MATH 1310 Assignment 4 Winter 2009

1. For each of the following, determine whether the given set is a subspace of the given vector space. If your answer is yes prove it, and if your answer is no explain why.
(a) In the vector space \mathbb{R}^{3}, the set of all vectors of form (a, b, c) such that $a+b-c=2$.
(b) In the vector space M_{22}, the set of matrices of form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $2 a-c=0$ and $3 b-d=0$.
(c) In the vector space M_{22}, the set of matrices A such that $A+A^{T}=0$
(d) In the vector space P_{3}, the set of all polynomials of form $a t^{3}+b t^{2}+c t$ where a, b and c are real numbers.
(e) In the vector space P_{2}, the set of all polynomials of form $t^{3}+a$ where a is a real number.
(f) In the vector space M_{33}, the set of matrices of form $\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$ such that $a_{11}+a_{12}+a_{13}=3$.
2. Let $S=\{(1,0,1),(1,1,3),(0,1,2)\}$; determine whether $(3,4,11)$ is in Span S. Repeat it for $(1,-1,1)$
3. For each of the following, determine whether the given set is linearly dependent or linearly independent in the given vector space.
(a) $S=\{(1,-2,1),(2,-1,3),(0,1,2),(0,1,0)\}, \quad$ in \mathbb{R}^{3}.
(b) $S=\left\{t^{2}-1,3 t+2, t^{2}+1\right\}$, in P_{2}.
(c) $S=\left\{\left(\begin{array}{rr}1 & -2 \\ 0 & 6\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ 0 & -3\end{array}\right),\left(\begin{array}{rr}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{rr}1 & -2 \\ 0 & 7\end{array}\right)\right\}$, in M_{22}.
4. Let W be a subset of the vector space M_{22}, consisting of all matrices A such that $A A^{T}=I$.
(a) Is W closed under addition?
(b) Is W closed under scalar multiplication?
(c) Is W a subspace of M_{22} ? Explain.
5. Show that the set $S=\{t+1, t-1\}$ form a basis for the vector space P_{1}.
6. For each of the following, find a basis and the dimension of the given subspace.
(a) In \mathbb{R}^{4}, subspace of all vectors of form (a, b, c, d) such that $c=2 a+b$ and $d=a-3 b$.
(b) In M_{22}, subspace of all matrices of form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a=b+c$ and $d=b-2 c$.
(c) In P_{2}, subspace of all polynomials of form $a t^{2}+b t+c$ such that $a-2 b=0$ and $c+b=0$.
(d) In P_{3}, subspace of all polynomials of form $a t^{3}+b t^{2}+c t+d$ such that $a-4 b=0$ and $c-d=0$.
