MATH 1310 Assignment 2 Winter 2009

1. The augmented matrix of a linear system is $\left(\begin{array}{ccc|c}1 & 2 & a+2 & b \\ 0 & 1 & b-1 & a \\ 0 & 0 & a & b \\ 0 & 0 & 0 & 0\end{array}\right)$.
(a) Find all values (if any) of a and b for which the system is inconsistent.
(b) Find all values (if any) of a and b for which the system has exactly one solution.
(c) Find all values (if any) of a and b for which the system has infinitely many solutions.
2. Determine whether each of the following matrices is invertible. If yes find the inverse and if no explain why.
(a) $\quad A=\left(\begin{array}{ccc}-1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5\end{array}\right)$
(b) $\quad B=\left(\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right)$
(c) $\quad C=\left(\begin{array}{ccc}3 & 1 & 2 \\ 1 & -2 & -4 \\ -5 & 3 & 6\end{array}\right)$
3. Let $A=\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 3 & -1 \\ 2 & 1 & 4\end{array}\right)$. First find A^{-1} then find all solutions of each of the following systems:
(a) $A \mathbf{x}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$,
(b) $\quad(-3 A) \mathbf{x}=\left(\begin{array}{c}-3 \\ 0 \\ 6\end{array}\right)$,
(c) $\quad A^{-1} \mathbf{x}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$,
(d) $A^{T} \mathbf{x}=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$
4. Find the determinant of each of the following matrices.
(a) $\quad A=\left(\begin{array}{lll}3 & 4 & 7 \\ 5 & 6 & 2 \\ 1 & 8 & 9\end{array}\right)$
(b) $\quad B=\left(\begin{array}{cccc}2 & 7 & -3 & 0 \\ 0 & 2 & 6 & 7 \\ 0 & 1 & 0 & 3 \\ 4 & 15 & -6 & 0\end{array}\right)$
(c) $\quad C=\left(\begin{array}{ccc}3 & 1 & 2 \\ 1 & -2 & -4 \\ -5 & 3 & 6\end{array}\right)$
5. Find the value of x such that

$$
\left|\begin{array}{ccc}
x & 2 & 1 \\
-1 & 0 & 1 \\
0 & 3 & x
\end{array}\right|=\left|\begin{array}{ccc}
0 & x & -1 \\
2 & 3 & 4 \\
0 & 1 & -2
\end{array}\right|
$$

6. Find all values of x for which the matrix $A=\left(\begin{array}{ccc}x & 1-x & 3 \\ 1 & x & -1 \\ 2 & 1 & 1\end{array}\right)$ is singular.
7. Let A, B and C be 5×5 matrices such that $\operatorname{det}(A)=3, \operatorname{det}(B)=-2$ and $\operatorname{det}(C)=10$. Evaluate each of the following:
8. $\operatorname{det}\left(A B^{T} C\right)$.
9. $\operatorname{det}\left(-2 A^{2} B^{-1}\right)$.
10. $\operatorname{det}\left(A^{-1} D B^{-3} D^{-1}\right)$. (where D is another 5×5 matrix)
11. Which one of the following matrices is an elementary matrix ? Explain.
(a) $\quad A=\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$
(b) $B=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$
(c) $C=\left(\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
12. Let $A=\left(\begin{array}{ccc}5 & -2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{cccc}0 & 2 & 1 & -1 \\ 2 & 3 & 6 & 7 \\ 1 & -1 & 2 & 1 \\ 0 & 1 & 2 & 1\end{array}\right)$. Find $(3,2)$-cofactor and also $(2,3)$-cofactor for each of the two matrices.
