MATH 1500 A01 Assignment 2 Winter 2010 (Due date is February 12)

[36] 1. Evaluate each of the following limits. In case the limit does not exist, determine whether the limit is $\infty,-\infty$ or neither.
(1) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}+x}}{(x+1)(2 x-1)}$
(2) $\lim _{x \rightarrow-\infty} \frac{x \sqrt{3 x^{2}-1}}{x^{2}+2}$
(3) $\lim _{x \rightarrow(-1)^{+}} \frac{x-1}{x^{2}(x+1)}$
(4) $\lim _{x \rightarrow 1} \frac{x^{2}-x-3}{(x-1)^{2}}$
(5) $\lim _{x \rightarrow-\infty}\left(2 x+\sqrt{4 x^{2}-x}\right)$
(6) $\lim _{x \rightarrow 0}\left(\sqrt{\frac{1}{x^{2}}+1}-\sqrt{\frac{1}{x^{2}}}\right)$
(7) $\lim _{x \rightarrow \infty}\left(\sqrt{4 x+x^{2}}-x\right)$
(8) $\lim _{x \rightarrow 0} \frac{3 x}{\sin 2 x}$
(9) $\lim _{t \rightarrow 0} \frac{\sin t}{\sin 4 t}$
[15] 2. Use only definition of derivative to find the derivative of each function. (DO NOT USE DIFFERENTIATION RULES)
(1) $f(x)=3 x-x^{2}$
(2) $g(x)=\frac{1}{\sqrt{x}}$
(3) $\quad h(x)=\frac{1}{x^{2}+3}$
[40] 3. Find the derivative of each of the following functions.
(1) $y=\sqrt[4]{x^{9}}+\left(\frac{3}{2}\right)^{2}-e^{\pi^{2}} x$
(2) $y=4 \sqrt[3]{x}+\sec x+\frac{1}{x^{2}}+\sin 2$
(3) $y=\frac{\cos x}{1+\sqrt{x}}$
(4) $f(x)=(\tan x)\left(\frac{x^{4}+5}{e^{x}}\right)$
(5) $g(x)=\left(x-x^{2}\right)^{2}+\pi^{-7}(2.4)^{\pi}$
(6) $h(x)=\left(\sin ^{2} x\right) \sqrt{x^{2}+e^{x}}$
(7) $k(x)=\cos [6-\tan (2 x)]+e^{-x} \sqrt{5+x}$
(8) $l(x)=\left[\sec (4 x)-\frac{1}{x}+x^{\pi^{2}}\right]^{10}$
[9] 4. Let $f(x)=\left\{\begin{array}{lll}x+b & \text { if } & x<0 \\ \cos x & \text { if } & x \geq 0\end{array}\right.$.
(a) Is there a value of b for which the limit of $f(x)$ at $x=0$ does exist? (Give reasons for your answer.)
(b) Is there a value of b that makes this function continuous at $x=0$? (Give reasons for your answer.)
(c) Is there a value of b that makes this function differentiable at $x=0$? (Give reasons for your answer.)

