MATH 1500 A01 Assignment 3 Winter 2010 (Due date is March 19)

[20] 1. Find the absolute maximum and the absolute minimum values of the each function on the given interval. Indicate where they are attained.

(a)
$$f(x) = x^6 - 3x^2$$
 on the interval [-2, 0]

- (b) $g(t) = t^5 5t^4 + 5t^3$ on the interval [-1, 2].
- (c) $h(x) = 4\sqrt{x+1} x$ on the interval [0, 8].
- (d) $k(x) = x + \sqrt{1 x^2}$ on the interval [-1, 1].
- [40] 2. Find the derivative of each of the following functions.
 - (1) $y = e^{\tan x} \log_7 (x^3 + \cos x)$ (2) $y = (\ln x)^2 + 2^{\ln x} + \pi^{\ln \pi}$ (3) $y = \frac{e^{\sin(\ln x)}}{1 + \sqrt{\ln x}}$ (4) $f(x) = \sqrt{\frac{e^{x \ln(x^2 + 1)}}{1 + x^2}}$ (5) $g(x) = \ln^2 [\sin x \cos x - e^{x^2}]$ (6) $h(x) = \ln[(2 + \sin x)^{x^2}]$

(7)
$$k(x) = \left(\frac{1}{x}\right)^{\ln x}$$

(8)
$$l(x) = [\ln|4x| - \frac{1}{x} + x^{\ln \pi}]^{10}$$

[18] 3. Find $\frac{dy}{dx}$ at the given point. (a) $\ln(x+y^3) + x^3y = 1 - e^y$ at (1, 0). (b) $x^y = y^x$ at (1, 1). (c) $y = x^{x^2} + x^{\sec(x-1)}$ at (1, 2).

- [72] 4. For each of the following functions first find answer to each of the following parts, then use all the informations to sketch the graph of the function.
 - (a) Domain of the function
 - (b) Equation(s) of horizontal asymptote(s)
 - (c) Equation(s) of vertical asymptote(s)
 - (d) x-intercept
 - (e) y-intercept
 - (f) Critical Number(s)
 - (g) Open interval(s) where f is increasing
 - (h) Open interval(s) where f is decreasing
 - (i) x and y coordinates of all relative maxima
 - (j) x and y coordinates of all relative minima
 - (k) Open interval(s) where f is concave upward
 - (l) Open interval(s) where f is concave downward
 - (m) x and y coordinates of all inflection point(s)

1.
$$f(x) = 5 - 8x^2 + x^4$$

2. $g(x) = \frac{3x^2 - 6}{(x - 1)^2}$
3. $h(x) = \frac{8(x - 2)}{x^2}$
4. $k(x) = xe^{-x}$