MATH 1310 Assignment 4 Winter 2009

- 1. For each of the following, determine whether the given set is a **subspace** of the given vector space. If your answer is yes prove it, and if your answer is no explain why.
 - (a) In the vector space \mathbb{R}^3 , the set of all vectors of form (a, b, c) such that a + b c = 2.
 - (b) In the vector space M_{22} , the set of matrices of form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that 2a c = 0 and 3b d = 0.
 - (c) In the vector space M_{22} , the set of matrices A such that $A + A^T = 0$
 - (d) In the vector space P_3 , the set of all polynomials of form $at^3 + bt^2 + ct$ where a, b and c are real numbers.
 - (e) In the vector space P_2 , the set of all polynomials of form $t^3 + a$ where a is a real number.
 - (f) In the vector space M_{33} , the set of matrices of form $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ such that $a_{11} + a_{12} + a_{13} = 3$.
- 2. Let $S = \{(1,0,1), (1,1,3), (0,1,2)\}$; determine whether (3,4,11) is in Span S. Repeat it for (1,-1,1)
- 3. For each of the following, determine whether the given set is linearly dependent or linearly independent in the given vector space.
 - (a) $S = \{(1, -2, 1), (2, -1, 3), (0, 1, 2), (0, 1, 0)\},$ in \mathbb{R}^3 .

(b)
$$S = \{t^2 - 1, 3t + 2, t^2 + 1\}, \text{ in } P_2.$$

(c)
$$S = \left\{ \begin{pmatrix} 1 & -2 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -3 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 0 & 7 \end{pmatrix} \right\}, \text{ in } M_{22}$$

- 4. Let W be a subset of the vector space M_{22} , consisting of all matrices A such that $AA^T = I$.
 - (a) Is W closed under addition?
 - (b) Is W closed under scalar multiplication?
 - (c) Is W a subspace of M_{22} ? Explain.
- 5. Show that the set $S = \{t + 1, t 1\}$ form a basis for the vector space P_1 .
- 6. For each of the following, find a basis and the dimension of the given subspace.
 - (a) In \mathbb{R}^4 , subspace of all vectors of form (a, b, c, d) such that c = 2a + b and d = a 3b.
 - (b) In M_{22} , subspace of all matrices of form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that a = b + c and d = b 2c.
 - (c) In P_2 , subspace of all polynomials of form $at^2 + bt + c$ such that a 2b = 0 and c + b = 0.
 - (d) In P_3 , subspace of all polynomials of form $at^3 + bt^2 + ct + d$ such that a 4b = 0 and c d = 0.