MATH 1310 Assignment 3 Winter 2009

1. Three government departments, \mathbf{A}, \mathbf{B} and \mathbf{C} control all data processing. They want to charge fees for the use of their services by the other departments. Department \mathbf{A} uses $\frac{1}{2}$ of its own processing capacity, $\frac{1}{2}$ of B's capacity, and $\frac{3}{8}$ of C's. Department B uses $\frac{5}{16}$ of capacity of $\mathbf{A}, \frac{1}{16}$ of its own, and $\frac{3}{8}$ of C's. Department \mathbf{C} uses $\frac{3}{16}$ of capacity of $\mathbf{A}, \frac{7}{16}$ of \mathbf{B} 's, and $\frac{1}{4}$ of its own.
(a) Find the exchange matrix for this system.
(b) What price should each department charge to keep this system in equilibrium?
(c) What prices should departments \mathbf{A} and \mathbf{B} charge if department \mathbf{C} charges $\$ 4000$.
2. An economy consists of two sectors, electricity and petroleum. The production of $\$ 1$ of electricity requires 40 cents in electricity and 10 cents in petroleum. Whereas the production of $\$ 1$ of petroleum requires 20 cents in electricity and 30 cents in petroleum.
(a) Find the consumption matrix C of this economy.
(b) Is this economy productive? Justify your answer.
(c) If there is an outside demand for $\$ 320$ of electricity and $\$ 280$ of petroleum, find the production vector.
3. Let $\mathbf{u}=(5,8,3, \sqrt{2}), \mathbf{v}=(-1,0,-2,0)$ and $\mathbf{w}=(4,2,-2,1)$. Evaluate each of the following expressions or explain why it is not defined.
(a) $\frac{\|\mathbf{u}\|}{\|\mathbf{w}\|}(\mathbf{u} \cdot \mathbf{w})$
(b) $\quad(\|\mathbf{v}\|\|\mathbf{w}\|) \mathbf{u}+\|\mathbf{v}+\mathbf{w}\|^{2}$
(c) $(\mathbf{w} \cdot \mathbf{v}) \mathbf{u}-2(\mathbf{v} . \mathbf{u}) \mathbf{v}$
4. Let $A(2,0,2), B(2,1,2)$, and $C(3,0,2)$ be three points in \mathbf{R}^{3}; and let $\mathbf{u}=\overrightarrow{B C}, \mathbf{v}=\overrightarrow{B A}$ and $\mathrm{w}=\overrightarrow{C A}$.
(a) Find the components of the vectors \mathbf{u}, \mathbf{v} and \mathbf{w}.
(b) Find the angle between \mathbf{u} and \mathbf{v}.
(c) Find the angle between \mathbf{u} and \mathbf{w}.
(d) Find the angle between \mathbf{v} and \mathbf{w}.
5. Find all values of a such that $\|(\sqrt{3}, a, 2 \sqrt{a})\|=2 \sqrt{2}$.
6. Let $\mathbf{u}=(-\sqrt{5}, \sqrt{2})$ and $\mathbf{v}=(2,3,-2)$.
(a) Find a unit vector in the direction of the vector \mathbf{u}.
(b) Find a unit vector in the direction of the vector \mathbf{v}.
7. Determine the tail of the vector $\mathbf{u}=(-1,3,-3,4)$ whose head is the point $P(1,6,-1,-2)$.
8. Let W be the set of all 2×2 matrices. For any two matrices A and B in W and c in \mathbf{R}, it is defined that:

$$
A \oplus B=A+B+I \quad \text { and } \quad c \odot A=c A
$$

Determine if the property $c \odot(A \oplus B)=(c \odot A) \oplus(c \odot B)$ fails or holds in W.

