (\checkmark) in the appropriate column. If it is defined, then indicate the size of the resulting matrix.

EXPRESSION	UNDEFINED	DEFINED	SIZE
C(2A+3B)			
$A^T(C - 4C^T)$			
$A(BB^T)$			

(b) Evaluate $AA^T + C^2$.

UNIVERSITY OF MANITOBA				
DATE: February 26, 2	2015	MIDTERM		
		PAGE: $3 \text{ of } 7$		
EXAMINATION: Vec	tor Geometry and Linear Algebra	TIME: <u>1 hour</u>		
COURSE: MATH 130	0 EXAMINER: Kalajo	lzievski, Moghaddam, Zhao		

[4] 3. Let $A = \begin{bmatrix} a-4 & 0 \\ 1 & a+4 \end{bmatrix}$. Find all values of a for which the matrix A is invertible.

4. Calculate the following determinants.

		4	5	0	0
[9]	(a)	0	0	3	0
[0]	(a)	0	2	0	4
		0	0	0	-1

[3] (b)
$$\begin{vmatrix} a & a & b \\ 1 & 1 & 1 \\ a+b & a+b & 2b \end{vmatrix}$$

UNIVERSITY OF MANITOBA				
DATE: February 26, 2015		MIDTERM		
		PAGE: $4 \text{ of } 7$		
EXAMINATION: Vector Geometr	y and Linear Algebra	TIME: $\underline{1 \text{ hour}}$		
COURSE: MATH 1300	EXAMINER: Kalajdzievsk	i, Moghaddam, Zhao		

5. Let A and B be 2×2 matrices such that det(A) = 3 and $AB^T = A^2$.

[4] (a) Find det(B).

[5] (b) Find $\det(A(A + B^T))$.

UNIVERSITY OF MANITOBA DATE: February 26, 2015 EXAMINATION: Vector Geometry and Linear Algebra COURSE: MATH 1300 EXAMINER: Kalajdzievski, Moghaddam, Zhao

6. Let
$$A = \begin{bmatrix} 7 & 3 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
.
[6] (a) Given that $adj(A) = \begin{bmatrix} 1 & -3 & a \\ -2 & 7 & 7 \\ -2 & b & 7 \end{bmatrix}$; find the values of a and b .

[6] (b) Find A^{-1} by using the adj(A).

[4] (c) Use
$$A^{-1}$$
 to solve the linear system
No mark will be given for any other method.
$$7x + 3y = -1$$
$$y -z = 1$$
.
$$2x + z = 0$$
No mark will be given for any other method.

UNIVERSITY OF MANITOBA				
DATE: February 26, 2015	MIDTERM			
	PAGE: $6 \text{ of } 7$			
EXAMINATION: Vector Geometry and Linear Algebra	TIME: $\underline{1 \text{ hour}}$			
COURSE: MATH 1300 EXAMINER: Kalajdzievski	, Moghaddam, Zhao			

ax +2y +z = 2+y -z = 3. It is known that det(A) = 3, [6] 7. Consider the linear system bxcx + 2y - 3z = 7where A is the coefficient matrix of the system. Find the value of x only.

UNIVERSITY OF MANITOBA				
DATE: February 2	6, 2015		MIDTERM	
			PAGE: 7 of 7	
EXAMINATION:	Vector Geometry	and Linear Algebra	TIME: <u>1 hour</u>	
COURSE: MATH	1300	EXAMINER: Kalajo	lzievski, Moghaddam, Zhao	

[8] 8. Let $A = \begin{bmatrix} 2 & -8 \\ 0 & 1 \end{bmatrix}$. First find elementary matrices E_1 and E_2 such that $E_2E_1A = I$, and then express A as a product of elementary matrices.