MATH 1310 Assignment 3 Winter 2009

- 1. Three government departments, **A**, **B** and **C** control all data processing. They want to charge fees for the use of their services by the other departments. Department **A** uses $\frac{1}{2}$ of its own processing capacity, $\frac{1}{2}$ of **B**'s capacity, and $\frac{3}{8}$ of **C**'s. Department **B** uses $\frac{5}{16}$ of capacity of **A**, $\frac{1}{16}$ of its own, and $\frac{3}{8}$ of **C**'s. Department **C** uses $\frac{3}{16}$ of capacity of **A**, $\frac{7}{16}$ of **B**'s, and $\frac{1}{4}$ of its own.
 - (a) Find the exchange matrix for this system.
 - (b) What price should each department charge to keep this system in equilibrium?
 - (c) What prices should departments **A** and **B** charge if department **C** charges \$4000.
- 2. An economy consists of two sectors, electricity and petroleum. The production of \$1 of electricity requires 40 cents in electricity and 10 cents in petroleum. Whereas the production of \$1 of petroleum requires 20 cents in electricity and 30 cents in petroleum.
 - (a) Find the consumption matrix C of this economy.
 - (b) Is this economy productive? Justify your answer.

(c) If there is an outside demand for \$320 of electricity and \$280 of petroleum, find the production vector.

- 3. Let $\mathbf{u} = (5, 8, 3, \sqrt{2})$, $\mathbf{v} = (-1, 0, -2, 0)$ and $\mathbf{w} = (4, 2, -2, 1)$. Evaluate each of the following expressions or explain why it is not defined.
 - (a) $\frac{\|\mathbf{u}\|}{\|\mathbf{w}\|} (\mathbf{u} \cdot \mathbf{w})$
 - (b) $(\|\mathbf{v}\| \|\mathbf{w}\|) \mathbf{u} + \|\mathbf{v} + \mathbf{w}\|^2$

(c)
$$(\mathbf{w.v})\mathbf{u} - 2(\mathbf{v.u})\mathbf{v}$$

- 4. Let A(2, 0, 2), B(2, 1, 2), and C(3, 0, 2) be three points in \mathbf{R}^3 ; and let $\mathbf{u} = \overrightarrow{BC}, \mathbf{v} = \overrightarrow{BA}$ and $\mathbf{w} = \overrightarrow{CA}$.
 - (a) Find the components of the vectors \mathbf{u}, \mathbf{v} and \mathbf{w} .
 - (b) Find the angle between \mathbf{u} and \mathbf{v} .
 - (c) Find the angle between \mathbf{u} and \mathbf{w} .
 - (d) Find the angle between \mathbf{v} and \mathbf{w} .
- 5. Find all values of **a** such that $\|(\sqrt{3}, a, 2\sqrt{a})\| = 2\sqrt{2}$.
- 6. Let $\mathbf{u} = (-\sqrt{5}, \sqrt{2})$ and $\mathbf{v} = (2, 3, -2)$.
 - (a) Find a unit vector in the direction of the vector **u**.
 - (b) Find a unit vector in the direction of the vector \mathbf{v} .
- 7. Determine the *tail* of the vector $\mathbf{u} = (-1, 3, -3, 4)$ whose *head* is the point P(1, 6, -1, -2).
- 8. Let W be the set of all 2×2 matrices. For any two matrices A and B in W and c in **R**, it is defined that:

 $A \oplus B = A + B + I$ and $c \odot A = cA$

Determine if the property $c \odot (A \oplus B) = (c \odot A) \oplus (c \odot B)$ fails or holds in W.