MATH 1310 Assignment 1 Winter 2009

1. Determine whether each of the following statements is True or False. Explain your reason.
2. If $A=\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$ such that $a \neq 0$ then $A^{2}=\left(\begin{array}{ll}a^{2} & a^{2} \\ a^{2} & a^{2}\end{array}\right)$
3. The matrix $\left(\begin{array}{cc}12 & -8 \\ -9 & 18\end{array}\right)$ is a linear combination of the two matrices $\left(\begin{array}{cc}3 & -4 \\ 6 & 0\end{array}\right)$ and $\left(\begin{array}{cc}2 & 0 \\ -7 & 6\end{array}\right)$.
4. For matrices A and B, if $A^{2}=B^{2}$ then $A=B$.
5. Let $A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ and $B=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$; first find all values of \boldsymbol{a} and \boldsymbol{b} such that $A^{2}-3 A=B$, then list all possible answers for the matrix A.
6. Let $A=\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right)$; find all values of \boldsymbol{a} and \boldsymbol{b} such that $A^{2}+4 A=0$.
7. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right), \quad B=\left(\begin{array}{ccc}2 & -1 & 0 \\ 1 & 3 & 1\end{array}\right), \quad C=\left(\begin{array}{cc}4 & 1 \\ 0 & -1 \\ 5 & 0\end{array}\right)$;
evaluate each of the following expressions or explain why it is not defined.
8. $A^{2}-2 A+I_{2}$
9. $-2 A\left(B+C^{T}\right)$
10. $(C B)^{2}$
11. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 0 \\ 3 & 1 \\ -4 & 5 \\ 0 & -2\end{array}\right)$ and $B=\left(\begin{array}{ccccccc}2 & -1 & 0 & 1 & 3 & -6 & -1 \\ 1 & 3 & 1 & -4 & -1 & 5 & -6\end{array}\right)$; find each of the following:
(a) The (5, 4)-entry of $B^{T} A^{T}$.
(b) The (1, 2)-entry of $A^{T} A+B B^{T}$.
[Hint: In parts (a) and (b), you do not need to find all entries.]
12. Let $A=\left(\begin{array}{ccc}1 & x & 2 \\ y & 3 & -1 \\ 0 & 1 & -4\end{array}\right)$ and $B=\left(\begin{array}{c}1 \\ -1 \\ z\end{array}\right)$. If $A B=\left(\begin{array}{c}-3 \\ 5 \\ 7\end{array}\right)$ find x, y and z.
13. Find all solutions of each linear system using Gauss-Jordan elimination. Show your work and explain what elementary operations you are using.

$$
\begin{align*}
& -x-y+z \quad=-1 \\
& \text { (a) } \begin{aligned}
-3 x-y-z & =-9 \\
3 x-y+5 z & =15
\end{aligned} \tag{b}\\
& \text { (a) } \begin{array}{rr}
-3 x-y-z & =-9 \\
3 x-y+5 z & =15
\end{array} \\
& -2 y+4 z=6 \\
& -2 x_{1} \quad-4 x_{3}-2 x_{4}=-20 \\
& -x_{1}+x_{2}+x_{3}-x_{4}=-5 \\
& -x_{1}-x_{2} \quad-5 x_{3}-2 x_{4}=-21 \\
& x_{2}+3 x_{3}=5 \\
& -3 x_{1}-x_{2} \quad+x_{3} \quad=-2 \\
& \text { (c) } 2 x_{1}+x_{2} \quad+2 x_{3}-x_{4} \quad=1 \\
& -7 x_{1}-x_{2}+13 x_{3}-4 x_{4}=-2
\end{align*}
$$

